1
|
Leung N, Nasr SH. 2024 Update on Classification, Etiology, and Typing of Renal Amyloidosis: A Review. Am J Kidney Dis 2024; 84:361-373. [PMID: 38514011 DOI: 10.1053/j.ajkd.2024.01.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/23/2024]
Abstract
Amyloidosis is a protein folding disease that causes organ injuries and even death. In humans, 42 proteins are now known to cause amyloidosis. Some proteins become amyloidogenic as a result of a pathogenic variant as seen in hereditary amyloidoses. In acquired forms of amyloidosis, the proteins form amyloid in their wild-type state. Four types (serum amyloid A, transthyretin, apolipoprotein A-IV, and β2-macroglobulin) of amyloid can occur either as acquired or as a mutant. Iatrogenic amyloid from injected protein medications have also been reported and AIL1RAP (anakinra) has been recently found to involve the kidney. Finally, the mechanism of how leukocyte cell-derived chemotaxin 2 (ALECT2) forms amyloid remains unknown. This article reviews the amyloids that involve the kidney and how they are typed.
Collapse
Affiliation(s)
- Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; Division of Hematology, Mayo Clinic, Rochester, Minnesota.
| | - Samih H Nasr
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Erickson MA, Mahankali AP. Interactions of Serum Amyloid A Proteins with the Blood-Brain Barrier: Implications for Central Nervous System Disease. Int J Mol Sci 2024; 25:6607. [PMID: 38928312 PMCID: PMC11204325 DOI: 10.3390/ijms25126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Serum amyloid A (SAA) proteins are highly conserved lipoproteins that are notoriously involved in the acute phase response and systemic amyloidosis, but their biological functions are incompletely understood. Recent work has shown that SAA proteins can enter the brain by crossing the intact blood-brain barrier (BBB), and that they can impair BBB functions. Once in the central nervous system (CNS), SAA proteins can have both protective and harmful effects, which have important implications for CNS disease. In this review of the thematic series on SAA, we discuss the existing literature that relates SAA to neuroinflammation and CNS disease, and the possible roles of the BBB in these relations.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| | - Anvitha P. Mahankali
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| |
Collapse
|
3
|
Yao Y, Yu J, Wei H, Wang Y, Zhou H, Zhang A, Yang K, Wang X. Characterization and in vitro antibacterial activity of grass carp (Ctenopharyngodon idella) serum amyloid A. Gene 2024; 898:148108. [PMID: 38141691 DOI: 10.1016/j.gene.2023.148108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Serum amyloid A (SAA) predominantly synthesized by hepatocytes is a classical acute phase protein and has been extensively studied in mammals. However, the studies on the structure and properties of fish SAA are limited although SAA genes have been cloned and identified from various fishes. In the present study, a cDNA of grass carp (Ctenopharyngodon idella) SAA (gcSAA) was cloned and characterized, displaying a high homology with its counterparts in vertebrates. gcSAA mRNA was expressed with highest abundance in the liver and its levels were increased by a 24-hour infection of Aeromonas hydrophila (A. hydrophila) for more than 5 folds in the intestine, 15 folds in the spleen, 75 folds in the head kidney and 100 folds in the liver, implying that it is an acute phase protein in grass carp. Subsequently, recombinant gcSAA protein (rgcSAA) was prepared from a prokaryotic expression system after codon optimization of its coding sequence. The direct antibacterial activity assay and the plate count assay disclosed that gcSAA inhibited the growth and survival of A. hydrophila but not Edwardsiella piscicida (E. piscicida) which both are common bacterial pathogens in aquaculture. The propidium iodide (PI) uptake assay confirmed the bactericidal property of gcSAA, showing that it is able to enhance the uptake of PI in A. hydrophila but not E. piscicida. These findings revealed the molecular features of gcSAA and its roles in host defense against bacterial infection.
