1
|
Bhatnagar P, Bajpai P, Shrinet J, Kaja MK, Chandele A, Sitaraman R. Prediction of human protein interactome of dengue virus non-structural protein 5 (NS5) and its downstream immunological implications. 3 Biotech 2023; 13:180. [PMID: 37193327 PMCID: PMC10182223 DOI: 10.1007/s13205-023-03569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
The non-structural protein 5 (NS5) is the most conserved protein among flaviviruses, a family that includes the dengue virus. It functions both as an RNA-dependent RNA polymerase and an RNA-methyltransferase and is therefore essential for the replication of viral RNA. The discovery that dengue virus NS5 protein (DENV-NS5) can also localize to the nucleus has resulted in renewed interest in its potential roles at the host-virus interface. In this study, we have used two complementary computational approaches in parallel - one based on linear motifs (ELM) and another based on tertiary structure of the protein (DALI) - to predict the host proteins that DENV-NS5 might interact with. Of the 42 human proteins predicted by both these methods, 34 are novel. Pathway analysis of these 42 human proteins shows that they are involved in key host cellular processes related to cell cycle regulation, proliferation, protein degradation, apoptosis, and immune responses. A focused analysis of transcription factors that directly interact with the predicted DENV-NS5 interacting proteins was performed, followed by the identification of downstream genes that are differentially expressed after dengue infection using previously published RNA-seq data. Our study provides unique insights into the DENV-NS5 interaction network and delineates mechanisms whereby DENV-NS5 could impact the host-virus interface. The novel interactors identified in this study could be potentially targeted by NS5 to modulate the host cellular environment in general, and the immune response in particular, thereby extending the role of DENV-NS5 beyond its known enzymatic functions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03569-0.
Collapse
Affiliation(s)
- Priya Bhatnagar
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Murali Krishna Kaja
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Department of Pediatrics and Emory Vaccine Centre, Emory University School of Medicine, Atlanta, GA USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | |
Collapse
|
2
|
He L, Sun W, Yang L, Liu W, Li J. A multiple-target mRNA-LNP vaccine induces protective immunity against experimental multi-serotype DENV in mice. Virol Sin 2022; 37:746-757. [PMID: 35835315 PMCID: PMC9583182 DOI: 10.1016/j.virs.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus with a rapid spread to humans, causing mild to potentially fatal illness in hundreds of millions of people each year. Due to the large number of serotypes of the virus, there remains an unmet need to develop protective vaccines for a broad spectrum of the virus. Here, we constructed a modified mRNA vaccine containing envelope domain III (E-DIII) and non-structural protein 1 (NS1) coated with lipid nanoparticles. This multi-target vaccine induced a robust antiviral immune response and increased neutralizing antibody titers that blocked all four types of DENV infection in vitro without significant antibody-dependent enhancement (ADE). In addition, there was more bias for Th1 than Th2 in the exact E-DIII and NS1-specific T cell responses after a single injection. Importantly, intramuscular immunization limited DENV transmission in vivo and eliminated vascular leakage. Our findings highlight that chimeric allogeneic structural and non-structural proteins can be effective targets for DENV vaccine and that they can prevent the further development of congenital DENV syndrome.
