1
|
Park WH, Lee HK. Human γδ T cells in the tumor microenvironment: Key insights for advancing cancer immunotherapy. Mol Cells 2025; 48:100177. [PMID: 39778860 DOI: 10.1016/j.mocell.2025.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
The role of γδ T cells in antitumor responses has gained significant attention due to their major histocompatibility complex (MHC)-independent killing mechanisms, which are functionally distinct from conventional αβ T cells. Notably, γδ tumor-infiltrating lymphocytes (TILs) have been identified as favorable prognostic markers in various cancers. However, the γδ TIL subsets, including Vδ1, Vδ2, and Vδ3, exhibit distinct prognostic implications and phenotypes within the tumor microenvironment (TME). Although the underlying mechanisms remain unclear, recent studies suggest that these subset-specific differences may arise from divergent activation pathways. Vδ1 TILs appear to be mainly activated by γδ T-cell receptor (TCR) signaling, whereas Vδ2 TILs seem to rely on alternative pathways, such as natural killer (NK) receptor-mediated activation. In addition to phenotypic studies, cancer immunotherapies, such as engineered γδ T cells, γδ T-cell engagers, and γδ TCR-based therapies, are under active development. However, despite these advancements, functional heterogeneity and limited persistence within TME remain significant challenges. Overcoming these obstacles could position γδ T-cell therapies as a transformative platform for cancer treatment. Here, we review recent findings on the prognostic significance of human γδ T cells, their phenotypic characteristics, and advances in γδ T-cell therapies, offering valuable insights for the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Won Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute of Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Herrmann T, Karunakaran MM. Phosphoantigen recognition by Vγ9Vδ2 T cells. Eur J Immunol 2024; 54:e2451068. [PMID: 39148158 DOI: 10.1002/eji.202451068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Vγ9Vδ2 T cells comprise 1-10% of human peripheral blood T cells. As multifunctional T cells with a strong antimicrobial and antitumor potential, they are of strong interest for immunotherapeutic development. Their hallmark is the eponymous Vγ9Vδ2 T-cell antigen receptor (TCR), which mediates activation by so-called "phosphoantigens" (PAg). PAg are small pyrophosphorylated intermediates of isoprenoid synthesis of microbial or host origin, with the latter elevated in some tumors and after administration of aminobisphosphonates. This review summarizes the progress in understanding PAg-recognition, with emphasis on the interaction between butyrophilins (BTN) and PAg and insights gained by phylogenetic studies on BTNs and Vγ9Vδ2 T cells, especially the comparison of human and alpaca. It proposes a composite ligand model in which BTN3A1-A2/A3-heteromers and BTN2A1 homodimers form a Vγ9Vδ2 TCR activating complex. An initiating step is the binding of PAg to the intracellular BTN3A1-B30.2 domain and formation of a complex with the B30.2 domains of BTN2A1. On the extracellular surface this results in BTN2A1-IgV binding to Vγ9-TCR framework determinants and BTN3A-IgV to additional complementarity determining regions of both TCR chains. Unresolved questions of this model are discussed, as well as questions on the structural basis and the physiological consequences of PAg-recognition.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Dept of Medicine, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
3
|
Feng X, Xu Y. The recent progress of γδ T cells and its targeted therapies in rheumatoid arthritis. Int J Rheum Dis 2024; 27:e15381. [PMID: 39467001 DOI: 10.1111/1756-185x.15381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune condition that mostly impacts the joints. During the advanced phases of the disorder, it may be accompanied by other problems. While the precise cause of RA is uncertain, various research has been conducted to gain a better understanding of the immunological processes involved in the development of RA. T cells are acknowledged as significant contributors to the progression of RA because of their roles in cytokine secretion, antigen presentation, and facilitating B cells in the manufacture of antibodies. γδ T cells are a small subset of T cells that have significant functions in the context of infection and diseases linked with tumors. γδ T cells have been the subject of investigation in autoimmune disorders in recent years. This review focused on the involvement of γδ T lymphocytes in the development of RA. In this article, we provide an analysis of the immunological capabilities of γδ T cells, intending to comprehend their significance in RA, which could be pivotal in the creation of innovative clinical treatments.
Collapse
Affiliation(s)
- Xue Feng
- Department of Bone and Joint Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yan Xu
- Department of Bone and Joint Surgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Giannoni E, Sanchez Sanchez G, Verdebout I, Papadopoulou M, Rezwani M, Ahmed R, Ladell K, Miners KL, McLaren JE, Fraser DJ, Price DA, Eberl M, Agyeman PKA, Schlapbach LJ, Vermijlen D. Sepsis shapes the human γδ TCR repertoire in an age- and pathogen-dependent manner. Eur J Immunol 2024; 54:e2451190. [PMID: 39072722 DOI: 10.1002/eji.202451190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Sepsis affects 25 million children per year globally, leading to 2.9 million deaths and substantial disability in survivors. Extensive characterization of interactions between the host and bacteria in children is required to design novel preventive and therapeutic strategies tailored to this age group. Vγ9Vδ2 T cells are the first T cells generated in humans. These cells are defined by the expression of Vγ9Vδ2 T-cell receptors (TCRs, using the TRGV9 and TRDV2 gene segments), which react strongly against the prototypical bacterial phosphoantigen HMBPP. We investigated this reactivity by analyzing the TCR δ (TRD) repertoire in the blood of 76 children (0-16 years) with blood culture-proven bacterial sepsis caused by HMBPP-positive Escherichia coli or by HMBPP-negative Staphylococcus aureus or by HMBPP-negative Streptococcus pneumoniae. Strikingly, we found that S. aureus, and to a lesser extent E. coli but not S. pneumoniae, shaped the TRDV2 repertoire in young children (<2 years) but not in older children or adults. This dichotomy was due to the selective expansion of a fetal TRDV2 repertoire. Thus, young children possess fetal-derived Vγ9Vδ2 T cells that are highly responsive toward specific bacterial pathogens.
