1
|
Maurer M, Magerl M. Differences and Similarities in the Mechanisms and Clinical Expression of Bradykinin-Mediated vs. Mast Cell-Mediated Angioedema. Clin Rev Allergy Immunol 2021; 61:40-49. [PMID: 33534062 PMCID: PMC8282544 DOI: 10.1007/s12016-021-08841-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/22/2022]
Abstract
Angioedema (AE), transient localized swelling due to extravasated fluid, is commonly classified as mast cell mediator-induced, bradykinin-mediated or of unknown cause. AE often occurs more than once, and it is these recurrent forms of AE that are challenging for patients and physicians, and they are the ones we focus on and refer to as AE in this review. Since effective treatment depends on the causative mediator, reliable and early diagnosis is essential. Although their clinical presentations bear similarities, many forms of angioedema exhibit specific patterns of clinical appearance or disease history that may aid in diagnosis. Here, we describe the most common differences and similarities in the mechanisms and clinical features of bradykinin-mediated and mast cell mediator-induced types of angioedema. We first provide an overview of the diseases that manifest with mast cell mediator-induced versus bradykinin-mediated angioedema as well as their respective underlying pathogenesis. We then compare these diseases for key clinical features, including angioedema location, course and duration of swelling, attack frequency, prevalence and relevance of prodromal signs and symptoms, triggers of angioedema attacks, and other signs and symptoms including wheals, age of onset, and duration. Our review and comparison of the clinical profiles of different types of angioedema incorporate our own clinical experience as well as published information. Our aim is to highlight that mast cell mediator-induced and bradykinin-mediated angioedema types share common features but are different in many aspects. Knowledge of the differences in underlying pathomechanisms and clinical profiles between different types of angioedema can help with the diagnostic approach in affected patients and facilitate targeted and effective treatment.
Collapse
Affiliation(s)
- Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Markus Magerl
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Masini M, Suleiman M, Novelli M, Marselli L, Marchetti P, De Tata V. Mast Cells and the Pancreas in Human Type 1 and Type 2 Diabetes. Cells 2021; 10:cells10081875. [PMID: 34440644 PMCID: PMC8391487 DOI: 10.3390/cells10081875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Mast cells are highly differentiated, widely distributed cells of the innate immune system, that are currently considered as key regulators of both innate and adaptive immunity. Mast cells play a key role in health and survival mechanisms, especially as sentinel cells that can stimulate protective immune responses. On the other hand, it has been shown that mast cells are involved in the pathogenesis of several diseases, and recently a possible pathogenetic role of mast cells in diabetes has been proposed. In this review we summarize the evidence on the increased presence of mast cells in the pancreas of subjects with type 1 diabetes, which is due to the autoimmune destruction of insulin secreting beta cells, and discuss the differences with type 2 diabetes, the other major form of diabetes. In addition, we describe some of the pathophysiological mechanisms through which mast cells might exert their actions, which could be targeted to potentially protect the beta cells in autoimmune diabetes.
Collapse
Affiliation(s)
- Matilde Masini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55-Scuola Medica, 56126 Pisa, Italy; (M.M.); (M.N.)
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, 56124 Pisa, Italy; (M.S.); (L.M.); (P.M.)
| | - Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55-Scuola Medica, 56126 Pisa, Italy; (M.M.); (M.N.)
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, 56124 Pisa, Italy; (M.S.); (L.M.); (P.M.)
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, 56124 Pisa, Italy; (M.S.); (L.M.); (P.M.)
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55-Scuola Medica, 56126 Pisa, Italy; (M.M.); (M.N.)
- Centro Interdipartimentale di Microscopia Elettronica (C.I.M.E.), University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
3
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
4
|
Zhang L, Jin H, Song Y, Chen SY, Wang Y, Sun Y, Tang C, Du J, Huang Y. Endogenous sulfur dioxide is a novel inhibitor of hypoxia-induced mast cell degranulation. J Adv Res 2020; 29:55-65. [PMID: 33842005 PMCID: PMC8020161 DOI: 10.1016/j.jare.2020.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023] Open
Abstract
Endogenous SO2/AAT pathway exists in mast cells (MCs). Endogenous SO2 is a novel MC membrane stabilizer under hypoxic circumstance. MC-derived SO2 upregulates cAMP level, thereby suppressing MC degranulation.