Collapse
Affiliation(s)
- Lihong He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Recovering or Persisting: The Immunopathological Features of SARS-CoV-2 Infection in Children. J Clin Med 2022; 11:jcm11154363. [PMID: 35955979 PMCID: PMC9369242 DOI: 10.3390/jcm11154363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background. The profile of cellular immunological responses of children across the spectrum of COVID-19, ranging from acute SARS-CoV-2 infection to full recovery or Long COVID, has not yet been fully investigated. Methods. We examined and compared cytokines in sera and cell subsets in peripheral blood mononuclear cells (B and regulatory T lymphocytes) collected from four distinct groups of children, distributed as follows: younger than 18 years of age with either acute SARS-CoV-2 infection (n = 49); fully recovered from COVID-19 (n = 32); with persistent symptoms (Long COVID, n = 51); and healthy controls (n = 9). Results. In the later stages after SARS-CoV-2 infection, the cohorts of children, both with recovered and persistent symptoms, showed skewed T and B subsets, with remarkable differences when compared with children at the onset of the infection and with controls. The frequencies of IgD+CD27− naïve B cells, IgD+IgM+ and CD27−IgM+CD38dim B cells were higher in children with recent infection than in those with an older history of disease (p < 0.0001 for all); similarly, the total and natural Tregs compartments were more represented in children at onset when compared with Long COVID (p < 0.0001 and p = 0.0005, respectively). Despite the heterogeneity, partially due to age, sex and infection incidence, the susceptibility of certain children to develop persistent symptoms after infection appeared to be associated with the imbalance of the adaptive immune response. Following up and comparing recovered versus Long COVID patients, we analyzed the role of circulating naïve and switched B and regulatory T lymphocytes in counteracting the evolution of the symptomatology emerged, finding an interesting correlation between the amount and ability to reconstitute the natural Tregs component with the persistence of symptoms (linear regression, p = 0.0026). Conclusions. In this study, we suggest that children affected by Long COVID may have a compromised ability to switch from the innate to the adaptive immune response, as supported by our data showing a contraction of naïve and switched B cell compartment and an unstable balance of regulatory T lymphocytes occurring in these children. However, further prospective immunological studies are needed to better clarify which factors (epigenetic, diet, environment, etc.) are involved in the impairment of the immunological mechanisms in the Long COVID patients.
Collapse
|
4
|
Factors Involved in the Apoptotic Cell Death Mechanism in Yellow Fever Hepatitis. Viruses 2022; 14:v14061204. [PMID: 35746675 PMCID: PMC9227230 DOI: 10.3390/v14061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 12/01/2022] Open
Abstract
Yellow fever (YF), a non-contagious infectious disease, is endemic or enzootic to the tropical regions of the Americas and Africa. Periodic outbreaks or epidemics have a significant impact on public health. Programmed cell death, or apoptosis, is generally characterised by distinct morphological changes and energy-dependent biochemical pathways. In this study, we performed immunohistochemistry analysis to identify and quantify proteases and protein targets involved in the cascade that triggers apoptosis in YF virus (YFV)-infected human hepatocytes. Liver tissue samples were collected from 26 individuals, among whom 21 were diagnosed as YF-positive, and five were flavivirus-negative and died due to other causes. The histopathological alterations in YFV-positive cases were characterised by the presence of apoptotic bodies, steatosis, cellular swelling, and extensive necrosis and haemorrhage in the hepatic lobules. Additionally, we observed an abundance of inflammatory infiltrates in the portal tract. The expression of various apoptotic markers in the hepatic parenchyma, including CASPASE 3, CASPASE 8, BAX, FAS, FASL, GRANZYME B, and SURVIVIN, differed between YFV-positive cases and controls. Collectively, this study confirmed the complexity of YFV infection-induced apoptosis in situ. However, our data suggest that apoptosis in liver parenchyma lesions may significantly contribute to the pathogenesis of fatal YF in humans.
Collapse
|
5
|
Di Sante G, Buonsenso D, De Rose C, Tredicine M, Palucci I, De Maio F, Camponeschi C, Bonadia N, Biasucci D, Pata D, Chiaretti A, Valentini P, Ria F, Sanguinetti M, Sali M. Immunopathology of SARS-CoV-2 Infection: A Focus on T Regulatory and B Cell Responses in Children Compared with Adults. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9050681. [PMID: 35626859 PMCID: PMC9139466 DOI: 10.3390/children9050681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022]
Abstract
While the clinical impact of COVID-19 on adults has been massive, the majority of children develop pauci-symptomatic or even asymptomatic infection and only a minority of the latter develop a fatal outcome. The reasons of such differences are not yet established. We examined cytokines in sera and Th and B cell subpopulations in peripheral blood mononuclear cells (PBMC) from 40 children (<18 years old), evaluating the impact of COVID-19 infection during the pandemic’s first waves. We correlated our results with clinical symptoms and compared them to samples obtained from 16 infected adults and 7 healthy controls. While IL6 levels were lower in SARS-CoV-2+ children as compared to adult patients, the expression of other pro-inflammatory cytokines such as IFNγ and TNFα directly correlated with early age infection and symptoms. Th and B cell subsets were modified during pediatric infection differently with respect to adult patients and controls and within the pediatric group based on age. Low levels of IgD− CD27+ memory B cells correlated with absent/mild symptoms. On the contrary, high levels of FoxP3+/CD25high T-Regs associated with a moderate−severe clinical course in the childhood. These T and B cells subsets did not associate with severity in infected adults, with children showing a predominant expansion of immature B lymphocytes and natural regulatory T cells. This study shows differences in immunopathology of SARS-CoV-2 infection in children compared with adults. Moreover, these data could provide information that can drive vaccination endpoints for children.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.S.); (M.T.); (C.C.); (F.R.)
