1
|
Han L, Wu T, Zhang Q, Qi A, Zhou X. Immune Tolerance Regulation Is Critical to Immune Homeostasis. J Immunol Res 2025; 2025:5006201. [PMID: 39950084 PMCID: PMC11824399 DOI: 10.1155/jimr/5006201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/07/2024] [Indexed: 02/16/2025] Open
Abstract
The body's immune response plays a critical role in defending against external or foreign antigens while also preserving tolerance to self-antigens. This equilibrium, referred to as immune homeostasis, is paramount for overall health. The regulatory mechanisms governing the maintenance of this delicate immune balance are notably complex. It is currently accepted that immune tolerance is a dynamic outcome regulated by multiple factors, including central and peripheral mechanisms. Its induction or elimination plays a significant role in autoimmune diseases, organ transplantation, and cancer therapy, markedly impacting various major diseases in modern clinical practice. Overall, our current understanding of immune tolerance is still very limited. In this review article, we summarized the main mechanisms that have been known to mediate immune tolerance so far, including endogenous immune tolerance, adaptive immune tolerance, other immune tolerance mechanisms, and the homeostasis of immune tolerance, identified the key factors that regulate immune tolerance, and provided new clues for immune system recovery in many autoimmune diseases, organ transplantation, and tumor therapy.
Collapse
Affiliation(s)
- Lei Han
- Department of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu, China
| | - Tianxiang Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Qin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing, Jiangsu 211500, China
| | - Xiaohui Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
2
|
Lyu Y, Wang F, Cheng H, Han J, Dang R, Xia X, Wang H, Zhong J, Lenstra JA, Zhang H, Han J, MacHugh DE, Medugorac I, Upadhyay M, Leonard AS, Ding H, Yang X, Wang MS, Quji S, Zhuzha B, Quzhen P, Wangmu S, Cangjue N, Wa D, Ma W, Liu J, Zhang J, Huang B, Qi X, Li F, Huang Y, Ma Y, Wang Y, Gao Y, Lu W, Lei C, Chen N. Recent selection and introgression facilitated high-altitude adaptation in cattle. Sci Bull (Beijing) 2024; 69:3415-3424. [PMID: 38945748 DOI: 10.1016/j.scib.2024.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024]
Abstract
During the past 3000 years, cattle on the Qinghai-Xizang Plateau have developed adaptive phenotypes under the selective pressure of hypoxia, ultraviolet (UV) radiation, and extreme cold. The genetic mechanism underlying this rapid adaptation is not yet well understood. Here, we present whole-genome resequencing data for 258 cattle from 32 cattle breeds/populations, including 89 Tibetan cattle representing eight populations distributed at altitudes ranging from 3400 m to 4300 m. Our genomic analysis revealed that Tibetan cattle exhibited a continuous phylogeographic cline from the East Asian taurine to the South Asian indicine ancestries. We found that recently selected genes in Tibetan cattle were related to body size (HMGA2 and NCAPG) and energy expenditure (DUOXA2). We identified signals of sympatric introgression from yak into Tibetan cattle at different altitudes, covering 0.64%-3.26% of their genomes, which included introgressed genes responsible for hypoxia response (EGLN1), cold adaptation (LRP11), DNA damage repair (LATS1), and UV radiation resistance (GNPAT). We observed that introgressed yak alleles were associated with noncoding variants, including those in present EGLN1. In Tibetan cattle, three yak introgressed SNPs in the EGLN1 promoter region reduced the expression of EGLN1, suggesting that these genomic variants enhance hypoxia tolerance. Taken together, our results indicated complex adaptation processes in Tibetan cattle, where recently selected genes and introgressed yak alleles jointly facilitated rapid adaptation to high-altitude environments.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan 250000, China
| | - Jing Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610000, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610000, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya 572024, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100000, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried 82152, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried 82152, Germany
| | - Alexander S Leonard
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, Zurich 8006, Switzerland
| | - He Ding
- Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Suolang Quji
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Basang Zhuzha
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Pubu Quzhen
- Shigatse City Kangma County Shaogang Township Agriculture and Animal Husbandry Comprehensive Service Center, Shigatse 857000, China