Introduction Mast cell (MC) degranulation is an important step in the pathogenesis of inflammatory reactions and allergies; however, the mechanism of stabilizing MC membranes to reduce their degranulation is unclear. Methods SO2 content in MC culture supernatant was measured by HPLC-FD. The protein and mRNA expressions of the key enzymes aspartate aminotransferase 1 (AAT1) and AAT2 and intracellular AAT activity were detected. The cAMP level in MCs was detected by immunofluorescence and ELISA. The release rate of MC degranulation marker β-hexosaminidase was measured. The expression of AAT1 and cAMP, the MC accumulation and degranulation in lung tissues were detected. Objectives To exam whether an endogenous sulfur dioxide (SO2) pathway exists in MCs and if it serves as a novel endogenous MC stabilizer. Results We firstly show the existence of the endogenous SO2/AAT pathway in MCs. Moreover, when AAT1 was knocked down in MCs, MC degranulation was significantly increased, and could be rescued by a SO2 donor. Mechanistically, AAT1 knockdown decreased the cyclic adenosine monophosphate (cAMP) content in MCs, while SO2 prevented this reduction in a dose-independent manner. Pretreatment with the cAMP-synthesizing agonist forskolin or the cAMP degradation inhibitor IBMX significantly blocked the increase in AAT1 knockdown-induced MC degranulation. Furthermore, in hypoxia-stimulated MCs, AAT1 protein expression and SO2 production were markedly down regulated, and MC degranulation was activated, which were blunted by AAT1 overexpression. The cAMP synthesis inhibitor SQ22536 disrupted the suppressive effect of AAT1 overexpression on hypoxia-induced MC degranulation. In a hypoxic environment, mRNA and protein expression of AAT1 was significantly reduced in lung tissues of rats. Supplementation of SO2 elevated the cAMP level and reduced perivascular MC accumulation and degranulation in lung tissues of rats exposed to a hypoxic environment in vivo. Conclusion SO2 serves as an endogenous MC stabilizer via upregulating the cAMP pathway under hypoxic circumstance.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Research Unit of Clinical Diagnosis and Treatment of Pediatric Syncope and Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yunjia Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Selena Ying Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Yi Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding author at: Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
5
|
Molinari G, Molinari L, Nervo E. Environmental and Endogenous Acids Can Trigger Allergic-Type Airway Reactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4688. [PMID: 32610702 PMCID: PMC7370125 DOI: 10.3390/ijerph17134688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory allergic and nonallergic respiratory disorders are spreading worldwide and often coexist. The root cause is not clear. This review demonstrates that, from a biochemical point of view, it is ascribable to protons (H+) released into cells by exogenous and endogenous acids. The hypothesis of acids as the common cause stems from two considerations: (a) it has long been known that exogenous acids present in air pollutants can induce the irritation of epithelial surfaces, particularly the airways, inflammation, and bronchospasm; (b) according to recent articles, endogenous acids, generated in cells by phospholipases, play a key role in the biochemical mechanisms of initiation and progression of allergic-type reactions. Therefore, the intracellular acidification and consequent Ca2+ increase, induced by protons generated by either acid pollutants or endogenous phospholipases, may constitute the basic mechanism of the multimorbidity of these disorders, and environmental acidity may contribute to their spread.