- Dipartimento di Medicina Traslazionale, Sezione di Anatomia Umana, Clinica e Forense, Università degli studi di Perugia, 06123 Perugia, Italy
| | - Danilo Buonsenso
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
- Global Health Research Center, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence: ; Tel./Fax: +39-063-015-4390
| | - Cristina De Rose
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
| | - Maria Tredicine
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.S.); (M.T.); (C.C.); (F.R.)
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Chiara Camponeschi
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.S.); (M.T.); (C.C.); (F.R.)
| | - Nicola Bonadia
- Dipartimento di Medicina di Emergenza, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Daniele Biasucci
- Dipartimento di Anestesia e Terapia Intensiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Davide Pata
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
| | - Antonio Chiaretti
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
| | - Piero Valentini
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
| | - Francesco Ria
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.S.); (M.T.); (C.C.); (F.R.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del S. Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
Label-free proteomics-based analysis of peripheral nerve injury induced by Japanese encephalitis virus. J Proteomics 2022; 264:104619. [DOI: 10.1016/j.jprot.2022.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
|
7
|
Zhou Y, Bian P, Du H, Wang T, Li M, Hu H, Ye C, Zheng X, Zhang Y, Lei Y, Jia Z, Lian J. The Comparison of Inflammatory Cytokines (IL-6 and IL-18) and Immune Cells in Japanese Encephalitis Patients With Different Progression. Front Cell Infect Microbiol 2022; 12:826603. [PMID: 35463639 PMCID: PMC9022626 DOI: 10.3389/fcimb.2022.826603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background Japanese encephalitis virus (JEV) is the main cause of viral encephalitis in Asia. Nowadays, no effective and specific therapy for JE patients is available except supportive treatment. The fatality rate of JE patients is still about 30%, and more than half of survivors suffered from various neuropsychiatric sequelae. Thus, more attention should be paid to JE. Methods In this study, a retrospective cohort of JE patients was collected and the general features of JE patients admitted into the Department of Infectious Diseases were analyzed. Meanwhile, the dynamic change of plasma cytokines and immune cells in JE patients with divergent prognosis was detected and analyzed. Results We found a mounted proportion of adult/old patients in JE cases. The level of IL-6 and IL-18 increased in JE patients especially in fatal individuals. There was a continuous decreased percentage of CD4+ T and B cells in severe JE patients with fatal outcome compared with the surviving JE patients. Conclusions The consistent high level of IL-6 and IL-18 in the plasma and low proportion of CD4+ T and B cells in the PBMCs might be the indicators of poor prognosis.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Peiyu Bian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Hong Du
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Tao Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Mengyuan Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haifeng Hu
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xuyang Zheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yinfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Zhansheng Jia
- The Center of Infectious Diseases and Liver, Xi’an International Medical Center Hospital, Xi’an, China
- *Correspondence: Zhansheng Jia, ; Jianqi Lian,
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Zhansheng Jia, ; Jianqi Lian,
| |
Collapse
|
8
|
Klein RS. Encephalitic Arboviruses of Africa: Emergence, Clinical Presentation and Neuropathogenesis. Front Immunol 2022; 12:769942. [PMID: 35003087 PMCID: PMC8733932 DOI: 10.3389/fimmu.2021.769942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Many mosquito-borne viruses (arboviruses) are endemic in Africa, contributing to systemic and neurological infections in various geographical locations on the continent. While most arboviral infections do not lead to neuroinvasive diseases of the central nervous system, neurologic diseases caused by arboviruses include flaccid paralysis, meningitis, encephalitis, myelitis, encephalomyelitis, neuritis, and post-infectious autoimmune or memory disorders. Here we review endemic members of the Flaviviridae and Togaviridae families that cause neurologic infections, their neuropathogenesis and host neuroimmunological responses in Africa. We also discuss the potential for neuroimmune responses to aide in the development of new diagnostics and therapeutics, and current knowledge gaps to be addressed by arbovirus research.