Collapse
Affiliation(s)
- Eric Giannoni
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Isoline Verdebout
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Moosa Rezwani
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Raya Ahmed
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Kelly L Miners
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Donald J Fraser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
- Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luregn J Schlapbach
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
5
|
Le Floch AC, Orlanducci F, Béné MC, Ben Amara A, Rouviere MS, Salem N, Le Roy A, Cordier C, Demerlé C, Granjeaud S, Hamel JF, Ifrah N, Cornillet-Lefebvre P, Delaunay J, Récher C, Delabesse E, Pigneux A, Vey N, Chretien AS, Olive D. Low frequency of Vγ9Vδ2 T cells predicts poor survival in newly diagnosed acute myeloid leukemia. Blood Adv 2024; 8:4262-4275. [PMID: 38788176 PMCID: PMC11372596 DOI: 10.1182/bloodadvances.2023011594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
ABSTRACT In several tumor subtypes, an increased infiltration of Vγ9Vδ2 T cells has been shown to have the highest prognostic value compared with other immune subsets. In acute myeloid leukemia (AML), similar findings have been based solely on the inference of transcriptomic data and have not been assessed with respect to confounding factors. This study aimed at determining, by immunophenotypic analysis (flow or mass cytometry) of peripheral blood from patients with AML at diagnosis, the prognostic impact of Vγ9Vδ2 T-cell frequency. This was adjusted for potential confounders (age at diagnosis, disease status, European LeukemiaNet classification, leukocytosis, and allogeneic hematopoietic stem cell transplantation as a time-dependent covariate). The cohort was composed of 198 patients with newly diagnosed (ND) AML. By univariate analysis, patients with lower Vγ9Vδ2 T cells at diagnosis had significantly lower 5-year overall and relapse-free survivals. These results were confirmed in multivariate analysis (hazard ratio [HR], 1.55 [95% confidence interval (CI), 1.04-2.30]; P = .030 and HR, 1.64 [95% CI, 1.06-2.53]; P = .025). Immunophenotypic alterations observed in patients with lower Vγ9Vδ2 T cells included a loss of some cytotoxic Vγ9Vδ2 T-cell subsets and a decreased expression of butyrophilin 3A on the surface of blasts. Samples expanded regardless of their Vγ9Vδ2 T-cell levels and displayed similar effector functions in vitro. This study confirms the prognostic value of elevated Vγ9Vδ2 T cells among lymphocytes in patients with ND AML. These results provide a strong rationale to consider consolidation protocols aiming at enhancing Vγ9Vδ2 T-cell responses.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Middle Aged
- Female
- Male
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Aged
- Prognosis
- Immunophenotyping
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
- Aged, 80 and over
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Anne-Charlotte Le Floch
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Florence Orlanducci
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | | | - Amira Ben Amara
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Marie-Sarah Rouviere
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Nassim Salem
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Aude Le Roy
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Charlotte Cordier
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Clémence Demerlé
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University UM105, Marseille, France
| | - Jean-François Hamel
- Département de Biostatistiques, Centre Hospitalier Universitaire d'Angers, Université d'Angers, Angers, France
| | - Norbert Ifrah
- Département d'Hématologie, Centre Hospitalier Universitaire d'Angers, Université d'Angers, INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Angers, France
| | | | - Jacques Delaunay
- Département d'Hématologie, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Christian Récher
- Département d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Arnaud Pigneux
- Département d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Norbert Vey
- Département d’hématologie, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Anne-Sophie Chretien
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Olive
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, Marseille, France
- Plateforme d’immunomonitoring, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
6
|
Zhang S, Li L, Liu C, Pu M, Ma Y, Zhang T, Chai J, Li H, Yang J, Chen M, Kong L, Xia T. The use of peripheral CD3 +γδ +Vδ2 + T lymphocyte cells in combination with the ALBI score to predict immunotherapy response in patients with advanced hepatocellular carcinoma: a retrospective study. J Cancer Res Clin Oncol 2024; 150:365. [PMID: 39052085 PMCID: PMC11272815 DOI: 10.1007/s00432-024-05896-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Currently, there is a lack of effective indicators for predicting the efficacy of immunotherapy in patients with advanced hepatocellular carcinoma (HCC). This study aimed to investigate the expression and prognostic value of peripheral T lymphocyte subsets in advanced HCC. METHODS Patients with advanced HCC who were treated with immune checkpoint inhibitors (ICIs) from December 2021 to December 2023 were included in the study. Flow cytometry was used to detect lymphocyte subsets before treatment. The patients were divided into disease control (DC) and nondisease control (nDC) groups based on treatment efficacy. Relationships between the clinical characteristics/peripheral T lymphocytes and immunotherapy efficacy were analyzed. The effectiveness of peripheral T lymphocyte subsets in predicting immunotherapy efficacy for patients with advanced HCC was analyzed using receiver operating characteristic (ROC) curves. RESULTS A total of 40 eligible patients were included in this study. Non-DC was significantly associated with higher albumin-bilirubin (ALBI) scores. The percentages of γδ+Vδ2+PD1+ T cells and γδ+Vδ2+Tim3+ T cells were greater in the nDC group than in the DC group. Multivariable regression analysis revealed that the ALBI score and T lymphocytes expressing γδ+Vδ2+PD1+ and γδ+Vδ2+Tim3+ were founded to be independent influencing factors. The area under the ROC curve (AUC) values for these combinations was 0.944 (95% CI, 0.882 ~ 1.000). CONCLUSIONS The calculation of the ALBI score and determination of the percentages CD3+γδ+Vδ2+PD1+ T lymphocytes and CD3+γδ+Vδ2+Tim3+ T lymphocytes in the peripheral blood of patients with advanced HCC are helpful for predicting the patients' responses to ICIs, helping to screen patients who may clinically benefit from immunotherapy. RETROSPECTIVELY REGISTERED: number: ChiCTR2400080409, date of registration: 2024-01-29.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/therapy
- Male
- Female
- Retrospective Studies
- Middle Aged
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy/methods
- Aged
- Prognosis
- CD3 Complex/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Shuhan Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Luyang Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Chengli Liu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China.
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China.
