1
|
Callery EL, Morais CLM, Taylor JV, Challen K, Rowbottom AW. Investigation of Long-Term CD4+ T Cell Receptor Repertoire Changes Following SARS-CoV-2 Infection in Patients with Different Severities of Disease. Diagnostics (Basel) 2024; 14:2330. [PMID: 39451653 PMCID: PMC11507081 DOI: 10.3390/diagnostics14202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The difference in the immune response to severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) in patients with mild versus severe disease remains poorly understood. Recent scientific advances have recognised the vital role of both B cells and T cells; however, many questions remain unanswered, particularly for T cell responses. T cells are essential for helping the generation of SARS-CoV-2 antibody responses but have also been recognised in their own right as a major factor influencing COVID-19 disease outcomes. The examination of T cell receptor (TCR) family differences over a 12-month period in patients with varying COVID-19 disease severity is crucial for understanding T cell responses to SARS-CoV-2. METHODS We applied a machine learning approach to analyse TCR vb family responses in COVID-19 patients (n = 151) across multiple timepoints and disease severities alongside SARS-CoV-2 infection-naïve (healthy control) individ-uals (n = 62). RESULTS Blood samples from hospital in-patients with moderate, severe, or critical disease could be classified with an accuracy of 94%. Furthermore, we identified significant variances in TCR vb family specificities between disease and control subgroups. CONCLUSIONS Our findings suggest advantageous and disadvantageous TCR repertoire patterns in relation to disease severity. Following validation in larger cohorts, our methodology may be useful in detecting protective immunity and the assessment of long-term outcomes, particularly as we begin to unravel the immunological mechanisms leading to post-COVID complications.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Jemma V. Taylor
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Kirsty Challen
- Department of Emergency Medicine, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Anthony W. Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
2
|
Marchal A, Cirulli ET, Neveux I, Bellos E, Thwaites RS, Schiabor Barrett KM, Zhang Y, Nemes-Bokun I, Kalinova M, Catchpole A, Tangye SG, Spaan AN, Lack JB, Ghosn J, Burdet C, Gorochov G, Tubach F, Hausfater P, Dalgard CL, Zhang SY, Zhang Q, Chiu C, Fellay J, Grzymski JJ, Sancho-Shimizu V, Abel L, Casanova JL, Cobat A, Bolze A. Lack of association between classical HLA genes and asymptomatic SARS-CoV-2 infection. HGG ADVANCES 2024; 5:100300. [PMID: 38678364 PMCID: PMC11215417 DOI: 10.1016/j.xhgg.2024.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B∗15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B∗15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the United States (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B∗15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections studied, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified.
Collapse
Affiliation(s)
- Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France
| | | | - Iva Neveux
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
| | - Evangelos Bellos
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | - Ivana Nemes-Bokun
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, New South Wales, Australia
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University Paris Cité, Paris, France; AP-HP, Bichat-Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France
| | - Charles Burdet
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University Paris Cité, Paris, France; AP-HP, Hôpital Bichat, Centre d'Investigation Clinique, INSERM CIC 1425, Paris, France; Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France
| | - Guy Gorochov
- Sorbonne Université, INSERM Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Département d'immunologie Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département de Santé Publique, Unitéde Recherche Clinique PSL-CFX, CIC-1901, Paris, France
| | - Pierre Hausfater
- Emergency Department, Hôpital Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France; GRC-14 BIOSFAST Sorbonne Université, UMR INSERM 1135, CIMI, Sorbonne Université, Paris, France
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joseph J Grzymski
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA; Renown Health, Reno, NV, USA
| | - Vanessa Sancho-Shimizu
- Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | | |
Collapse
|
3
|
Crocchiolo R, Frassati C, Gallina AM, Pedini P, Maioli S, Veronese L, Pani A, Scaglione F, D'Amico F, Crucitti L, Sacchi N, Rossini S, Picard C. Strong humoral response after Covid-19 vaccination correlates with the common HLA allele A*03:01 and protection from breakthrough infection. HLA 2024; 103:e15421. [PMID: 38433722 DOI: 10.1111/tan.15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Few data exist on the role of genetic factors involving the HLA system on response to Covid-19 vaccines. Moving from suggestions of a previous study investigating the association of some HLA alleles with humoral response to BNT162b2, we here compared the HLA allele frequencies among weak (n = 111) and strong (n = 123) responders, defined as those healthcare workers with the lowest and the highest anti-Spike antibody levels after vaccination. Individuals with clinical history of Covid-19 or positive anti-nucleocapside antibodies were excluded. We found the common HLA-A*03:01 allele as an independent predictor of strong humoral response (OR = 12.46, 95% CI: 4.41-35.21, p < 0.0001), together with younger age of vaccines (p = 0.004). Correlation between antibody levels and protection from breakthrough infection has been observed, with a 2-year cumulative incidence of 42% and 63% among strong and weak responders, respectively (p = 0.03). Due to the high frequency of HLA-A*03:01 and the need for seasonal vaccinations against SARS-CoV-2 mutants, our findings provide useful information about the inter-individual differences observed in humoral response after Covid-19 vaccine and might support further studies on the next seasonal vaccines.