Collapse
Affiliation(s)
- Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Neuroscience, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Paiva IA, Familiar-Macedo D, Badolato-Corrêa J, Carvalho FR, Dias HG, Pauvolid-Corrêa A, dos Santos CF, Silva AA, de Azeredo EL, Vianna RADO, Cardoso CAA, Grifoni A, Sette A, Weiskopf D, de-Oliveira-Pinto LM. Involvement of Th1Th17 Cell Subpopulations in the Immune Responses of Mothers Who Gave Birth to Children with Congenital Zika Syndrome (CZS). Viruses 2022; 14:v14020250. [PMID: 35215843 PMCID: PMC8879837 DOI: 10.3390/v14020250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
High levels of T helper 17 cell (Th17)-related cytokines have been shown in acute Zika virus (ZIKV) infection. We hypothesized that the high levels of Th17-related cytokines, associated with a regulatory environment during pregnancy, create a favorable milieu for the differentiation of CD4+Th17 cells. We present data from a cross-sectional study on mothers who confirmed ZIKV infection by qRT-PCR and their children. We also recruited non-pregnant women infected with ZIKV in the same period. ZIKV infection occurred between 2015 and 2017. We collected samples for this study between 2018 and 2019, years after the initial infection. We highlight that, after in vitro stimulation with ZIKV CD4 megapool (ZIKV MP), we found a lower frequency of IL-17-producing CD4+ T cells (Th17), especially in the mothers, confirmed by the decrease in IL-17 production in the supernatant. However, a higher frequency of CD4+ IL-17+ IFN-γ+ T cells (Th1Th17) responding to the ZIKV MP was observed in the cells of the mothers and children but not in those of the non-pregnant women. Our data indicate that the priming of CD4 T cells of the Th1Th17 phenotype occurred preferentially in the mothers who gave birth to children with CZS and in the children.
Collapse
Affiliation(s)
- Iury Amancio Paiva
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Débora Familiar-Macedo
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Jéssica Badolato-Corrêa
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Fabiana Rabe Carvalho
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil; (F.R.C.); (A.A.S.); (C.A.A.C.)
| | - Helver Gonçalves Dias
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA;
- Laboratory of Respiratory Viruses and Measles, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Caroline Fernandes dos Santos
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | - Andréa Alice Silva
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil; (F.R.C.); (A.A.S.); (C.A.A.C.)
| | - Elzinandes Leal de Azeredo
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
| | | | - Claudete Aparecida Araújo Cardoso
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil; (F.R.C.); (A.A.S.); (C.A.A.C.)
- Department of Maternal and Child, School of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil;
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), San Diego, CA 92037, USA; (A.G.); (A.S.); (D.W.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), San Diego, CA 92037, USA; (A.G.); (A.S.); (D.W.)
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), San Diego, CA 92037, USA; (A.G.); (A.S.); (D.W.)
| | - Luzia Maria de-Oliveira-Pinto
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (I.A.P.); (D.F.-M.); (J.B.-C.); (H.G.D.); (C.F.d.S.); (E.L.d.A.)