- Graduate School of Hebei North University, Zhangjiakou, China.
| | - Meng Pu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yingbo Ma
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tao Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Jiaqi Chai
- Department of Colorectal Surgery, 731 Hospital of China Aerospace Science and Industry group, Beijing, China
| | - Haoming Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Jun Yang
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Meishan Chen
- Department of Ultrasound, Strategic Support Force Xingcheng Specialized Sanatorium, Huludao, China
| | - Linghong Kong
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tian Xia
- Graduate School of Hebei North University, Zhangjiakou, China
| |
Collapse
|
7
|
Yared N, Papadopoulou M, Barennes P, Pham HP, Quiniou V, Netzer S, Kaminski H, Burguet L, Demeste A, Colas P, Mora-Charrot L, Rousseau B, Izotte J, Zouine A, Gauthereau X, Vermijlen D, Déchanet-Merville J, Capone M. Long-lived central memory γδ T cells confer protection against murine cytomegalovirus reinfection. PLoS Pathog 2024; 20:e1010785. [PMID: 38976755 PMCID: PMC11257398 DOI: 10.1371/journal.ppat.1010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/18/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
The involvement of γδ TCR-bearing lymphocytes in immunological memory has gained increasing interest due to their functional duality between adaptive and innate immunity. γδ T effector memory (TEM) and central memory (TCM) subsets have been identified, but their respective roles in memory responses are poorly understood. In the present study, we used subsequent mouse cytomegalovirus (MCMV) infections of αβ T cell deficient mice in order to analyze the memory potential of γδ T cells. As for CMV-specific αβ T cells, MCMV induced the accumulation of cytolytic, KLRG1+CX3CR1+ γδ TEM that principally localized in infected organ vasculature. Typifying T cell memory, γδ T cell expansion in organs and blood was higher after secondary viral challenge than after primary infection. Viral control upon MCMV reinfection was prevented when masking γδ T-cell receptor, and was associated with a preferential amplification of private and unfocused TCR δ chain repertoire composed of a combination of clonotypes expanded post-primary infection and, more unexpectedly, of novel expanded clonotypes. Finally, long-term-primed γδ TCM cells, but not γδ TEM cells, protected T cell-deficient hosts against MCMV-induced death upon adoptive transfer, probably through their ability to survive and to generate TEM in the recipient host. This better survival potential of TCM cells was confirmed by a detailed scRNASeq analysis of the two γδ T cell memory subsets which also revealed their similarity to classically adaptive αβ CD8 T cells. Overall, our study uncovered memory properties of long-lived TCM γδ T cells that confer protection in a chronic infection, highlighting the interest of this T cell subset in vaccination approaches.
Collapse
Affiliation(s)
- Nathalie Yared
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | - Sonia Netzer
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Hanna Kaminski
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Laure Burguet
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Amandine Demeste
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Pacôme Colas
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Lea Mora-Charrot
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Benoit Rousseau
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Atika Zouine
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, FACSility, TBM Core, Bordeaux, France
| | - Xavier Gauthereau
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, OneCell, RT-PCR and Single Cell Libraries, TBM Core, Bordeaux, France
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO department, Walloon ExceLlence Research Institute, Wavre, Belgium
| | - Julie Déchanet-Merville
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Myriam Capone
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| |
Collapse
|
8
|
Gray JI, Caron DP, Wells SB, Guyer R, Szabo P, Rainbow D, Ergen C, Rybkina K, Bradley MC, Matsumoto R, Pethe K, Kubota M, Teichmann S, Jones J, Yosef N, Atkinson M, Brusko M, Brusko TM, Connors TJ, Sims PA, Farber DL. Human γδ T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci Immunol 2024; 9:eadn3954. [PMID: 38848342 PMCID: PMC11425769 DOI: 10.1126/sciimmunol.adn3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
During ontogeny, γδ T cells emerge from the thymus and directly seed peripheral tissues for in situ immunity. However, their functional role in humans has largely been defined from blood. Here, we analyzed the phenotype, transcriptome, function, and repertoire of human γδ T cells in blood and mucosal and lymphoid tissues from 176 donors across the life span, revealing distinct profiles in children compared with adults. In early life, clonally diverse Vδ1 subsets predominate across blood and tissues, comprising naïve and differentiated effector and tissue repair functions, whereas cytolytic Vδ2 subsets populate blood, spleen, and lungs. With age, Vδ1 and Vδ2 subsets exhibit clonal expansions and elevated cytolytic signatures, which are disseminated across sites. In adults, Vδ2 cells predominate in blood, whereas Vδ1 cells are enriched across tissues and express residency profiles. Thus, antigenic exposures over childhood drive the functional evolution and tissue compartmentalization of γδ T cells, leading to age-dependent roles in immunity.
Collapse
Affiliation(s)
- Joshua I. Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Daniel P. Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Steven B. Wells
- Department of Systems Biology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Rebecca Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Peter Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Daniel Rainbow
- Department of Clinical Neurosciences, University of Cambridge; Cambridge, UK
| | - Can Ergen
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California; Berkeley, CA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Marissa C. Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY 10032 USA
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
- Department of Surgery, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY 10032 USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center; New York, NY 10032 USA
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton; Cambridge, UK
| | - Joanne Jones
- Department of Clinical Neurosciences, University of Cambridge; Cambridge, UK
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California; Berkeley, CA
- Department of Systems Immunology, Weizmann institute; Rehovot, Israel
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida; Gainesville, FL 32611, USA
| | - Maigan Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida; Gainesville, FL 32611, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida; Gainesville, FL 32611, USA
| | - Thomas J. Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY 10032 USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center; New York, NY 10032 USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center; New York, NY 10032
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center; New York, NY 10032 USA
- Department of Surgery, Columbia University Irving Medical Center; New York, NY 10032 USA
| |
Collapse
|
9
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
10
|
Hao Q, Li R, Li H, Rui S, You L, Zhang L, Zhao Y, Li P, Li Y, Kong X, Chen H, Zou X, Liu F, Wang X, Zhou J, Zhang W, Huang L, Shu Y, Liu J, Sun R, Li C, Zhu J, Jiang Y, Wei T, Qian K, Bai B, Hu Y, Peng Y, Dai L, Caulin C, Xu H, Li Z, Park J, Luo H, Ying B. Dynamics of The Γδtcr Repertoires During The Dedifferentiation Process and Pilot Implications for Immunotherapy of Thyroid Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306364. [PMID: 38286670 PMCID: PMC10987121 DOI: 10.1002/advs.202306364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/29/2023] [Indexed: 01/31/2024]
Abstract
γδ T cells are evolutionarily conserved T lymphocytes that manifest unique antitumor efficacy independent of tumor mutation burden (TMB) and conventional human leukocyte antigen (HLA) recognition. However, the dynamic changes in their T cell receptor (TCR) repertoire during cancer progression and treatment courses remain unclear. Here, a comprehensive characterization of γδTCR repertoires are performed in thyroid cancers with divergent differentiation states through cross-sectional studies. The findings revealed a significant correlation between the differentiation states and TCR repertoire diversity. Notably, highly expanded clones are prominently enriched in γδ T cell compartment of dedifferentiated patients. Moreover, by longitudinal investigations of the γδ T cell response to various antitumor therapies, it is found that the emergence and expansion of the Vδ2neg subset may be potentially associated with favorable clinical outcomes after post-radiotherapeutic immunotherapy. These findings are further validated at single-cell resolution in both advanced thyroid cancer patients and a murine model, underlining the importance of further investigations into the role of γδTCR in cancer immunity and therapeutic strategies.