Collapse
Affiliation(s)
- Roberto Crocchiolo
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | | | - Anna Maria Gallina
- Italian Bone Marrow Donor Registry, E.O. Ospedali Galliera Genova, Genova, Italy
| | | | | | - Luca Veronese
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Arianna Pani
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Francesco Scaglione
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Federico D'Amico
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Lara Crucitti
- Hematology Department, Azienda Sanitaria Provinciale di Trapani, Castelvetrano, Italy
| | - Nicoletta Sacchi
- Italian Bone Marrow Donor Registry, E.O. Ospedali Galliera Genova, Genova, Italy
| | - Silvano Rossini
- Dipartimento dei Servizi, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | | |
Collapse
|
4
|
Lerner A, Benzvi C, Vojdani A. HLA-DQ2/8 and COVID-19 in Celiac Disease: Boon or Bane. Microorganisms 2023; 11:2977. [PMID: 38138121 PMCID: PMC10745744 DOI: 10.3390/microorganisms11122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The SARS-CoV-2 pandemic continues to pose a global threat. While its virulence has subsided, it has persisted due to the continual emergence of new mutations. Although many high-risk conditions related to COVID-19 have been identified, the understanding of protective factors remains limited. Intriguingly, epidemiological evidence suggests a low incidence of COVID-19-infected CD patients. The present study explores whether their genetic background, namely, the associated HLA-DQs, offers protection against severe COVID-19 outcomes. We hypothesize that the HLA-DQ2/8 alleles may shield CD patients from SARS-CoV-2 and its subsequent effects, possibly due to memory CD4 T cells primed by previous exposure to human-associated common cold coronaviruses (CCC) and higher affinity to those allele's groove. In this context, we examined potential cross-reactivity between SARS-CoV-2 epitopes and human-associated CCC and assessed the binding affinity (BA) of these epitopes to HLA-DQ2/8. Using computational methods, we analyzed sequence similarity between SARS-CoV-2 and four distinct CCC. Of 924 unique immunodominant 15-mer epitopes with at least 67% identity, 37 exhibited significant BA to HLA-DQ2/8, suggesting a protective effect. We present various mechanisms that might explain the protective role of HLA-DQ2/8 in COVID-19-afflicted CD patients. If substantiated, these insights could enhance our understanding of the gene-environment enigma and viral-host relationship, guiding potential therapeutic innovations against the ongoing SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Aaron Lerner
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Ramat Gan 5262160, Israel;
- Research Department, Ariel University, Ariel 4077625, Israel
| | - Carina Benzvi
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Ramat Gan 5262160, Israel;
| | | |
Collapse
|
5
|
Marchal A, Cirulli ET, Neveux I, Bellos E, Thwaites RS, Schiabor Barrett KM, Zhang Y, Nemes-Bokun I, Kalinova M, Catchpole A, Tangye SG, Spaan AN, Lack JB, Ghosn J, Burdet C, Gorochov G, Tubach F, Hausfater P, Dalgard CL, Zhang SY, Zhang Q, Chiu C, Fellay J, Grzymski JJ, Sancho-Shimizu V, Abel L, Casanova JL, Cobat A, Bolze A. Lack of association between HLA and asymptomatic SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299623. [PMID: 38168184 PMCID: PMC10760282 DOI: 10.1101/2023.12.06.23299623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B*15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the US (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B*15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified. These findings suggest that memory T-cell immunity to seasonal coronaviruses does not strongly influence the outcome of SARS-CoV-2 infection in unvaccinated individuals.