Collapse
Affiliation(s)
- Yuyan Yao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jinzhi Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - He Wei
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Yawen Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
4
|
Feng H, Zhou W, Yang Y, Zhang X, Mao R, Zhou Y, Cheng T, Xiao H, Rao Y, He J, Zhao P, Li J, Jiang C. Serum amyloid A aggravates endotoxin-induced ocular inflammation through the regulation of retinal microglial activation. FASEB J 2024; 38:e23389. [PMID: 38153347 DOI: 10.1096/fj.202301150rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Serum amyloid A (SAA) are major acute-phase response proteins which actively participate in many inflammatory diseases. This study was designed to explore the function of SAA in acute ocular inflammation and the underlying mechanism. We found that SAA3 was upregulated in endotoxin-induced uveitis (EIU) mouse model, and it was primarily expressed in microglia. Recombinant SAA protein augmented intraocular inflammation in EIU, while the inhibition of Saa3 by siRNA effectively alleviated the inflammatory responses and rescued the retina from EIU-induced structural and functional damage. Further study showed that the recombinant SAA protein activated microglia, causing characteristic morphological changes and driving them further to pro-inflammatory status. The downregulation of Saa3 halted the amoeboid change of microglia, reduced the secretion of pro-inflammatory factors, and increased the expression of tissue-reparative genes. SAA3 also regulated the autophagic activity of microglial cells. Finally, we showed that the above effect of SAA on microglial cells was at least partially mediated through the expression and signaling of Toll-like receptor 4 (TLR4). Collectively, our study suggested that microglial cell-expressed SAA could be a potential target in treating acute ocular inflammation.
Collapse
Affiliation(s)
- Huazhang Feng
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuerui Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixue Mao
- Naval Healthcare Information Center, PLA Naval Medical University, Shanghai, China
| | - Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongjie Cheng
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haodong Xiao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zámocký M, Ferianc P. Discovering the deep evolutionary roots of serum amyloid A protein family. Int J Biol Macromol 2023; 252:126537. [PMID: 37634776 DOI: 10.1016/j.ijbiomac.2023.126537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Deep evolutionary origin of the conserved animal serum amyloid A (SAA) apolipoprotein family leading to yet unknown highly similar SAA-like sequences occurring in certain bacterial genomes is demonstrated in this contribution. Horizontal gene transfer event of corresponding genes between gut bacteria and non-vertebrate animals was discovered in the reconstructed phylogenetic tree obtained with maximum likelihood and neighbor-joining methods, respectively. This detailed phylogeny based on totally 128 complete sequences comprised diverse serum amyloid A isoforms from various animal vertebrate and non-vertebrate phyla and also corresponding genes coding for highly similar proteins from animal gut bacteria. Typical largely conserved sequence motifs and a peculiar structural fold consisting mainly of four α-helices in a bundle within all reconstructed clades of the SAA protein family are discussed with respect to their supposed biological functions in various organisms that contain corresponding genes.
Collapse
Affiliation(s)
- Marcel Zámocký
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia.