Collapse
Affiliation(s)
- Qing Hao
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Ruicen Li
- Health Promotion CenterWest China Hospital, Sichuan UniversityChengduSichuan610041China
| | - Hancong Li
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Shu Rui
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Liting You
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
| | - Lingyun Zhang
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong SAR999077China
| | - Yue Zhao
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Peiheng Li
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuanmin Li
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease Related Molecular Network, West China HospitalSichuan UniversityChengdu610041China
| | - Xinagyu Kong
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Haining Chen
- Colorectal Cancer Center, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Xiuhe Zou
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Feng Liu
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Xiaofei Wang
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Juan Zhou
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
| | - Weihan Zhang
- Gastric Cancer Center, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Libing Huang
- Division of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Yang Shu
- Gastric Cancer Center, West China HospitalSichuan UniversityChengduSichuan610041China
| | - JiaYe Liu
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Ronghao Sun
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Sichuan Cancer Institute, Sichuan Cancer Prevention and Treatment CenterCancer Hospital of University of Electronic Science and Technology School of MedicineChengdu610041China
| | - Chao Li
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Sichuan Cancer Institute, Sichuan Cancer Prevention and Treatment CenterCancer Hospital of University of Electronic Science and Technology School of MedicineChengdu610041China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Yong Jiang
- Division of Pathology, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Tao Wei
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200230China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyYunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Carlos Caulin
- Department of Otolaryngology – Head & Neck Surgery and University of Arizona Cancer CenterUniversity of ArizonaTucsonAZ85721USA
| | - Heng Xu
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Zhihui Li
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
| | - Jihwan Park
- School of Life SciencesGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Han Luo
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
- Division of Thyroid Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Laboratory of Thyroid and Parathyroid DiseaseFrontiers Science Center for Disease‐Related Molecular NetworkChengdu610041China
- Department of General Surgery, West China HospitalSichuan UniversityChengduSichuan610041China
- Sichuan Clinical Research Center for laboratory medicineChengduSichuan610041China
| | - Binwu Ying
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduSichuan610041China
- Sichuan Clinical Research Center for laboratory medicineChengduSichuan610041China
| |
Collapse
|
11
|
Yin KL, Chu KJ, Li M, Duan YX, Yu YX, Kang MQ, Fu D, Liao R. Immune Regulatory Networks and Therapy of γδ T Cells in Liver Cancer: Recent Trends and Advancements. J Clin Transl Hepatol 2024; 12:287-297. [PMID: 38426194 PMCID: PMC10899867 DOI: 10.14218/jcth.2023.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. We provide a detailed description of the immune regulatory network of γδ T cells in liver cancer from two aspects: immune components and nonimmune components. The interactions between various components in this immune regulatory network are dynamic and pluralistic, ultimately determining the biological effects of γδ T cells in liver cancer. We also integrate the current knowledge of γδ T-cell immunotherapy for liver cancer treatment, emphasizing the potential of these cells in liver cancer immunotherapy.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai-Jian Chu
- Biliary Surgical Department I, the Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Xi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei-Qing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Papadakos SP, Arvanitakis K, Stergiou IE, Koutsompina ML, Germanidis G, Theocharis S. γδ T Cells: A Game Changer in the Future of Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2024; 25:1381. [PMID: 38338658 PMCID: PMC10855397 DOI: 10.3390/ijms25031381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge with limited treatment options and a poor prognosis for advanced-stage patients. Recent advancements in cancer immunotherapy have generated significant interest in exploring novel approaches to combat HCC. One such approach involves the unique and versatile subset of T cells known as γδ T cells. γδ T cells represent a distinct subset of T lymphocytes that differ from conventional αβ T cells in terms of antigen recognition and effector functions. They play a crucial role in immunosurveillance against various malignancies, including HCC. Recent studies have demonstrated that γδ T cells can directly recognize and target HCC cells, making them an attractive candidate for immunotherapy. In this article, we aimed to explore the role exerted by γδ T cells in the context of HCC. We investigate strategies designed to maximize the therapeutic effectiveness of these cells and examine the challenges and opportunities inherent in applying these research findings to clinical practice. The potential to bring about a revolutionary shift in HCC immunotherapy by capitalizing on the unique attributes of γδ T cells offers considerable promise for enhancing patient outcomes, warranting further investigation.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.)
| | - Maria-Loukia Koutsompina
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
13
|
Zhao Y, Dong P, He W, Zhang J, Chen H. γδ T cells: Major advances in basic and clinical research in tumor immunotherapy. Chin Med J (Engl) 2024; 137:21-33. [PMID: 37592858 PMCID: PMC10766231 DOI: 10.1097/cm9.0000000000002781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 08/19/2023] Open
Abstract
ABSTRACT γδ T cells are a kind of innate immune T cell. They have not attracted sufficient attention because they account for only a small proportion of all immune cells, and many basic factors related to these cells remain unclear. However, in recent years, with the rapid development of tumor immunotherapy, γδ T cells have attracted increasing attention because of their ability to exert cytotoxic effects on most tumor cells without major histocompatibility complex (MHC) restriction. An increasing number of basic studies have focused on the development, antigen recognition, activation, and antitumor immune response of γδ T cells. Additionally, γδ T cell-based immunotherapeutic strategies are being developed, and the number of clinical trials investigating such strategies is increasing. This review mainly summarizes the progress of basic research and the clinical application of γδ T cells in tumor immunotherapy to provide a theoretical basis for further the development of γδ T cell-based strategies in the future.