Collapse
Affiliation(s)
- Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
| | | | - Iva Neveux
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
| | - Evangelos Bellos
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Ryan S. Thwaites
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | - Ivana Nemes-Bokun
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | | | | | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - András N. Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands, EU
| | - Justin B. Lack
- NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University of Paris, Paris, France, EU
- AP-HP, Bichat Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France, EU
| | - Charles Burdet
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University of Paris, Paris, France, EU
- Epidémiologie clinique du Centre d’Investigation Clinique (CIC-EP), INSERM CIC 1425, Hôpital Bichat, 75018 Paris, France, EU
- Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France, EU
| | - Guy Gorochov
- Sorbonne Université, INSERM Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Département d’immunologie Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France, EU
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, CIC-1901, Paris, France, EU
| | - Pierre Hausfater
- Emergency Department, Hôpital Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France, EU
- GRC-14 BIOFAST Sorbonne Université, UMR INSERM 1135, CIMI, Sorbonne Université, Paris, France, EU
| | | | | | | | | | | | | | | | | | | | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christopher Chiu
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joseph J. Grzymski
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
- Renown Health, Reno, NV, USA
| | - Vanessa Sancho-Shimizu
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
6
|
Shamabadi NS, Bagasra AB, Pawar S, Bagasra O. Potential use of endemic human coronaviruses to stimulate immunity against pathogenic SARS-CoV-2 and its variants. Libyan J Med 2023; 18:2209949. [PMID: 37186902 DOI: 10.1080/19932820.2023.2209949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes significant morbidity and mortality in humans, there is a wide range of disease outcomes following virus exposures. Some individuals are asymptomatic while others develop complications within a few days after infection that can lead to fatalities in a smaller portion of the population. In the present study, we have analyzed the factors that may influence the outcome of post-SARS-CoV-2 infection. One factor that may influence virus control is pre-existing immunity conferred by an individual's past exposures to endemic coronaviruses (eCOVIDs) which cause the common cold in humans and generally, most children are exposed to one of the four eCOVIDs before 2 years of age. Here, we have carried out protein sequence analyses to show the amino acid homologies between the four eCOVIDs (i.e. OC43, HKU1, 229E, and NL63) as well as examining the cross-reactive immune responses between SARS-CoV-2 and eCOVIDs by epidemiologic analyses. Our results show that the nations where continuous exposures to eCOVIDs are very high due to religious and traditional causes showed significantly lower cases and low mortality rates per 100,000. We hypothesize that in the areas of the globe where Muslims are in majority and due to religious practices are regularly exposed to eCOVIDs they show a significantly lower infection, as well as mortality rate, and that is due to pre-existing cross-immunity against SARS-CoV-2. This is due to cross-reactive antibodies and T-cells that recognize SARS-CoV-2 antigens. We also have reviewed the current literature that has also proposed that human infections with eCOVIDs impart protection against disease caused by subsequent exposure to SARS-CoV-2. We propose that a nasal spray vaccine consisting of selected genes of eCOVIDs would be beneficial against SARS-CoV-2 and other pathogenic coronaviruses.
Collapse
Affiliation(s)
| | - Anisah B Bagasra
- Department of Psychology, Kennesaw State University, Kennesaw, GA, USA
| | - Shrikant Pawar
- Department of Computer Science and Biology, Claflin University, SC, USA
| | - Omar Bagasra
- South Carolina Center for Biotechnology, Claflin University, Orangeburg, SC, USA
| |
Collapse
|
7
|
Magri C, Marchina E, Sansone E, D'Adamo AP, Cappellani S, Bonfanti C, Terlenghi L, Biasiotto G, Zanella I, Sala E, Caruso A, Lombardo M, Gasparini P, De Palma G, Gennarelli M. Genome-wide association studies of response and side effects to the BNT162b2 vaccine in Italian healthcare workers: Increased antibody levels and side effects in carriers of the HLA-A*03:01 allele. HLA 2023; 102:707-719. [PMID: 37469131 DOI: 10.1111/tan.15157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
The remarkable variability of response to vaccines against SARS-CoV-2 is apparent. The present study aims to estimate the extent to which the host genetic background contributes to this variability in terms of immune response and side effects following the administration of the BNT162b2 vaccine. We carried out a genome wide association study (GWAS) by genotyping 873 Italian healthcare workers who underwent anti-SARS-CoV-2 vaccination with the BNT162b2 vaccine and for whom information about anti-SARS-CoV-2 spike antibodies titers and vaccine side effects were available. The GWAS revealed a significant association between the HLA locus and the anti-SARS-CoV-2 Spike antibodies level at 2 months following the first dose of vaccine (SNP: rs1737060; p = 9.80 × 10-11 ). In particular, we observed a positive association between the antibody levels and the presence of the HLA-A*03:01 allele. The same allele was found associated with a 2-2.4-fold increased risk of experiencing specific side effects such as fever, chills and myalgia and a 1.5-1.8-fold increased risk of joint pain, nausea, fatigue, headache and asthenia, independently of age and sex. This study confirms that the heterogeneity in the immune response to the BNT162b2 vaccine and in its side effects are at least partially influenced by genetic variants. This information, integrated with individual biological and lifestyle-related correlates, could be of use in the definition of algorithms aimed at the identification of subjects in which the administration of additional vaccine doses would be particularly beneficial to maintain immunity against the virus.