| | - Peter Ferianc
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia
| |
Collapse
|
6
|
Wu L, Yan J, Bai Y, Chen F, Zou X, Xu J, Huang A, Hou L, Zhong Y, Jing Z, Yu Q, Zhou X, Jiang Z, Wang C, Cheng M, Ji Y, Hou Y, Luo R, Li Q, Wu L, Cheng J, Wang P, Guo D, Huang W, Lei J, Liu S, Yan Y, Chen Y, Liao S, Li Y, Sun H, Yao N, Zhang X, Zhang S, Chen X, Yu Y, Li Y, Liu F, Wang Z, Zhou S, Yang H, Yang S, Xu X, Liu L, Gao Q, Tang Z, Wang X, Wang J, Fan J, Liu S, Yang X, Chen A, Zhou J. An invasive zone in human liver cancer identified by Stereo-seq promotes hepatocyte-tumor cell crosstalk, local immunosuppression and tumor progression. Cell Res 2023; 33:585-603. [PMID: 37337030 PMCID: PMC10397313 DOI: 10.1038/s41422-023-00831-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023] Open
Abstract
Dissecting and understanding the cancer ecosystem, especially that around the tumor margins, which have strong implications for tumor cell infiltration and invasion, are essential for exploring the mechanisms of tumor metastasis and developing effective new treatments. Using a novel tumor border scanning and digitization model enabled by nanoscale resolution-SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq), we identified a 500 µm-wide zone centered around the tumor border in patients with liver cancer, referred to as "the invasive zone". We detected strong immunosuppression, metabolic reprogramming, and severely damaged hepatocytes in this zone. We also identified a subpopulation of damaged hepatocytes with increased expression of serum amyloid A1 and A2 (referred to collectively as SAAs) located close to the border on the paratumor side. Overexpression of CXCL6 in adjacent malignant cells could induce activation of the JAK-STAT3 pathway in nearby hepatocytes, which subsequently caused SAAs' overexpression in these hepatocytes. Furthermore, overexpression and secretion of SAAs by hepatocytes in the invasive zone could lead to the recruitment of macrophages and M2 polarization, further promoting local immunosuppression, potentially resulting in tumor progression. Clinical association analysis in additional five independent cohorts of patients with primary and secondary liver cancer (n = 423) showed that patients with overexpression of SAAs in the invasive zone had a worse prognosis. Further in vivo experiments using mouse liver tumor models in situ confirmed that the knockdown of genes encoding SAAs in hepatocytes decreased macrophage accumulation around the tumor border and delayed tumor growth. The identification and characterization of a novel invasive zone in human cancer patients not only add an important layer of understanding regarding the mechanisms of tumor invasion and metastasis, but may also pave the way for developing novel therapeutic strategies for advanced liver cancer and other solid tumors.
Collapse
Affiliation(s)
- Liang Wu
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- BGI-Southwest, BGI-Shenzhen, Chongqing, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Jiayan Yan
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yinqi Bai
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- BGI-Hangzhou, Hangzhou, Zhejiang, China
| | - Feiyu Chen
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xuanxuan Zou
- BGI-Southwest, BGI-Shenzhen, Chongqing, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ao Huang
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Liangzhen Hou
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhong
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Zehua Jing
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qichao Yu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaorui Zhou
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Jiang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Chunqing Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mengnan Cheng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Ji
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinqin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Wu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianwen Cheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Pengxiang Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Dezhen Guo
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Waidong Huang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Lei
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shang Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Yizhen Yan
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Yiling Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Sha Liao
- BGI-Southwest, BGI-Shenzhen, Chongqing, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Yuxiang Li
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Haixiang Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Na Yao
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiangyu Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Shiyu Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xi Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Yang Yu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yao Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Fengming Liu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Shaolai Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Shuang Yang
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Xu
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Longqi Liu
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- BGI-Hangzhou, Hangzhou, Zhejiang, China
| | - Qiang Gao
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhaoyou Tang
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiangdong Wang
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
- James D. Watson Institute of Genome Science, Hangzhou, Zhejiang, China
| | - Jia Fan
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Shiping Liu
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Xinrong Yang
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| | - Ao Chen
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- BGI-Southwest, BGI-Shenzhen, Chongqing, China.
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China.
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing, China.