| | - Silang Wangmu
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Nima Cangjue
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Da Wa
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Weidong Ma
- Shaanxi Province Agriculture & Husbandry Breeding Farm, Fufeng 722203, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650500, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming 650500, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650500, China
| | - Xingshan Qi
- Animal Husbandry Bureau in Biyang County, Biyang 463700, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd., Lianyuan 417126, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan 750000, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Wenfa Lu
- Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Yazhouwan National Laboratory, Sanya 572024, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
He H, He B, Guan L, Zhao Y, Jiang F, Chen G, Zhu Q, Chen CYC, Li T, Yao J. De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model. Nat Commun 2024; 15:6867. [PMID: 39127753 PMCID: PMC11316817 DOI: 10.1038/s41467-024-50903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Artificial Intelligence (AI) techniques have made great advances in assisting antibody design. However, antibody design still heavily relies on isolating antigen-specific antibodies from serum, which is a resource-intensive and time-consuming process. To address this issue, we propose a Pre-trained Antibody generative large Language Model (PALM-H3) for the de novo generation of artificial antibodies heavy chain complementarity-determining region 3 (CDRH3) with desired antigen-binding specificity, reducing the reliance on natural antibodies. We also build a high-precision model antigen-antibody binder (A2binder) that pairs antigen epitope sequences with antibody sequences to predict binding specificity and affinity. PALM-H3-generated antibodies exhibit binding ability to SARS-CoV-2 antigens, including the emerging XBB variant, as confirmed through in-silico analysis and in-vitro assays. The in-vitro assays validate that PALM-H3-generated antibodies achieve high binding affinity and potent neutralization capability against spike proteins of SARS-CoV-2 wild-type, Alpha, Delta, and the emerging XBB variant. Meanwhile, A2binder demonstrates exceptional predictive performance on binding specificity for various epitopes and variants. Furthermore, by incorporating the attention mechanism inherent in the Roformer architecture into the PALM-H3 model, we improve its interpretability, providing crucial insights into the fundamental principles of antibody design.
Collapse
Affiliation(s)
- Haohuai He
- AI Lab, Tencent, Shenzhen, 518052, China
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Bing He
- AI Lab, Tencent, Shenzhen, 518052, China.
| | - Lei Guan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Xi'an, China
| | - Yu Zhao
- AI Lab, Tencent, Shenzhen, 518052, China
| | - Feng Jiang
- AI Lab, Tencent, Shenzhen, 518052, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qingge Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Xi'an, China
| | - Calvin Yu-Chian Chen
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan.
- Guangdong L-Med Biotechnology Co. Ltd, Meizhou, 514699, Guangdong, China.
| | - Ting Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Xi'an, China.
| | | |
Collapse
|
4
|
Fan H, Liu J, Sun J, Feng G, Li J. Advances in the study of B cells in renal ischemia-reperfusion injury. Front Immunol 2023; 14:1216094. [PMID: 38022595 PMCID: PMC10646530 DOI: 10.3389/fimmu.2023.1216094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a non-negligible clinical challenge for clinicians in surgeries such as renal transplantation. Functional loss of renal tubular epithelial cell (TEC) in IRI leads to the development of acute kidney injury, delayed graft function (DGF), and allograft rejection. The available evidence indicates that cellular oxidative stress, cell death, microvascular dysfunction, and immune response play an important role in the pathogenesis of IRI. A variety of immune cells, including macrophages and T cells, are actively involved in the progression of IRI in the immune response. The role of B cells in IRI has been relatively less studied, but there is a growing body of evidence for the involvement of B cells, which involve in the development of IRI through innate immune responses, adaptive immune responses, and negative immune regulation. Therefore, therapies targeting B cells may be a potential direction to mitigate IRI. In this review, we summarize the current state of research on the role of B cells in IRI, explore the potential effects of different B cell subsets in the pathogenesis of IRI, and discuss possible targets of B cells for therapeutic aim in renal IRI.