Collapse
Affiliation(s)
- Yueqi Zhao
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
14
|
Xi Y, Chen L, Tang J, Yu B, Shen W, Niu X. Amplifying "eat me signal" by immunogenic cell death for potentiating cancer immunotherapy. Immunol Rev 2024; 321:94-114. [PMID: 37550950 DOI: 10.1111/imr.13251] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 08/09/2023]
Abstract
Immunogenic cell death (ICD) is a unique mode of cell death, which can release immunogenic damage-associated molecular patterns (DAMPs) and tumor-associated antigens to trigger long-term protective antitumor immune responses. Thus, amplifying "eat me signal" during tumor ICD cascade is critical for cancer immunotherapy. Some therapies (radiotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), etc.) and inducers (chemotherapeutic agents, etc.) have enabled to initiate and/or facilitate ICD and activate antitumor immune responses. Recently, nanostructure-based drug delivery systems have been synthesized for inducing ICD through combining treatment of chemotherapeutic agents, photosensitizers for PDT, photothermal transformation agents for PTT, radiosensitizers for radiotherapy, etc., which can release loaded agents at an appropriate dosage in the designated place at the appropriate time, contributing to higher efficiency and lower toxicity. Also, immunotherapeutic agents in combination with nanostructure-based drug delivery systems can produce synergetic antitumor effects, thus potentiating immunotherapy. Overall, our review outlines the emerging ICD inducers, and nanostructure drug delivery systems loading diverse agents to evoke ICD through chemoradiotherapy, PDT, and PTT or combining immunotherapeutic agents. Moreover, we discuss the prospects and challenges of harnessing ICD induction-based immunotherapy, and highlight the significance of multidisciplinary and interprofessional collaboration to promote the optimal translation of this treatment strategy.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijie Chen
- School of Medicine, Xiamen University, Xiamen, China
- China Medical University, Shenyang, China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xing Niu
- China Medical University, Shenyang, China
| |
Collapse
|
15
|
Ahmedna T, Khela H, Weber-Levine C, Azad TD, Jackson CM, Gabrielson K, Bettegowda C, Rincon-Torroella J. The Role of γδ T-Lymphocytes in Glioblastoma: Current Trends and Future Directions. Cancers (Basel) 2023; 15:5784. [PMID: 38136330 PMCID: PMC10741533 DOI: 10.3390/cancers15245784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cell-based immunotherapy for glioblastoma (GBM) encounters major challenges due to the infiltration-resistant and immunosuppressive tumor microenvironment (TME). γδ T cells, unconventional T cells expressing the characteristic γδ T cell receptor, have demonstrated promise in overcoming these challenges, suggesting great immunotherapeutic potential. This review presents the role of γδ T cells in GBM and proposes several research avenues for future studies. Using the PubMed, ScienceDirect, and JSTOR databases, we performed a review of the literature studying the biology of γδ T cells and their role in GBM treatment. We identified 15 studies focused on γδ T cells in human GBM. Infiltrative γδ T cells can incite antitumor immune responses in certain TMEs, though rapid tumor progression and TME hypoxia may impact the extent of tumor suppression. In the studies, available findings have shown both the potential for robust antitumor activity and the risk of protumor activity. While γδ T cells have potential as a therapeutic agent against GBM, the technical challenges of extracting, isolating, and expanding γδ T cells, and the activation of antitumoral versus protumoral cascades, remain barriers to their application. Overcoming these limitations may transform γδ T cells into a promising immunotherapy in GBM.
Collapse
Affiliation(s)
- Taha Ahmedna
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harmon Khela
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Public Health Studies, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Tej D. Azad
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher M. Jackson
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
16
|
Lui KS, Ye Z, Chan HC, Tanaka Y, Cheung AKL. Anti-PD1 does not improve pyroptosis induced by γδ T cells but promotes tumor regression in a pleural mesothelioma mouse model. Front Immunol 2023; 14:1282710. [PMID: 38077396 PMCID: PMC10701743 DOI: 10.3389/fimmu.2023.1282710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Mesothelioma is an aggressive tumor in the pleural cavity that is difficult to treat. Diagnosis is usually late with minimal treatment options available for the patients and with unfavorable outcomes. However, recent advances in immunotherapy using γδ T cells may have potential against mesothelioma, given its ample tumoricidal and tumor-migratory properties could allow its infiltration to the widespread tumor mass. Thus, we hypothesize that Vδ2 T cells can perform cytotoxic activities against mesothelioma especially when combined with immune checkpoint blocker against PD-1. Methods Human Vδ2 T cells were expanded from peripheral blood mononuclear cells using Tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate (PTA) plus IL-2 for 13 days, before used to test for cytotoxicity against mesothelioma cell lines. Mesothelioma-bearing mice was established by Intrapleural administration of mesothelioma cell lines to test for the efficacy of Vδ2 T cells plus anti-PD-1 antibody combination treatment. Pyroptosis was evaluated by cell morphology, western blot analysis, and ELISA experiments. Flow cytometry was used to examine expression of BTN2A1, BTN3A1, PD-L1, PD-L2 on mesothelioma cell lines. Immunofluorescence staining was performed to detect Vδ2 T cells post adoptive transfer and characteristics of pyroptosis in ex vivo mesothelioma tissue sections. Results Indeed, our data demonstrated that Vδ2 T cells killing mesothelioma can be enhanced by anti-PD-1 antibody in vitro, especially for high PD-1 expressing cells, and in vivo in the intrapleural mesothelioma mice model established by us. Adoptive transfer of Vδ2 T cells into these mice leads to tumor regression by 30-40% compared to control. Immunofluorescence of the tumor section confirmed infiltration of Vδ2 T cells into the tumor, especially to cells with BTN2A1 expression (a Vδ2 T cell activating molecule) despite PD-L1 co-localization. Interestingly, these cells co-expressed cleaved gasdermin D, suggesting that pyroptosis was induced by Vδ2 T cells. This was verified by Vδ2 T/mesothelioma co-culture experiments demonstrating membrane ballooning morphology, increased cleaved caspase-3 and gasdermin E, and upregulated IL-1β and IL-18. Discussion Vδ2 T cells plus anti-PD1 exhibited cytotoxicity against mesothelioma in vivo. However, we found no advantage for anti-PD-1 against PD-1 high expressing Vδ2 T cells in promoting pyroptosis. Taken together, our work demonstrated that Vδ2 T cells combined with anti-PD-1 antibody can be developed as a potential combination immunotherapy for mesothelioma.