| | - Jian Zhou
- Zhongshan-BGI Precision Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands. Front Endocrinol (Lausanne) 2023; 14:1119227. [PMID: 36817589 PMCID: PMC9935590 DOI: 10.3389/fendo.2023.1119227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Originally, it was thought that a single serum amyloid A (SAA) protein was involved in amyloid A amyloidosis, but in fact, SAA represents a four-membered family wherein SAA1 and SAA2 are acute phase proteins (A-SAA). SAA is highly conserved throughout evolution within a wide range of animal species suggestive of an important biological function. In fact, A-SAA has been linked to a number of divergent biological activities wherein a number of these functions are mediated via the G protein-coupled receptor (GPCR), formyl peptide receptor (FPR) 2. For instance, through the activation of FPR2, A-SAA has been described to regulate leukocyte activation, atherosclerosis, pathogen recognition, bone formation and cell survival. Moreover, A-SAA is subject to post-translational modification, primarily through proteolytic processing, generating a range of A-SAA-derived peptides. Although very little is known regarding the biological effect of A-SAA-derived peptides, they have been shown to promote neutrophil and monocyte migration through FPR2 activation via synergy with other GPCR ligands namely, the chemokines CXCL8 and CCL3, respectively. Within this review, we provide a detailed analysis of the FPR2-mediated functions of A-SAA. Moreover, we discuss the potential role of A-SAA-derived peptides as allosteric modulators of FPR2.
Collapse
|
8
|
Ni C, Gao S, Li X, Zheng Y, Jiang H, Liu P, Lv Q, Huang W, Li Q, Ren Y, Mi Z, Kong D, Jiang Y. Fpr2 exacerbates Streptococcus suis-induced streptococcal toxic shock-like syndrome via attenuation of neutrophil recruitment. Front Immunol 2023; 14:1094331. [PMID: 36776849 PMCID: PMC9911822 DOI: 10.3389/fimmu.2023.1094331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
The life-threatening disease streptococcal toxic shock-like syndrome (STSLS), caused by the bacterial pathogen Streptococcus suis (S. suis). Proinflammatory markers, bacterial load, granulocyte recruitment, and neutrophil extracellular traps (NETs) levels were monitored in wild-type (WT) and Fpr2-/- mice suffering from STSLS. LXA4 and AnxA1, anti-inflammatory mediators related to Fpr2, were used to identity a potential role of the Fpr2 in STSLS development. We also elucidated the function of Fpr2 at different infection sites by comparing the STSLS model with the S. suis-meningitis model. Compared with the WT mice, Fpr2-/- mice exhibited a reduced inflammatory response and bacterial load, and increased neutrophil recruitment. Pretreatment with AnxA1 or LXA4 impaired leukocyte recruitment and increased both bacterial load and inflammatory reactions in WT but not Fpr2-/- mice experiencing STSLS. These results indicated that Fpr2 impairs neutrophil recruitment during STSLS, and this impairment is enhanced by AnxA1 or LXA4. By comparing the functions of Fpr2 in different S. suis infection models, inflammation and NETs was found to hinder bacterial clearance in S. suis meningitis, and conversely accelerate bacterial clearance in STSLS. Therefore, interference with neutrophil recruitment could potentially be harnessed to develop new treatments for this infectious disease.
Collapse
Affiliation(s)
- Chengpei Ni
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Song Gao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Xudong Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hua Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhiqiang Mi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Siman-Tov R, Shalabi R, Shlomai A, Goldberg E, Essa W, Shusterman E, Ablin JN, Caspi M, Rosin-Arbesfeld R, Sklan EH. Elevated Serum Amyloid A Levels Contribute to Increased Platelet Adhesion in COVID-19 Patients. Int J Mol Sci 2022; 23:ijms232214243. [PMID: 36430724 PMCID: PMC9692251 DOI: 10.3390/ijms232214243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) patients are prone to thrombotic complications that may increase morbidity and mortality. These complications are thought to be driven by endothelial activation and tissue damage promoted by the systemic hyperinflammation associated with COVID-19. However, the exact mechanisms contributing to these complications are still unknown. To identify additional mechanisms contributing to the aberrant clotting observed in COVID-19 patients, we analyzed platelets from COVID-19 patients compared to those from controls using mass spectrometry. We identified increased serum amyloid A (SAA) levels, an acute-phase protein, on COVID-19 patients' platelets. In addition, using an in vitro adhesion assay, we showed that healthy platelets adhered more strongly to wells coated with COVID-19 patient serum than to wells coated with control serum. Furthermore, inhibitors of integrin aIIbβ3 receptors, a mediator of platelet-SAA binding, reduced platelet adhesion to recombinant SAA and to wells coated with COVID-19 patient serum. Our results suggest that SAA may contribute to the increased platelet adhesion observed in serum from COVID-19 patients. Thus, reducing SAA levels by decreasing inflammation or inhibiting SAA platelet-binding activity might be a valid approach to abrogate COVID-19-associated thrombotic complications.