Collapse
Affiliation(s)
- Hongzhao Fan
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Dietetics Teaching and Research Section, Henan Medical College, Xinzheng, China
| | - Jiajia Sun
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiwen Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Åkerstrand H, Boldrin E, Montano G, Vanhee S, Olsson K, Krausse N, Vergani S, Cieśla M, Bellodi C, Yuan J. Enhanced protein synthesis is a defining requirement for neonatal B cell development. Front Immunol 2023; 14:1130930. [PMID: 37138883 PMCID: PMC10149930 DOI: 10.3389/fimmu.2023.1130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
The LIN28B RNA binding protein exhibits an ontogenically restricted expression pattern and is a key molecular regulator of fetal and neonatal B lymphopoiesis. It enhances the positive selection of CD5+ immature B cells early in life through amplifying the CD19/PI3K/c-MYC pathway and is sufficient to reinitiate self-reactive B-1a cell output when ectopically expressed in the adult. In this study, interactome analysis in primary B cell precursors showed direct binding by LIN28B to numerous ribosomal protein transcripts, consistent with a regulatory role in cellular protein synthesis. Induction of LIN28B expression in the adult setting is sufficient to promote enhanced protein synthesis during the small Pre-B and immature B cell stages, but not during the Pro-B cell stage. This stage dependent effect was dictated by IL-7 mediated signaling, which masked the impact of LIN28B through an overpowering stimulation on the c-MYC/protein synthesis axis in Pro-B cells. Importantly, elevated protein synthesis was a distinguishing feature between neonatal and adult B cell development that was critically supported by endogenous Lin28b expression early in life. Finally, we used a ribosomal hypomorphic mouse model to demonstrate that subdued protein synthesis is specifically detrimental for neonatal B lymphopoiesis and the output of B-1a cells, without affecting B cell development in the adult. Taken together, we identify elevated protein synthesis as a defining requirement for early-life B cell development that critically depends on Lin28b. Our findings offer new mechanistic insights into the layered formation of the complex adult B cell repertoire.
Collapse
Affiliation(s)
- Hugo Åkerstrand
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Elena Boldrin
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Giorgia Montano
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stijn Vanhee
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Karin Olsson
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Niklas Krausse
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stefano Vergani
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Maciej Cieśla
- RNA and Stem Cell Biology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Cristian Bellodi
- RNA and Stem Cell Biology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Joan Yuan
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Joan Yuan,
| |
Collapse
|
6
|
Fortmann MI, Dirks J, Goedicke-Fritz S, Liese J, Zemlin M, Morbach H, Härtel C. Immunization of preterm infants: current evidence and future strategies to individualized approaches. Semin Immunopathol 2022; 44:767-784. [PMID: 35922638 PMCID: PMC9362650 DOI: 10.1007/s00281-022-00957-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
Preterm infants are at particularly high risk for infectious diseases. As this vulnerability extends beyond the neonatal period into childhood and adolescence, preterm infants benefit greatly from infection-preventive measures such as immunizations. However, there is an ongoing discussion about vaccine safety and efficacy due to preterm infants' distinct immunological features. A significant proportion of infants remains un- or under-immunized when discharged from primary hospital stay. Educating health care professionals and parents, promoting maternal immunization and evaluating the potential of new vaccination tools are important means to reduce the overall burden from infectious diseases in preterm infants. In this narrative review, we summarize the current knowledge about vaccinations in premature infants. We discuss the specificities of early life immunity and memory function, including the role of polyreactive B cells, restricted B cell receptor diversity and heterologous immunity mediated by a cross-reactive T cell repertoire. Recently, mechanistic studies indicated that tissue-resident memory (Trm) cell populations including T cells, B cells and macrophages are already established in the fetus. Their role in human early life immunity, however, is not yet understood. Tissue-resident memory T cells, for example, are diminished in airway tissues in neonates as compared to older children or adults. Hence, the ability to make specific recall responses after secondary infectious stimulus is hampered, a phenomenon that is transcriptionally regulated by enhanced expression of T-bet. Furthermore, the microbiome establishment is a dominant factor to shape resident immunity at mucosal surfaces, but it is often disturbed in the context of preterm birth. The proposed function of Trm T cells to remember benign interactions with the microbiome might therefore be reduced which would contribute to an increased risk for sustained inflammation. An improved understanding of Trm interactions may determine novel targets of vaccination, e.g., modulation of T-bet responses and facilitate more individualized approaches to protect preterm babies in the future.