Collapse
Affiliation(s)
- Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emanuele Sansone
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Unit of Occupational Health and Industrial Hygiene, University of Brescia, Brescia, Italy
| | - Adamo Pio D'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Stefania Cappellani
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Carlo Bonfanti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Laboratory of Microbiology, ASST Spedali Civili, Brescia, Italy
| | | | - Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Section of Cytogenetics and Molecular Genetics, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Emma Sala
- Unit of Occupational Health, Hygiene, Toxicology and Prevention, ASST Spedali Civili, Brescia, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Laboratory of Microbiology, ASST Spedali Civili, Brescia, Italy
| | - Massimo Lombardo
- Chief Executive Office, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Unit of Occupational Health and Industrial Hygiene, University of Brescia, Brescia, Italy
- Unit of Occupational Health, Hygiene, Toxicology and Prevention, ASST Spedali Civili, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
8
|
Lopes-Ribeiro Á, Oliveira PDM, Retes H, Barbosa-Stancioli EF, da Fonseca FG, Tsuji M, Coelho-dos-Reis JGA. Surveillance of SARS-CoV-2 immunogenicity: loss of immunodominant HLA-A*02-restricted epitopes that activate CD8 + T cells. Front Immunol 2023; 14:1229712. [PMID: 38022506 PMCID: PMC10656734 DOI: 10.3389/fimmu.2023.1229712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction and methods In this present work, coronavirus subfamilies and SARS-CoV-2 Variants of Concern (VOCs) were investigated for the presence of MHC-I immunodominant viral peptides using in silico and in vitro tools. Results In our results, HLA-A*02 haplotype showed the highest number of immunodominant epitopes but with the lowest combined prediction score. Furthermore, a decrease in combined prediction score was observed for HLA-A*02-restricted epitopes when the original strain was compared to the VOCs, indicating that the mutations on the VOCs are promoting escape from HLA-A2-mediated antigen presentation, which characterizes a immune evasion process. Additionally, epitope signature analysis revealed major immunogenic peptide loss for structural (S) and non-structural (ORF8) proteins of VOCs in comparison to the Wuhan sequence. Discussion These results may indicate that the antiviral CD8+ T-cell responses generated by original strains could not be sufficient for clearance of variants in either newly or reinfection with SARS-CoV-2. In contrast, N epitopes remain the most conserved and reactive peptides across SARS-CoV-2 VOCs. Overall, our data could contribute to the rational design and development of new vaccinal platforms to induce a broad cellular CD8+ T cell antiviral response, aiming at controlling viral transmission of future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ágata Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia de Melo Oliveira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Henrique Morais Retes
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edel Figueiredo Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia (CT) Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Irving Medical School, Columbia University, New York, NY, United States
| | - Jordana Grazziela Alves Coelho-dos-Reis
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Wang C, Ramasamy A, Verduzco-Gutierrez M, Brode WM, Melamed E. Acute and post-acute sequelae of SARS-CoV-2 infection: a review of risk factors and social determinants. Virol J 2023; 20:124. [PMID: 37328773 PMCID: PMC10276420 DOI: 10.1186/s12985-023-02061-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/02/2023] [Indexed: 06/18/2023] Open
Abstract
SARS-CoV-2 infection leading to Coronavirus Disease 2019 (COVID-19) has caused more than 762 million infections worldwide, with 10-30% of patients suffering from post-acute sequelae of SARS-CoV-2 infections (PASC). Initially thought to primarily affect the respiratory system, it is now known that SARS-CoV-2 infection and PASC can cause dysfunction in multiple organs, both during the acute and chronic stages of infection. There are also multiple risk factors that may predispose patients to worse outcomes from acute SARS-CoV-2 infection and contribute to PASC, including genetics, sex differences, age, reactivation of chronic viruses such as Epstein Barr Virus (EBV), gut microbiome dysbiosis, and behavioral and lifestyle factors, including patients' diet, alcohol use, smoking, exercise, and sleep patterns. In addition, there are important social determinants of health, such as race and ethnicity, barriers to health equity, differential cultural perspectives and biases that influence patients' access to health services and disease outcomes from acute COVID-19 and PASC. Here, we review risk factors in acute SARS-CoV-2 infection and PASC and highlight social determinants of health and their impact on patients affected with acute and chronic sequelae of COVID-19.