Collapse
Affiliation(s)
- Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rulla Shalabi
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva 4941492, Israel
| | - Amir Shlomai
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Medicine D, Rabin Medical Center, Beilinson Hospital, Petah Tikva 4941492, Israel
| | - Elad Goldberg
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva 4941492, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wesam Essa
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva 4941492, Israel
| | - Eden Shusterman
- Department of Internal Medicine H, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Jacob N. Ablin
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Internal Medicine H, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3-6408197
| |
Collapse
|
10
|
Jiang W, Niu J, Gao H, Dang Y, Qi M, Liu Y. A retrospective study of immunoglobulin E as a biomarker for the diagnosis of acute ischemic stroke with carotid atherosclerotic plaques. PeerJ 2022; 10:e14235. [PMID: 36317119 PMCID: PMC9617546 DOI: 10.7717/peerj.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Objective In this study, serum markers of acute ischemic stroke (AICS) with carotid artery plaque were retrospectively evaluated to establish a basis for discovering serological indicators for early warning of acute ischemic stroke (AICS). Methods A total of 248 patients with AICS were enrolled in Lanzhou University Second Hospital from January 2019 to December 2020. The study population included 136 males and 112 females, 64 ± 11 years of age. Of these, there were 90 patients with a transient ischemic attack (TIA), including 60 males and 30 females, aged 64 ± 8 years old. Patients with AICS were stratified by carotid ultrasound into a plaque group (n = 154) and a non-plaque group (n = 94). A total of 160 healthy subjects were selected as the control group. Serum lipoprotein-associated phospholipase A2 (Lp-PLA2), amyloid A (SAA), immunoglobulin E (IgE), D-dimer (D-D), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were collected from all subjects. Multivariate logistic regression was used to analyze the risk factors of AICS with carotid plaque. ROC curve was used to analyze the diagnostic efficacy of AICS with carotid plaque. Results The IgE, Lp-PLA2, SAA, LDL-C, TC, TG, and D-D levels in the AICS group were higher than those in the TIA group and healthy control group (P < 0.05). The IgE level was significantly higher than that in the healthy control group and TIA group. The IgE level in the AICS plaque group was significantly higher than that in the AICS non-plaque group (P < 0.01), and the Lp-PLA2 level was also different (P < 0.05). The incidence of AICS was positively correlated with Lp-PLA2, TC, IgE, TG, D-D, SAA and LDL-C (r = 0.611, 0.499, 0.478, 0.431, 0.386, 0.332, 0.280, all P < 0.05). The incidence of AICS with plaque was only positively correlated with IgE and Lp-PLA2 (r = 0.588, 0.246, P < 0.05). Logistic regression analysis showed that IgE and Lp-PLA2 were independent risk factors for predicting the occurrence of AICS with carotid plaque (P < 0.05). ROC curve analysis showed that the AUC of IgE (0.849) was significantly higher than other indicators; its sensitivity and specificity were also the highest, indicating that IgE can improve the diagnostic efficiency of AICS with carotid plaque. Conclusion IgE is a serum laboratory indicator used to diagnose AICS disease with carotid plaque, which lays a foundation for further research on potential early warning indicators of AICS disease.