Collapse
Affiliation(s)
- Ka Sin Lui
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR, China
| | - Zuodong Ye
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR, China
| | - Hoi Ching Chan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR, China
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
17
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Silva-Santos B, Ribot JC, Adams EJ, Willcox BE, Eberl M. γδ T cell explorations seek terra firma. Nat Immunol 2023; 24:1606-1609. [PMID: 37749327 DOI: 10.1038/s41590-023-01606-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
19
|
Hovhannisyan L, Riether C, Aebersold DM, Medová M, Zimmer Y. CAR T cell-based immunotherapy and radiation therapy: potential, promises and risks. Mol Cancer 2023; 22:82. [PMID: 37173782 PMCID: PMC10176707 DOI: 10.1186/s12943-023-01775-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
CAR T cell-based therapies have revolutionized the treatment of hematological malignancies such as leukemia and lymphoma within the last years. In contrast to the success in hematological cancers, the treatment of solid tumors with CAR T cells is still a major challenge in the field and attempts to overcome these hurdles have not been successful yet. Radiation therapy is used for management of various malignancies for decades and its therapeutic role ranges from local therapy to a priming agent in cancer immunotherapy. Combinations of radiation with immune checkpoint inhibitors have already proven successful in clinical trials. Therefore, a combination of radiation therapy may have the potential to overcome the current limitations of CAR T cell therapy in solid tumor entities. So far, only limited research was conducted in the area of CAR T cells and radiation. In this review we will discuss the potential and risks of such a combination in the treatment of cancer patients.
Collapse
Affiliation(s)
- Lusine Hovhannisyan
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, 3010, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, 3010, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland.
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland.
| |
Collapse
|
20
|
Willcox CR, Salim M, Begley CR, Karunakaran MM, Easton EJ, von Klopotek C, Berwick KA, Herrmann T, Mohammed F, Jeeves M, Willcox BE. Phosphoantigen sensing combines TCR-dependent recognition of the BTN3A IgV domain and germline interaction with BTN2A1. Cell Rep 2023; 42:112321. [PMID: 36995939 DOI: 10.1016/j.celrep.2023.112321] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Vγ9Vδ2 T cells play critical roles in microbial immunity by detecting target cells exposed to pathogen-derived phosphoantigens (P-Ags). Target cell expression of BTN3A1, the "P-Ag sensor," and BTN2A1, a direct ligand for T cell receptor (TCR) Vγ9, is essential for this process; however, the molecular mechanisms involved are unclear. Here, we characterize BTN2A1 interactions with Vγ9Vδ2 TCR and BTN3A1. Nuclear magnetic resonance (NMR), modeling, and mutagenesis establish a BTN2A1-immunoglobulin V (IgV)/BTN3A1-IgV structural model compatible with their cell-surface association in cis. However, TCR and BTN3A1-IgV binding to BTN2A1-IgV is mutually exclusive, owing to binding site proximity and overlap. Moreover, mutagenesis indicates that the BTN2A1-IgV/BTN3A1-IgV interaction is non-essential for recognition but instead identifies a molecular surface on BTN3A1-IgV essential to P-Ag sensing. These results establish a critical role for BTN3A-IgV in P-Ag sensing, in mediating direct or indirect interactions with the γδ-TCR. They support a composite-ligand model whereby intracellular P-Ag detection coordinates weak extracellular germline TCR/BTN2A1 and clonotypically influenced TCR/BTN3A-mediated interactions to initiate Vγ9Vδ2 TCR triggering.
Collapse
Affiliation(s)
- Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK.
| | - Mahboob Salim
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Charlotte R Begley
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | | | - Emily J Easton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | | | - Katie A Berwick
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Mark Jeeves
- Henry Wellcome Building for NMR, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
21
|
Sanchez Sanchez G, Tafesse Y, Papadopoulou M, Vermijlen D. Surfing on the waves of the human γδ T cell ontogenic sea. Immunol Rev 2023; 315:89-107. [PMID: 36625367 DOI: 10.1111/imr.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While γδ T cells are present virtually in all vertebrates, there is a remarkable lack of conservation of the TRG and TRD loci underlying the generation of the γδ T cell receptor (TCR), which is associated with the generation of species-specific γδ T cells. A prominent example is the human phosphoantigen-reactive Vγ9Vδ2 T cell subset that is absent in mice. Murine γδ thymocyte cells were among the first immune cells identified to follow a wave-based layered development during embryonic and early life, and since this initial observation, in-depth insight has been obtained in their thymic ontogeny. By contrast, less is known about the development of human γδ T cells, especially regarding the generation of γδ thymocyte waves. Here, after providing an overview of thymic γδ wave generation in several vertebrate classes, we review the evidence for γδ waves in the human fetal thymus, where single-cell technologies have allowed the breakdown of human γδ thymocytes into functional waves with important TCR associations. Finally, we discuss the possible mechanisms contributing to the generation of waves of γδ thymocytes and their possible significance in the periphery.
Collapse
Affiliation(s)
- Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yohannes Tafesse
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
22
|
Giannotta C, Autino F, Massaia M. Vγ9Vδ2 T-cell immunotherapy in blood cancers: ready for prime time? Front Immunol 2023; 14:1167443. [PMID: 37143664 PMCID: PMC10153673 DOI: 10.3389/fimmu.2023.1167443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
In the last years, the tumor microenvironment (TME) has emerged as a promising target for therapeutic interventions in cancer. Cancer cells are highly dependent on the TME to growth and evade the immune system. Three major cell subpopulations are facing each other in the TME: cancer cells, immune suppressor cells, and immune effector cells. These interactions are influenced by the tumor stroma which is composed of extracellular matrix, bystander cells, cytokines, and soluble factors. The TME can be very different depending on the tissue where cancer arises as in solid tumors vs blood cancers. Several studies have shown correlations between the clinical outcome and specific patterns of TME immune cell infiltration. In the recent years, a growing body of evidence suggests that unconventional T cells like natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells are key players in the protumor or antitumor TME commitment in solid tumors and blood cancers. In this review, we will focus on γδ T cells, especially Vγ9Vδ2 T cells, to discuss their peculiarities, pros, and cons as potential targets of therapeutic interventions in blood cancers.