Collapse
Affiliation(s)
- Chumeng Wang
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Akshara Ramasamy
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Monica Verduzco-Gutierrez
- Department of Physical Medicine and Rehabilitation, University of Texas at San Antonio, San Antonio, TX, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
11
|
Dhawan M, Rabaan AA, Alwarthan S, Alhajri M, Halwani MA, Alshengeti A, Najim MA, Alwashmi ASS, Alshehri AA, Alshamrani SA, AlShehail BM, Garout M, Al-Abdulhadi S, Al-Ahmed SH, Thakur N, Verma G. Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID. Vaccines (Basel) 2023; 11:vaccines11030699. [PMID: 36992283 DOI: 10.3390/vaccines11030699] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The COVID-19 pandemic has caused havoc all around the world. The causative agent of COVID-19 is the novel form of the coronavirus (CoV) named SARS-CoV-2, which results in immune system disruption, increased inflammation, and acute respiratory distress syndrome (ARDS). T cells have been important components of the immune system, which decide the fate of the COVID-19 disease. Recent studies have reported an important subset of T cells known as regulatory T cells (Tregs), which possess immunosuppressive and immunoregulatory properties and play a crucial role in the prognosis of COVID-19 disease. Recent studies have shown that COVID-19 patients have considerably fewer Tregs than the general population. Such a decrement may have an impact on COVID-19 patients in a number of ways, including diminishing the effect of inflammatory inhibition, creating an inequality in the Treg/Th17 percentage, and raising the chance of respiratory failure. Having fewer Tregs may enhance the likelihood of long COVID development in addition to contributing to the disease's poor prognosis. Additionally, tissue-resident Tregs provide tissue repair in addition to immunosuppressive and immunoregulatory activities, which may aid in the recovery of COVID-19 patients. The severity of the illness is also linked to abnormalities in the Tregs' phenotype, such as reduced expression of FoxP3 and other immunosuppressive cytokines, including IL-10 and TGF-beta. Hence, in this review, we summarize the immunosuppressive mechanisms and their possible roles in the prognosis of COVID-19 disease. Furthermore, the perturbations in Tregs have been associated with disease severity. The roles of Tregs are also explained in the long COVID. This review also discusses the potential therapeutic roles of Tregs in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Al-Madinah 41411, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
12
|
Ogura H, Gohda J, Lu X, Yamamoto M, Takesue Y, Son A, Doi S, Matsushita K, Isobe F, Fukuda Y, Huang TP, Ueno T, Mambo N, Murakami H, Kawaguchi Y, Inoue JI, Shirai K, Yamasaki S, Hirata JI, Ishido S. Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19. Nat Commun 2022; 13:7063. [PMID: 36526616 PMCID: PMC9758236 DOI: 10.1038/s41467-022-34655-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Although the importance of virus-specific cytotoxic T lymphocytes (CTL) in virus clearance is evident in COVID-19, the characteristics of virus-specific CTLs related to disease severity have not been fully explored. Here we show that the phenotype of virus-specific CTLs against immunoprevalent epitopes in COVID-19 convalescents might differ according to the course of the disease. We establish a cellular screening method that uses artificial antigen presenting cells, expressing HLA-A*24:02, the costimulatory molecule 4-1BBL, SARS-CoV-2 structural proteins S, M, and N and non-structural proteins ORF3a and nsp6/ORF1a. The screen implicates SARS-CoV-2 M protein as a frequent target of IFNγ secreting CD8+ T cells, and identifies M198-206 as an immunoprevalent epitope in our cohort of HLA-A*24:02 positive convalescent COVID-19 patients recovering from mild, moderate and severe disease. Further exploration of M198-206-specific CD8+ T cells with single cell RNA sequencing reveals public TCRs in virus-specific CD8+ T cells, and shows an exhausted phenotype with less differentiated status in cells from the severe group compared to cells from the moderate group. In summary, this study describes a method to identify T cell epitopes, indicate that dysfunction of virus-specific CTLs might be an important determinant of clinical outcomes.