Collapse
Affiliation(s)
- Wenwen Jiang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Jindou Niu
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Gansu Province, Lanzhou, Gansu Province, China
| | - Hongwei Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yingqiang Dang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Meijiao Qi
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yumei Liu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
11
|
Regulation of Atherosclerosis by Toll-Like Receptor 4 Induced by Serum Amyloid 1: A Systematic In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4887593. [PMID: 36158875 PMCID: PMC9499805 DOI: 10.1155/2022/4887593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
The objective of this study was to investigate the effects of serum amyloid 1 (SAA1) on activation of endothelial cells, formation of foam cells, platelet aggregation, and monocyte/platelet adhesion to endothelial cells. The effect of SAA1 on the inflammatory activation of endothelial cells was investigated by detecting the expression of inflammatory factors and adhesion molecules. The role of SAA1 in formation of foam cells was verified by detecting lipid deposition and expression of molecules related to the formation of foam cells. After platelets were stimulated by SAA1, the aggregation rate was evaluated to determine the effect of SAA1 on platelet aggregation. Monocytes/platelets were cocultured with human umbilical vein endothelial cells (HUVECs) pretreated with or without SAA1 to determine whether SAA1 affected monocyte/platelet adhesion to endothelial cells. By inhibiting toll-like receptor 4 (TLR4) function, we further identified the role of TLR4 signaling in SAA1-mediated endothelial inflammatory activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs. SAA1 significantly increased the expression of adhesion molecules and inflammatory factors in HUVECs. Moreover, SAA1 also promoted lipid deposition and the expression of inflammatory factors and low-density lipoprotein receptor-1 (LOX-1) in THP-1-derived macrophages. In addition, SAA1 induced platelet aggregation and enhanced monocyte/platelet adhesion to HUVECs. However, the TLR4 antagonist significantly inhibited SAA1-induced endothelial cell activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs and downregulated the expression of myeloid differentiation factor 88 (MyD88), phosphor-inhibitor of nuclear factor κB kinase subunit α/β (P-IKKα/β), phospho-inhibitor of nuclear factor κB subunit α (P-IKBα), and phosphorylation of nuclear transcription factor-κB p65 (P-p65) in SAA1-induced HUVECs and THP-1 cells. Conclusively, it is speculated that SAA1 promotes atherosclerosis through enhancing endothelial cell activation, platelet aggregation, foam-cell formation, and monocyte/platelet adhesion to endothelial cells. These biological functions of SAA1 may depend on the activation of TLR4-related nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
|
12
|
Abstract
Inflammation represents a fundamental response to diverse diseases ranging from trauma and infection to immune-mediated disease and neoplasia. As such, inflammation can be a nonspecific finding but is valuable as an indicator of pathology that can itself lead to disease if left unchecked. This article focuses on inflammatory biomarkers that are available and clinically useful in avian species. Inflammatory biomarkers are identified via evaluation of whole blood and plasma and can be divided into acute and chronic, with varying degrees of specificity and sensitivity. Evaluation of multiple biomarkers may be necessary to identify subclinical disease.
Collapse
Affiliation(s)
- Raquel M Walton
- IDEXX Laboratories, Inc., 216 Delmar Street, Philadelphia, PA 19128, USA.