- Correspondence:
| |
Collapse
|
10
|
Poonpanichakul T, Chan-In W, Opasawatchai A, Loison F, Matangkasombut O, Charoensawan V, Matangkasombut P. Innate Lymphoid Cells Activation and Transcriptomic Changes in Response to Human Dengue Infection. Front Immunol 2021; 12:599805. [PMID: 34079535 PMCID: PMC8165392 DOI: 10.3389/fimmu.2021.599805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Dengue virus (DENV) infection has a global impact on public health. The clinical outcomes (of DENV) can vary from a flu-like illness called dengue fever (DF), to a more severe form, known as dengue hemorrhagic fever (DHF). The underlying innate immune mechanisms leading to protective or detrimental outcomes have not been fully elucidated. Helper innate lymphoid cells (hILCs), an innate lymphocyte recently discovered, functionally resemble T-helper cells and are important in inflammation and homeostasis. However, the role of hILCs in DENV infection had been unexplored. Methods We performed flow cytometry to investigate the frequency and phenotype of hILCs in peripheral blood mononuclear cells from DENV-infected patients of different disease severities (DF and DHF), and at different phases (febrile and convalescence) of infection. Intracellular cytokine staining of hILCs from DF and DHF were also evaluated by flow cytometry after ex vivo stimulation. Further, the hILCs were sorted and subjected to transcriptome analysis using RNA sequencing. Differential gene expression analysis was performed to compare the febrile and convalescent phase samples in DF and DHF. Selected differentially expressed genes were then validated by quantitative PCR. Results Phenotypic analysis showed marked activation of all three hILC subsets during the febrile phase as shown by higher CD69 expression when compared to paired convalescent samples, although the frequency of hILCs remained unchanged. Upon ex vivo stimulation, hILCs from febrile phase DHF produced significantly higher IFN-γ and IL-4 when compared to those of DF. Transcriptomic analysis showed unique hILCs gene expression in DF and DHF, suggesting that divergent functions of hILCs may be associated with different disease severities. Differential gene expression analysis indicated that hILCs function both in cytokine secretion and cytotoxicity during the febrile phase of DENV infection. Conclusions Helper ILCs are activated in the febrile phase of DENV infection and display unique transcriptomic changes as well as cytokine production that correlate with severity. Targeting hILCs during early innate response to DENV might help shape subsequent immune responses and potentially lessen the disease severity in the future.
Collapse
Affiliation(s)
- Tiraput Poonpanichakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Wilawan Chan-In
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Anunya Opasawatchai
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Fabien Loison
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Varodom Charoensawan
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.,Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
11
|
Badolato-Corrêa J, Carvalho FR, Paiva IA, Familiar-Macedo D, Dias HG, Pauvolid-Corrêa A, Fernandes-Santos C, Lima MDRQ, Gandini M, Silva AA, Baeta Cavalcanti SM, de Oliveira SA, de Oliveira Vianna RA, de Azeredo EL, Cardoso CAA, Grifoni A, Sette A, Weiskopf D, de-Oliveira-Pinto LM. Differential Longevity of Memory CD4 and CD8 T Cells in a Cohort of the Mothers With a History of ZIKV Infection and Their Children. Front Immunol 2021; 12:610456. [PMID: 33679748 PMCID: PMC7928292 DOI: 10.3389/fimmu.2021.610456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Zika virus (ZIKV) infection causes for mild and self-limiting disease in healthy adults. In newborns, it can occasionally lead to a spectrum of malformations, the congenital Zika syndrome (CZS). Thus, little is known if mothers and babies with a history of ZIKV infection were able to develop long-lasting T-cell immunity. To these issues, we measure the prevalence of ZIKV T-cell immunity in a cohort of mothers infected to the ZIKV during pregnancy in the 2016–2017 Zika outbreak, who gave birth to infants affected by neurological complications or asymptomatic ones. Results: Twenty-one mothers and 18 children were tested for IFN-γ ELISpot and T-cell responses for flow cytometry assays in response to CD4 ZIKV and CD8 ZIKV megapools (CD4 ZIKV MP and CD8 ZIKV MP). IFN-γ ELISpot responses to ZIKV MPs showed an increased CD4 and CD8 T-cell responses in mothers compared to children. The degranulation activity and IFN-γ-producing CD4 T cells were detected in most mothers, and children, while in CD8 T-cells, low responses were detected in these study groups. The total Temra T cell subset is enriched for IFN-γ+ CD4 T cells after stimulation of CD4 ZIKV MP. Conclusion: Donors with a history of ZIKV infection demonstrated long-term CD4 T cell immunity to ZIKV CD4 MP. However, the same was not observed in CD8 T cells with the ZIKV CD8 MP. One possibility is that the cytotoxic and pro-inflammatory activities of CD8 T cells are markedly demonstrated in the early stages of infection, but less detected in the disease resolution phase, when the virus has already been eliminated. The responses of mothers' T cells to ZIKV MPs do not appear to be related to their children's clinical outcome. There was also no marked difference in the T cell responses to ZIKV MP between children affected or not with CZS. These data still need to be investigated, including the evaluation of the response of CD8 T cells to other ZIKV peptides.