Collapse
Affiliation(s)
- Hideki Ogura
- grid.272264.70000 0000 9142 153XDepartment of Microbiology, Hyogo Medical University, Hyogo, Japan
| | - Jin Gohda
- grid.26999.3d0000 0001 2151 536XResearch Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Xiuyuan Lu
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Mizuki Yamamoto
- grid.26999.3d0000 0001 2151 536XResearch Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshio Takesue
- grid.272264.70000 0000 9142 153XDepartment of Infection Control and Prevention, Hyogo Medical University, Hyogo, Japan ,Tokoname City Hospital, Aichi, Japan
| | - Aoi Son
- grid.272264.70000 0000 9142 153XDepartment of Microbiology, Hyogo Medical University, Hyogo, Japan
| | - Sadayuki Doi
- grid.513274.60000 0004 0569 8532Kawanishi City Hospital, Hyogo, Japan
| | | | - Fumitaka Isobe
- Kyowa Marina Hospital/Wellhouse Nishinomiya, Hyogo, Japan
| | | | | | - Takamasa Ueno
- grid.274841.c0000 0001 0660 6749Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Naomi Mambo
- grid.272264.70000 0000 9142 153XDepartment of Emergency and Critical Care Medicine, Hyogo Medical University, Hyogo, Japan
| | - Hiromoto Murakami
- grid.272264.70000 0000 9142 153XDepartment of Emergency and Critical Care Medicine, Hyogo Medical University, Hyogo, Japan
| | - Yasushi Kawaguchi
- grid.26999.3d0000 0001 2151 536XResearch Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDivision of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun-ichiro Inoue
- grid.26999.3d0000 0001 2151 536XResearch Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kunihiro Shirai
- grid.272264.70000 0000 9142 153XDepartment of Emergency and Critical Care Medicine, Hyogo Medical University, Hyogo, Japan
| | - Sho Yamasaki
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan ,grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan ,grid.177174.30000 0001 2242 4849Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan ,grid.136304.30000 0004 0370 1101Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Jun-Ichi Hirata
- grid.272264.70000 0000 9142 153XDepartment of Emergency and Critical Care Medicine, Hyogo Medical University, Hyogo, Japan
| | - Satoshi Ishido
- grid.272264.70000 0000 9142 153XDepartment of Microbiology, Hyogo Medical University, Hyogo, Japan
| |
Collapse
|
13
|
Gustiananda M, Julietta V, Hermawan A, Febriana GG, Hermantara R, Kristiani L, Sidhartha E, Sutejo R, Agustriawan D, Andarini S, Parikesit AA. Immunoinformatics Identification of the Conserved and Cross-Reactive T-Cell Epitopes of SARS-CoV-2 with Human Common Cold Coronaviruses, SARS-CoV, MERS-CoV and Live Attenuated Vaccines Presented by HLA Alleles of Indonesian Population. Viruses 2022; 14:v14112328. [PMID: 36366426 PMCID: PMC9699331 DOI: 10.3390/v14112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 02/01/2023] Open
Abstract
Reports on T-cell cross-reactivity against SARS-CoV-2 epitopes in unexposed individuals have been linked with prior exposure to the human common cold coronaviruses (HCCCs). Several studies suggested that cross-reactive T-cells response to live attenuated vaccines (LAVs) such as BCG (Bacillus Calmette-Guérin), OPV (Oral Polio Vaccine), and MMR (measles, mumps, and rubella) can limit the development and severity of COVID-19. This study aims to identify potential cross-reactivity between SARS-CoV-2, HCCCs, and LAVs in the context of T-cell epitopes peptides presented by HLA (Human Leukocyte Antigen) alleles of the Indonesian population. SARS-CoV-2 derived T-cell epitopes were predicted using immunoinformatics tools and assessed for their conservancy, variability, and population coverage. Two fully conserved epitopes with 100% similarity and nine heterologous epitopes with identical T-cell receptor (TCR) contact residues were identified from the ORF1ab fragment of SARS-CoV-2 and all HCCCs. Cross-reactive epitopes from various proteins of SARS-CoV-2 and LAVs were also identified (15 epitopes from BCG, 7 epitopes from MMR, but none from OPV). A majority of the identified epitopes were observed to belong to ORF1ab, further suggesting the vital role of ORF1ab in the coronaviruses family and suggesting it as a candidate for a potential universal coronavirus vaccine that protects against severe disease by inducing cell mediated immunity.