| | - Andrea Siegel
- IDEXX Laboratories, Inc., 510 E. 62nd Street, New York, NY 10065, USA
| |
Collapse
|
13
|
Ye S, Pan H, Li W, Wang B, Xing J, Xu L. High serum amyloid A predicts risk of cognitive impairment after lacunar infarction: Development and validation of a nomogram. Front Neurol 2022; 13:972771. [PMID: 36090853 PMCID: PMC9449353 DOI: 10.3389/fneur.2022.972771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background Post-stroke cognitive impairment (PSCI) after lacunar infarction was worth attention in recent years. An easy-to-use score model to predict the risk of PSCI was rare. This study aimed to explore the association between serum amyloid A (SAA) and cognitive impairment, and it also developed a nomogram for predicting the risk of PSCI in lacunar infarction patients. Methods A total of 313 patients with lacunar infarction were enrolled in this retrospective study between January 2021 and December 2021. They were divided into a training set and a validation set at 70%:30% randomly. The Chinese version of the Mini-Mental State Examination (MMSE) was performed to identify cognitive impairment 3 months after discharge. Univariate and multivariate logistic regression analyses were used to determine the independent risk factors for PSCI in the training set. A nomogram was developed based on the five variables, and the calibration curve and the receiver operating characteristic (ROC) curve were drawn to assess the predictive ability of the nomogram between the training set and the validation set. The decision curve analysis (DCA) was also conducted in both sets. Results In total, 52/313 (16.61%) participants were identified with PSCI. The SAA levels in patients with PSCI were significantly higher than non-PSCI patients in the training set (P < 0.001). After multivariate analysis, age, diabetes mellitus, white blood count, cystatin C, and SAA were independent risk predictors of PSCI. The nomogram demonstrated a good discrimination performance between the training set (AUC = 0.860) and the validation set (AUC = 0.811). The DCA showed that the nomogram had a well clinical utility in the two sets. Conclusion The increased SAA is associated with PSCI in lacunar infarction patients, and the nomogram developed with SAA can increase prognostic information for the early detection of PSCI.
Collapse
Affiliation(s)
- Sheng Ye
- Department of Emergency, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Huiqing Pan
- Department of Emergency, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Weijia Li
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Bing Wang
- Department of Emergency, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jingjing Xing
- Department of Emergency, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Li Xu
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- *Correspondence: Li Xu
| |
Collapse
|
14
|
Serum Amyloid A is not obligatory for high-fat, high-sucrose, cholesterol-fed diet-induced obesity and its metabolic and inflammatory complications. PLoS One 2022; 17:e0266688. [PMID: 35436297 PMCID: PMC9015120 DOI: 10.1371/journal.pone.0266688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Several studies in the past have reported positive correlations between circulating Serum amyloid A (SAA) levels and obesity. However, based on limited number of studies involving appropriate mouse models, the role of SAA in the development of obesity and obesity-related metabolic consequences has not been established. Accordingly, herein, we have examined the role of SAA in the development of obesity and its associated metabolic complications in vivo using mice deficient for all three inducible forms of SAA: SAA1.1, SAA2.1 and SAA3 (TKO). Male and female mice were rendered obese by feeding a high fat, high sucrose diet with added cholesterol (HFHSC) and control mice were fed rodent chow diet. Here, we show that the deletion of SAA does not affect diet-induced obesity, hepatic lipid metabolism or adipose tissue inflammation. However, there was a modest effect on glucose metabolism. The results of this study confirm previous findings that SAA levels are elevated in adipose tissues as well as in the circulation in diet-induced obese mice. However, the three acute phase SAAs do not play a causative role in the development of obesity or obesity-associated adipose tissue inflammation and dyslipidemia.
Collapse
|
15
|
Nienhuis WA, Grutters JC. Potential therapeutic targets to prevent organ damage in chronic pulmonary sarcoidosis. Expert Opin Ther Targets 2021; 26:41-55. [PMID: 34949145 DOI: 10.1080/14728222.2022.2022123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sarcoidosis is a granulomatous inflammatory disease with high chances of reduced quality of life, irreversible organ damage, and reduced life expectancy when vital organs are involved. Any organ system can be affected, and the lungs are most often affected. There is no preventive strategy as the exact etiology is unknown, and complex immunogenetic and environmental factors determine disease susceptibility and phenotype. Present-day treatment options originated from clinical practice and are effective in many patients. However, a substantial percentage of patients suffer from unacceptable side effects or still develop refractory, threatening pulmonary or extrapulmonary disease. AREAS COVERED As non-caseating granulomas, the pathological hallmark of disease, are assigned to divergent activation and regulation of the immune system, targets in relation to the possible triggers of granuloma formation and their sequelae were searched and reviewed. EXPERT OPINION :The immunopathogenesis underlying sarcoidosis has been a dynamic field of study. Several recent new insights give way to promising new therapeutic targets, such as certain antigenic triggers (e.g. from Aspergillus nidulans), mTOR, JAK-STAT and PPARγ pathways, the NRP2 receptor and MMP-12, which await further exploration. Clinical and trigger related phenotyping, and molecular endotyping in sarcoidosis will likely hold the key for precision medicine in the future.