Collapse
Affiliation(s)
- Mats Ingmar Fortmann
- Department of Pediatrics, University Lübeck, University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Johannes Dirks
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Johannes Liese
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Henner Morbach
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
A self-sustaining layer of early-life-origin B cells drives steady-state IgA responses in the adult gut. Immunity 2022; 55:1829-1842.e6. [PMID: 36115337 DOI: 10.1016/j.immuni.2022.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/20/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022]
Abstract
The adult immune system consists of cells that emerged at various times during ontogeny. We aimed to define the relationship between developmental origin and composition of the adult B cell pool during unperturbed hematopoiesis. Lineage tracing stratified murine adult B cells based on the timing of output, revealing that a substantial portion originated within a restricted neonatal window. In addition to B-1a cells, early-life time-stamped B cells included clonally interrelated IgA plasma cells in the gut and bone marrow. These were actively maintained by B cell memory within gut chronic germinal centers and contained commensal microbiota reactivity. Neonatal rotavirus infection recruited recurrent IgA clones that were distinct from those arising by infection with the same antigen in adults. Finally, gut IgA plasma cells arose from the same hematopoietic progenitors as B-1a cells during ontogeny. Thus, a complex layer of neonatally imprinted B cells confer unique antibody responses later in life.
Collapse
|
8
|
Zaaroor Levy M, Rabinowicz N, Yamila Kohon M, Shalom A, Berl A, Hornik-Lurie T, Drucker L, Tartakover Matalon S, Levy Y. MiRNAs in Systemic Sclerosis Patients with Pulmonary Arterial Hypertension: Markers and Effectors. Biomedicines 2022; 10:biomedicines10030629. [PMID: 35327430 PMCID: PMC8945806 DOI: 10.3390/biomedicines10030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a major cause of death in systemic sclerosis (SSc). Early detection may improve patient outcomes. Methods: We searched for circulating miRNAs that would constitute biomarkers in SSc patients with PAH (SSc-PAH). We compared miRNA levels and laboratory parameters while evaluating miRNA levels in white blood cells (WBCs) and myofibroblasts. Results: Our study found: 1) miR-26 and miR-let-7d levels were significantly lower in SSc-PAH (n = 12) versus SSc without PAH (SSc-noPAH) patients (n = 25); 2) a positive correlation between miR-26 and miR-let-7d and complement-C3; 3) GO-annotations of genes that are miR-26/miR-let-7d targets and that are expressed in myofibroblast cells, suggesting that these miRNAs regulate the TGF-β-pathway; 4) reduced levels of both miRNAs accompanied fibroblast differentiation to myofibroblasts, while macitentan (endothelin receptor-antagonist) increased the levels. WBCs of SSc-noPAH and SSc-PAH patients contained equal amounts of miR-26/miR-let-7d. During the study, an echocardiograph that predicted PAH development, showed increased pulmonary artery pressure in three SSc-noPAH patients. At study initiation, those patients and an additional SSc-noPAH patient, who eventually developed PAH, had miR-let-7d/miR-26 levels similar to those of SSc-PAH patients. This implies that reduced miR-let-7d/miR-26 levels might be an early indication of PAH. Conclusions: miR-26 and miR-let-7d may be serological markers for SSc-PAH. The results of our study suggest their involvement in myofibroblast differentiation and complement pathway activation, both of which are active in PAH development.
Collapse
Affiliation(s)
- Mor Zaaroor Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Noa Rabinowicz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Maia Yamila Kohon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Avshalom Shalom
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Ariel Berl
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | | | - Liat Drucker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Shelly Tartakover Matalon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Correspondence: (S.T.M.); (Y.L.); Tel./Fax: +972-9-74721992 (S.T.M.)
| | - Yair Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Department of Internal Medicine E, Meir Medical Center, Kfar Saba 4428164, Israel
- Correspondence: (S.T.M.); (Y.L.); Tel./Fax: +972-9-74721992 (S.T.M.)
| |
Collapse
|
9
|
Weinmann AS. Genome regulation in innate and adaptive immune cells. Immunol Rev 2021; 300:5-8. [PMID: 33638253 DOI: 10.1111/imr.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|