Collapse
Affiliation(s)
- Claudia Giannotta
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Federica Autino
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S. Croce e Carle, Cuneo, Italy
- *Correspondence: Massimo Massaia,
| |
Collapse
|
23
|
Wang L, Chen X, Zhang L, Niu B, Li L, Sun Y, Yuan X. CAR cell design strategies in solid tumors. Int Immunopharmacol 2022; 113:109345. [DOI: 10.1016/j.intimp.2022.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
24
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
25
|
Gaballa A, Arruda LCM, Uhlin M. Gamma delta T-cell reconstitution after allogeneic HCT: A platform for cell therapy. Front Immunol 2022; 13:971709. [PMID: 36105821 PMCID: PMC9465162 DOI: 10.3389/fimmu.2022.971709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (allo-HCT) is a curative platform for several hematological diseases. Despite its therapeutic benefits, the profound immunodeficiency associated with the transplant procedure remains a major challenge that renders patients vulnerable to several complications. Today, It is well established that a rapid and efficient immune reconstitution, particularly of the T cell compartment is pivotal to both a short-term and a long-term favorable outcome. T cells expressing a TCR heterodimer comprised of gamma (γ) and delta (δ) chains have received particular attention in allo-HCT setting, as a large body of evidence has indicated that γδ T cells can exert favorable potent anti-tumor effects without inducing severe graft versus host disease (GVHD). However, despite their potential role in allo-HCT, studies investigating their detailed reconstitution in patients after allo-HCT are scarce. In this review we aim to shed lights on the current literature and understanding of γδ T cell reconstitution kinetics as well as the different transplant-related factors that may influence γδ reconstitution in allo-HCT. Furthermore, we will present data from available reports supporting a role of γδ cells and their subsets in patient outcome. Finally, we discuss the current and future strategies to develop γδ cell-based therapies to exploit the full immunotherapeutic potential of γδ cells in HCT setting.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Chemistry, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Lucas C. M. Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
He D, Qin Z, Liu Z, Ji X, Gao J, Guo H, Yang F, Fan H, Wei Y, Wang Z, Liu Q, Pang Q. Comprehensive Analysis of the Prognostic Value and Immune Infiltration of Butyrophilin Subfamily 2/3 (BTN2/3) Members in Pan-Glioma. Front Oncol 2022; 12:816760. [PMID: 36033440 PMCID: PMC9399357 DOI: 10.3389/fonc.2022.816760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
The BTN2/3 subfamilies are overexpressed in many cancers, including pan-glioma (low- and high-grade gliomas). However, the expression and prognosis of BTN2/3 subfamilies and tumor-infiltrating lymphocytes in pan-glioma remain unknown. In the present study, we systematically explored and validated the expression and prognostic value of BTN2/3 subfamily members in pan-glioma [The Cancer Genome Atlas–glioblastoma and low-grade glioma (TCGA-GBMLGG) merge cohort] using multiple public databases. We used clinical specimens for high-throughput verification and cell lines for qRT-PCR verification, which confirmed the expression profiles of BTN2/3 subfamilies. In addition, the function of the BTN2/3 subfamily members and the correlations between BTN2/3 subfamily expression and pan-glioma immune infiltration levels were investigated. We found that BTN2/3 subfamily members were rarely mutated. BTN2/3 subfamilies were overexpressed in pan-glioma; high expression of BTN2/3 subfamily members was correlated with poor prognosis. In addition, BTN2/3 subfamilies might positively regulate proliferation, and the overexpression of BTN2/3 subfamilies influenced cell cycle, differentiation, and glioma stemness. In terms of immune infiltrating levels, BTN2/3 subfamily expression was positively associated with CD4+ T-cell, B-cell, neutrophil, macrophage, and dendritic cell infiltrating levels. These findings suggest that BTN2/3 subfamily expression is correlated with prognosis and immune infiltration levels in glioma. Therefore, the BTN2/3 subfamilies can be used as biomarkers for pan-glioma and prognostic biomarkers for determining the prognosis and immune infiltration levels in pan-glioma.
Collapse
Affiliation(s)
- Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Zhen Qin
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Xiaoshuai Ji
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiajia Gao
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haitao Fan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanbang Wei
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Zixiao Wang
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Qian Liu
- Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
- *Correspondence: Qian Liu, ; Qi Pang,
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Qian Liu, ; Qi Pang,
| |
Collapse
|
27
|
McMurray JL, von Borstel A, Taher TE, Syrimi E, Taylor GS, Sharif M, Rossjohn J, Remmerswaal EBM, Bemelman FJ, Vieira Braga FA, Chen X, Teichmann SA, Mohammed F, Berry AA, Lyke KE, Williamson KC, Stubbington MJT, Davey MS, Willcox CR, Willcox BE. Transcriptional profiling of human Vδ1 T cells reveals a pathogen-driven adaptive differentiation program. Cell Rep 2022; 39:110858. [PMID: 35613583 PMCID: PMC9533230 DOI: 10.1016/j.celrep.2022.110858] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
γδ T cells are generally considered innate-like lymphocytes, however, an ‘‘adaptive-like’’ γδ compartment has now emerged. To understand transcriptional regulation of adaptive γδ T cell immunobiology, we combined single-cell transcriptomics, T cell receptor (TCR)-clonotype assignment, ATAC-seq, and immunophenotyping. We show that adult Vδ1+ T cells segregate into TCF7+LEF1+Granzyme Bneg (Tnaive) or T-bet+Eomes+ BLIMP-1+Granzyme B+ (Teffector) transcriptional subtypes, with clonotypically expanded TCRs detected exclusively in Teffector cells. Transcriptional reprogramming mirrors changes within CD8+ αβ T cells following antigen-specific maturation and involves chromatin remodeling, enhancing cytokine production and cytotoxicity. Consistent with this, in vitro TCR engagement induces comparable BLIMP-1, Eomes, and T-bet expression in naive Vδ1+ and CD8+ T cells. Finally, both human cytomegalovirus and Plasmodium falciparum infection in vivo drive adaptive Vδ1 T cell differentiation from Tnaive to Teffector transcriptional status, alongside clonotypic expansion. Contrastingly, semi-invariant Vγ9+Vδ2+ T cells exhibit a distinct ‘‘innate-effector’’ transcriptional program established by early childhood. In summary, adaptive-like γδ subsets undergo a pathogen-driven differentiation process analogous to conventional CD8+ T cells. Using single-cell transcriptomics, TCR repertoire analysis, ATAC-seq, and immunophenotyping, McMurray et al. show naive Vδ1+ T cells can undergo transcriptional reprogramming to an effector state extremely similar to CD8 TEMRA cells. Infections, including CMV and malaria, drive both clonotypic Vδ1+ T cell expansion and differentiation to this highly conserved effector program.