Collapse
Affiliation(s)
| | - Fabiana Rabe Carvalho
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói, Brazil
| | - Iury Amancio Paiva
- Laboratory of Viral Immunology, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States.,Laboratory of Respiratory Viruses and Measles, Fiocruz, Rio de Janeiro, Brazil
| | | | | | - Mariana Gandini
- Laboratory of Cellular Microbiology, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Andréa Alice Silva
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | - Claudete Aparecida Araújo Cardoso
- Multiuser Laboratory for Research in Nephrology and Medical Science, School of Medicine, Universidade Federal Fluminense, Niterói, Brazil.,Department of Maternal and Child, School of Medicine, Universidade Federal Fluminense, Niterói, Brazil
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), San Diego, CA, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), San Diego, CA, United States.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), San Diego, CA, United States
| | | |
Collapse
|
12
|
Sidney J, Peters B, Sette A. Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol 2020; 50:101418. [PMID: 33131981 DOI: 10.1016/j.smim.2020.101418] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Epitopes, in the context of T cell recognition, are short peptides typically derived by antigen processing, and presented on the cell surface bound to MHC molecules (HLA molecules in humans) for TCR scrutiny. The identification of epitopes is a context-dependent process, with consideration given to, for example, the source pathogen and protein, the host organism, and state of the immune reaction (e.g., following natural infection, vaccination, etc.). In the following review, we consider the various approaches used to define T cell epitopes, including both bioinformatic and experimental approaches, and discuss the concepts of immunodominance and immunoprevalence. We also discuss HLA polymorphism and epitope restriction, and the resulting impact on the identification of, and potential population coverage afforded by, epitopes or epitope-based vaccines. Finally, some examples of the practical application of T cell epitope identification are provided, showing how epitopes have been valuable for deriving novel immunological insights in the context of the immune response to various pathogens and allergens.
Collapse
Affiliation(s)
- John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Healy ZR, Weinhold KJ, Murdoch DM. Transcriptional Profiling of CD8+ CMV-Specific T Cell Functional Subsets Obtained Using a Modified Method for Isolating High-Quality RNA From Fixed and Permeabilized Cells. Front Immunol 2020; 11:1859. [PMID: 32983102 PMCID: PMC7492549 DOI: 10.3389/fimmu.2020.01859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Previous studies suggest that the presence of antigen-specific polyfunctional T cells is correlated with improved pathogen clearance, disease control, and clinical outcomes; however, the molecular mechanisms responsible for the generation, function, and survival of polyfunctional T cells remain unknown. The study of polyfunctional T cells has been, in part, limited by the need for intracellular cytokine staining (ICS), necessitating fixation and cell membrane permeabilization that leads to unacceptable degradation of RNA. Adopting elements from prior research efforts, we developed and optimized a modified protocol for the isolation of high-quality RNA (i.e., RIN > 7) from primary human T cells following aldehyde-fixation, detergent-based permeabilization, intracellular cytokines staining, and sorting. Additionally, this method also demonstrated utility preserving RNA when staining for transcription factors. This modified protocol utilizes an optimized combination of an RNase inhibitor and high-salt buffer that is cost-effective while maintaining the ability to identify and resolve cell populations for sorting. Overall, this protocol resulted in minimal loss of RNA integrity, quality, and quantity during cytoplasmic staining of cytokines and subsequent flourescence-activated cell sorting. Using this technique, we obtained the transcriptional profiles of functional subsets (i.e., non-functional, monofunctional, bifunctional, polyfunctional) of CMV-specific CD8+T cells. Our analyses demonstrated that these functional subsets are molecularly distinct, and that polyfunctional T cells are uniquely enriched for transcripts involved in viral response, inflammation, cell survival, proliferation, and metabolism when compared to monofunctional cells. Polyfunctional T cells demonstrate reduced activation-induced cell death and increased proliferation after antigen re-challenge. Further in silico analysis of transcriptional data suggested a critical role for STAT5 transcriptional activity in polyfunctional cell activation. Pharmacologic inhibition of STAT5 was associated with a significant reduction in polyfunctional cell cytokine expression and proliferation, demonstrating the requirement of STAT5 activity not only for proliferation and cell survival, but also cytokine expression. Finally, we confirmed this association between CMV-specific CD8+ polyfunctionality with STAT5 signaling also exists in immunosuppressed transplant recipients using single cell transcriptomics, indicating that results from this study may translate to this vulnerable patient population. Collectively, these results shed light on the mechanisms governing polyfunctional T cell function and survival and may ultimately inform multiple areas of immunology, including but not limited to the development of new vaccines, CAR-T cell therapies, and adoptive T cell transfer.