Collapse
Affiliation(s)
- Marsia Gustiananda
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
- Correspondence:
| | - Vivi Julietta
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Angelika Hermawan
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Gabriella Gita Febriana
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Rio Hermantara
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Lidya Kristiani
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Elizabeth Sidhartha
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Richard Sutejo
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - David Agustriawan
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine University of Indonesia, Persahabatan Hospital, Jl. Persahabatan Raya 1, Jakarta 13230, Indonesia
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta 13210, Indonesia
| |
Collapse
|
14
|
Olafsdottir TA, Bjarnadottir K, Norddahl GL, Halldorsson GH, Melsted P, Gunnarsdottir K, Ivarsdottir E, Olafsdottir T, Arnthorsson AO, Theodors F, Eythorsson E, Helgason D, Eggertsson HP, Masson G, Bjarnadottir S, Saevarsdottir S, Runolfsdottir HL, Olafsson I, Saemundsdottir J, Sigurdsson MI, Ingvarsson RF, Palsson R, Thorgeirsson G, Halldorsson BV, Holm H, Kristjansson M, Sulem P, Thorsteinsdottir U, Jonsdottir I, Gudbjartsson DF, Stefansson K. HLA alleles, disease severity, and age associate with T-cell responses following infection with SARS-CoV-2. Commun Biol 2022; 5:914. [PMID: 36068292 PMCID: PMC9446630 DOI: 10.1038/s42003-022-03893-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
Memory T-cell responses following SARS-CoV-2 infection have been extensively investigated but many studies have been small with a limited range of disease severity. Here we analyze SARS-CoV-2 reactive T-cell responses in 768 convalescent SARS-CoV-2-infected (cases) and 500 uninfected (controls) Icelanders. The T-cell responses are stable three to eight months after SARS-CoV-2 infection, irrespective of disease severity and even those with the mildest symptoms induce broad and persistent T-cell responses. Robust CD4+ T-cell responses are detected against all measured proteins (M, N, S and S1) while the N protein induces strongest CD8+ T-cell responses. CD4+ T-cell responses correlate with disease severity, humoral responses and age, whereas CD8+ T-cell responses correlate with age and functional antibodies. Further, CD8+ T-cell responses associate with several class I HLA alleles. Our results, provide new insight into HLA restriction of CD8+ T-cell immunity and other factors contributing to heterogeneity of T-cell responses following SARS-CoV-2 infection. A study of 768 convalescent SARS CoV-2-infected and 500 uninfected Icelanders reveals broad and stable T-cell responses 3-8 months from infection. HLA alleles, disease severity, and age contribute to the heterogeneity of cellular immunity.
Collapse
Affiliation(s)
| | | | | | | | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Elias Eythorsson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Dadi Helgason
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Sólveig Bjarnadottir
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Hrafnhildur L Runolfsdottir
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Isleifur Olafsson
- Clinical Laboratory Services, Diagnostics and Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Martin I Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Perioperative Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ragnar F Ingvarsson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Runolfur Palsson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavík, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Mar Kristjansson
- Internal Medicine and Emergency Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
15
|
Delgoffe GM. Editorial: Diverse responses to SARS-CoV-2 in the human population. Immunology 2022; 166:1. [PMID: 35434812 PMCID: PMC9111717 DOI: 10.1111/imm.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Greg M Delgoffe
- Department of Immunology, Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|