Collapse
Affiliation(s)
- Jack L McMurray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Taher E Taher
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Eleni Syrimi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; Department of Haematology, Birmingham Children's Hospital, Birmingham B4 6NH, UK
| | - Graham S Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Maria Sharif
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike J Bemelman
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Xi Chen
- Wellcome Sanger Institute, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge CB10 1SD, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Martin S Davey
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
28
|
Identification of a Novel PPAR Signature for Predicting Prognosis, Immune Microenvironment, and Chemotherapy Response in Bladder Cancer. PPAR Res 2022; 2021:7056506. [PMID: 35027921 PMCID: PMC8749226 DOI: 10.1155/2021/7056506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background Mounting evidence has confirmed that peroxisome proliferator-activated receptors (PPARs) played a crucial role in the development and progression of bladder cancer (BLCA). The purpose of this study is to comprehensively investigate the function and prognostic value of PPAR-targeted genes in BLCA. Methods The RNA sequencing data and clinical information of BLCA patients were acquired from The Cancer Genome Atlas (TCGA). The differentially expressed PPAR-targeted genes were investigated. Cox analysis and least absolute shrinkage and selection operator (LASSO) analysis were performed for screening prognostic PPAR-targeted genes and constructing the prognostic PPAR signature and then validated by GSE13507 cohort and GSE32894 cohort. A nomogram was constructed to predict the outcomes of BLCA patients in combination with PPAR signature and clinical factors. Gene set enrichment analysis (GSEA) and immune cell infiltration were implemented to explore the molecular characteristics of the signature. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to predict the chemotherapy responses of the prognostic signature. The candidate small molecule drugs targeting PPAR-targeted genes were screened by the CMAP database. Results We constructed and validated the prognostic signature comprising of 4 PPAR-targeted genes (CPT1B, CALR, AHNAK, and FADS2), which was an independent prognostic biomarker in BLCA patients. A nomogram based on the signature and clinical factors was established in the TCGA set, and the calibration plots displayed the excellent predictive capacity. GSEA analysis indicated that PPAR signature was implicated in multiple oncogenic signaling pathways and correlated with tumor immune cell infiltration. Patients in the high-risk groups showed greater sensitivity to chemotherapy than those in the low-risk groups. Moreover, 11 candidate small molecule drugs were identified for the treatment of BLCA. Conclusion We constructed and validated a novel PPAR signature, which showed the excellent performance in predicting prognosis and chemotherapy sensitivity of BLCA patients.
Collapse
|
29
|
Abstract
Unconventional T cells are a diverse and underappreciated group of relatively rare lymphocytes that are distinct from conventional CD4+ and CD8+ T cells, and that mainly recognize antigens in the absence of classical restriction through the major histocompatibility complex (MHC). These non-MHC-restricted T cells include mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, γδ T cells and other, often poorly defined, subsets. Depending on the physiological context, unconventional T cells may assume either protective or pathogenic roles in a range of inflammatory and autoimmune responses in the kidney. Accordingly, experimental models and clinical studies have revealed that certain unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic biomarkers. The responsiveness of human Vγ9Vδ2 T cells and MAIT cells to many microbial pathogens, for example, has implications for early diagnosis, risk stratification and targeted treatment of peritoneal dialysis-related peritonitis. The expansion of non-Vγ9Vδ2 γδ T cells during cytomegalovirus infection and their contribution to viral clearance suggest that these cells can be harnessed for immune monitoring and adoptive immunotherapy in kidney transplant recipients. In addition, populations of NKT, MAIT or γδ T cells are involved in the immunopathology of IgA nephropathy and in models of glomerulonephritis, ischaemia-reperfusion injury and kidney transplantation.
Collapse
|
30
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
31
|
Park JH, Lee HK. Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 2021; 53:318-327. [PMID: 33707742 PMCID: PMC8080836 DOI: 10.1038/s12276-021-00576-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
T cells of the γδ lineage are unconventional T cells with functions not restricted to MHC-mediated antigen presentation. Because of their broad antigen specificity and NK-like cytotoxicity, γδ T-cell importance in tumor immunology has been emphasized. However, some γδ T-cell subsets, especially those expressing IL-17, are immunosuppressive or tumor-promoting cells. Their cytokine profile and cytotoxicity are seemingly determined by cross-talk with microenvironment components, not by the γδTCR chain. Furthermore, much about the TCR antigen of γδ T cells remains unknown compared with the extreme diversity of their TCR chain pairs. Thus, the investigation and application of γδ T cells have been relatively difficult. Nevertheless, γδ T cells remain attractive targets for antitumor therapy because of their independence from MHC molecules. Because tumor cells have the ability to evade the immune system through MHC shedding, heterogeneous antigens, and low antigen spreading, MHC-independent γδ T cells represent good alternative targets for immunotherapy. Therefore, many approaches to using γδ T cells for antitumor therapy have been attempted, including induction of endogenous γδ T cell activation, adoptive transfer of expanded cells ex vivo, and utilization of chimeric antigen receptor (CAR)-T cells. Here, we discuss the function of γδ T cells in tumor immunology and their application to cancer therapy.
Collapse
Affiliation(s)
- Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
32
|
|
33
|
Déchanet-Merville J, Prinz I. From basic research to clinical application of γδ T cells. Immunol Rev 2020; 298:5-9. [PMID: 33245813 DOI: 10.1111/imr.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|