Collapse
Affiliation(s)
- W A Nienhuis
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - J C Grutters
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Hearth and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Ciregia F, Nys G, Cobraiville G, Badot V, Di Romana S, Sidiras P, Sokolova T, Durez P, Fillet M, Malaise MG, de Seny D. A Cross-Sectional and Longitudinal Study to Define Alarmins and A-SAA Variants as Companion Markers in Early Rheumatoid Arthritis. Front Immunol 2021; 12:638814. [PMID: 34489924 PMCID: PMC8418532 DOI: 10.3389/fimmu.2021.638814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Nowadays, in the study of rheumatoid arthritis (RA), more and more interest is directed towards an earlier effective therapeutic intervention and the determination of companion markers for predicting response to therapy with the goal to prevent progressive joint damage, deformities, and functional disability. With the present work, we aimed at quantifying in a cohort of early RA (ERA) patients naïve to DMARD therapy, proteins whose increase was previously found associated with RA: serum amyloid A (A-SAA) and alarmins. Five A-SAA variants (SAA1α, SAA1β, SAA1γ, SAA2α, and SAA2β) but also S100A8 and S100A9 proteins were simultaneously quantified in plasma applying a method based on single targeted bottom-up proteomics LC-MS/MS. First, we compared their expression between ERA (n = 100) and healthy subjects (n = 100), then we focused on their trend by monitoring ERA patients naïve to DMARD treatment, 1 year after starting therapy. Only SAA1α and SAA2α levels were increased in ERA patients, and SAA2α appears to mostly mediate the pathological role of A-SAA. Levels of these variants, together with SAA1β, only decreased under biologic DMARD treatment but not under methotrexate monotherapy. This study highlights the importance to better understand the modulation of expression of these variants in ERA in order to subsequently better characterize their biological function. On the other hand, alarmin expression increased in ERA compared to controls but remained elevated after 12 months of methotrexate or biologic treatment. The work overcomes the concept of considering these proteins as biomarkers for diagnosis, demonstrating that SAA1α, SAA1β, and SAA2α variants but also S100A8 and S100A9 do not respond to all early treatment in ERA and should be rather considered as companion markers useful to improve the follow-up of treatment response and remission state. Moreover, it suggests that earlier use of biologics in addition to methotrexate may be worth considering.
Collapse
Affiliation(s)
- Federica Ciregia
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Gwenaël Nys
- Laboratory for the Analysis of Medicines, Centre Interdisciplinaire De Recherche Sur Le Médicament (CIRM), Department of Pharmacy, University of Liège, Liège, Belgium
| | - Gaël Cobraiville
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Valérie Badot
- Department of Rheumatology, Centre Hospitalier Universitaire (CHU) Brugmann, Bruxelles, Belgium
| | - Silvana Di Romana
- Department of Rheumatology, Centre Hospitalier Universitaire (CHU) Saint–Pierre, Bruxelles, Belgium
| | - Paschalis Sidiras
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Tatiana Sokolova
- Department of Rheumatology, Cliniques Universitaires Saint–Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Bruxelles, Belgium
| | - Patrick Durez
- Department of Rheumatology, Cliniques Universitaires Saint–Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Bruxelles, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Centre Interdisciplinaire De Recherche Sur Le Médicament (CIRM), Department of Pharmacy, University of Liège, Liège, Belgium
| | - Michel G. Malaise
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| |
Collapse
|