Collapse
Affiliation(s)
- Giuliano Molinari
- Studio Tecnico Ing. Laura Molinari, Environmental Health and Safety Via Quarto Ponte 17, 37138 Verona, Italy;
| | - Laura Molinari
- Studio Tecnico Ing. Laura Molinari, Environmental Health and Safety Via Quarto Ponte 17, 37138 Verona, Italy;
| | - Elsa Nervo
- Elsa Nervo, Società Chimica Italiana, 00198 Rome, Italy;
| |
Collapse
|
6
|
Lommatzsch M. Immune Modulation in Asthma: Current Concepts and Future Strategies. Respiration 2020; 99:566-576. [PMID: 32512570 DOI: 10.1159/000506651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma treatment concepts have profoundly changed over the last 20 years, from standard therapeutic regimens for all patients with asthma towards individually tailored interventions targeting treatable traits ("precision medicine"). A precise and highly effective immune modulation with minimal adverse effects plays a central role in this new concept. Recently, there have been major advances in the treatment of asthma with immune-modulatory compounds. One example is the approval of several highly potent biologics for the treatment of severe asthma. New immune-modulatory strategies are expected to enter clinical practice in the future; these innovations will be especially important for patients with treatment-resistant asthma.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Abteilung für Pneumologie/Interdisziplinäre Internistische Intensivstation, Medizinische Klinik I, Zentrum für Innere Medizin, Universitätsmedizin Rostock, Rostock, Germany,
| |
Collapse
|
7
|
Hallgren J, Hellman L, Maurer M, Nilsson GP, Wernersson S, Åbrink M, Pejler G. Novel aspects of mast cell and basophil function: Highlights from the 9th meeting of the European Mast Cell and Basophil Research Network (EMBRN)-A Marcus Wallenberg Symposium. Allergy 2020; 75:707-708. [PMID: 31557323 PMCID: PMC7079128 DOI: 10.1111/all.14065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/12/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jenny Hallgren
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology Uppsala University Uppsala Sweden
| | - Marcus Maurer
- Department of Dermatology and Allergy Allergie‐Centrum‐Charité Charité ‐ Universitätsmedizin Berlin Berlin Germany
| | - Gunnar P. Nilsson
- Department of Medicine Solna Karolinska Institutet Stockholm Sweden
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry Swedish University of Agricultural Sciences Uppsala Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health Swedish University of Agricultural Sciences Uppsala Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
- Department of Anatomy, Physiology and Biochemistry Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
8
|
Skopkó BE, Deák Á, Matesz C, Kelentey B, Bácskai T. Pefloxacin induced changes in serotonergic innervation and mast cell number in rat salivary glands. Drug Chem Toxicol 2018; 43:496-503. [PMID: 30257570 DOI: 10.1080/01480545.2018.1508217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Pefloxacin is a second-generation fluoroquinolone antibiotic. Besides its advantageous characteristics, side effects including the hypofunction of salivary glands, decreased saliva production, and peripheral neuropathy were observed during the administration of pefloxacin. The aim of this study was to investigate the changes in the number of serotonergic immunoreactive fibers and mast cells after pefloxacin treatment in the parotid and sublingual glands of rats to detect the possible neurotoxic effect of pefloxacin. The adult female rats were treated with intraperitoneal (i.p.) injection of pefloxacin for three or seven days (at a concentration of 20 mg/100g body weight) and the serotonergic innervation pattern along with the change in mast cell number were evaluated by using histochemistry and immunohistochemistry in the parotid and sublingual glands. We found that a three-day treatment significantly increased the number of immunoreactive serotonergic nerve fibers, but after a seven-day treatment the number of serotonin positive nerve fibers decreased almost to values of the control group. The alteration of mast cell number was parallel with the changes of the serotonin positive fibers during the treatment. These results suggest that pefloxacin treatment can modify the finely controlled communication between the immune- and the peripheral nervous systems, resulting neurogenic inflammatory process. The background of this process is the altered serotonergic innervation and the increased number of activated mast cells releasing different mediators for example histamine, which can finally lead to reduced number of serotonin positive nerve fibers after a seven-day treatment of pefloxacin leading to atrophy and hypofunction of the salivary glands.
Collapse
Affiliation(s)
- Boglárka Emese Skopkó
- Faculty of Dentistry, Department of Dentoalveolar Surgery, University of Debrecen, Debrecen, Hungary
| | - Ádám Deák
- Faculty of Medicine, Department of Operative Techniques and Surgical Research, Institute of Surgery, University of Debrecen, Debrecen, Hungary
| | - Clara Matesz
- Faculty of Dentistry and Faculty of Medicine, Department of Anatomy, Histology and Embryology, Division of Oral Anatomy, University of Debrecen, Debrecen, Hungary
| | - Barna Kelentey
- Faculty of Dentistry, Department of Restorative Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tímea Bácskai
- Faculty of Medicine, Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|