Collapse
Affiliation(s)
- Zachary R Healy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| | - Kent J Weinhold
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - David M Murdoch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| |
Collapse
|
14
|
de Mel S, Thilakawardana BU, de Mel P, Clarice CSH, Shalindi M, de Mel C, Chandrasena L, Yip C, Yap ES, Seneviratne SL, Abeysuriya V. Triple positivity for nonstructural antigen 1, immunoglobulin M and immunoglobulin G is predictive of severe thrombocytopaenia related to dengue infection. J Clin Virol 2020; 129:104509. [PMID: 32554305 DOI: 10.1016/j.jcv.2020.104509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The early identification of patients at risk of severe dengue infection (DI) is critical to guide clinical management. Non-structural antigen 1 (NS-1), immunoglobulin M (IgM) and immunoglobulin G (IgG) are used routinely for the diagnosis of DI. OBJECTIVES We sought to evaluate whether positivity for NS-1, IgM and IgG individually or together is predictive of severe complications of DI. METHODS & MATERIALS A prospective study was conducted among patients with DI admitted to our institution between 2014 and 2019. DI was diagnosed based on a positive NS1 or IgM. IgG was also tested on all the patients. Clinical data was obtained from electronic medical records at NH. Statistical analyses were performed using SPSS version 20. RESULTS We collected data on 3504 patients. Patients who were positive for NS1, IgM and IgG (triple positive: TP) were more likely to develop severe DI (63.8 %) in comparison to those who were only NS1 positive (single positive: SP) (3.0 %) and patients with positive NS1 and IgM (double positive: DP) (7.5 %). [p = 0.001]. Regression analysis confirmed that TP status on admission was predictive of severe complications. (p < 0.01). Receiver operator characteristic curve (ROC) analysis showed (AUC: 84.8; sensitivity = 90.7 and specificity = 83.2) that TP status on admission is predictive of thrombocytopenia on day 5. The predictive power of TP status was superior to that of NS1 and IgG positivity. CONCLUSIONS We propose that TP status on admission is a novel predictive factor for severe DI. Further studies are required to explore the biological basis for this finding.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology- Oncology, National University Cancer Institute, National University Health System, Singapore
| | | | - Primesh de Mel
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Choong Shi Hui Clarice
- Department of Haematology- Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Malka Shalindi
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Chandima de Mel
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Lal Chandrasena
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka
| | - Christina Yip
- Department of Laboratory Medicine, National University Health System, Singapore
| | - Eng-Soo Yap
- Department of Laboratory Medicine, National University Health System, Singapore
| | - Suranjith L Seneviratne
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka; Department of Surgery, Faculty of Medicine, University of Colombo, Sri Lanka; Institute of Immunity and Transplantation, Royal Free Hospital and University College London, UK
| | - Visula Abeysuriya
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals PLC, Colombo, Sri Lanka.
| |
Collapse
|