1
|
Phadke KS, Madival DG, Venkataraman J, Kundu D, Ramanujan KS, Holla N, Arakeri J, Tomar G, Datta S, Ghatak A. Novel non intrusive continuous use ZeBox technology to trap and kill airborne microbes. Sci Rep 2021; 11:22779. [PMID: 34815494 PMCID: PMC8610990 DOI: 10.1038/s41598-021-02184-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Preventing nosocomial infection is a major unmet need of our times. Existing air decontamination technologies suffer from demerits such as toxicity of exposure, species specificity, noxious gas emission, environment-dependent performance and high power consumption. Here, we present a novel technology called “ZeBox” that transcends the conventional limitations and achieves high microbicidal efficiency. In ZeBox, a non-ionizing electric field extracts naturally charged microbes from flowing air and deposits them on engineered microbicidal surfaces. The surface’s three dimensional topography traps the microbes long enough for them to be inactivated. The electric field and chemical surfaces synergistically achieve rapid inactivation of a broad spectrum of microbes. ZeBox achieved near complete kill of airborne microbes in challenge tests (5–9 log reduction) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$>90\%$$\end{document}>90% efficiency in a fully functional stem cell research facility in the presence of humans. Thus, ZeBox fulfills the dire need for a real-time, continuous, safe, trap-and-kill air decontamination technology.
Collapse
Affiliation(s)
- Kruttika S Phadke
- Biomoneta Research Private Limited, Bangalore, 560065, India.,Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Deepak G Madival
- Biomoneta Research Private Limited, Bangalore, 560065, India.,Mechanical Engineering Department, Indian Institute of Science, Bangalore, 560012, India
| | | | - Debosmita Kundu
- Biomoneta Research Private Limited, Bangalore, 560065, India
| | - K S Ramanujan
- Biomoneta Research Private Limited, Bangalore, 560065, India
| | - Nisha Holla
- Biomoneta Research Private Limited, Bangalore, 560065, India
| | - Jaywant Arakeri
- Mechanical Engineering Department, Indian Institute of Science, Bangalore, 560012, India
| | - Gaurav Tomar
- Mechanical Engineering Department, Indian Institute of Science, Bangalore, 560012, India
| | - Santanu Datta
- Biomoneta Research Private Limited, Bangalore, 560065, India.,Bugworks Research, Bangalore, 560066, India
| | - Arindam Ghatak
- Biomoneta Research Private Limited, Bangalore, 560065, India.
| |
Collapse
|
2
|
Feng Z, Cao SJ, Haghighat F. Removal of SARS-CoV-2 using UV+Filter in built environment. SUSTAINABLE CITIES AND SOCIETY 2021; 74:103226. [PMID: 34367884 PMCID: PMC8329429 DOI: 10.1016/j.scs.2021.103226] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 05/03/2023]
Abstract
Air cleaning is an effective and reliable method in indoor airborne SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona-Virus 2) control, with ability of aerosol removal or disinfection. However, traditional air cleaning systems (e.g. fibrous filter, electrostatic removal system) have some risks in operation process, including re-aerosolization and electric breakdown. To avoid these risks, the current study proposed an UV+Filter (ultraviolet and fibrous pleated filter) system to efficiently capture airborne SARS-CoV-2 aerosols and deactivate them in filter medium. It is challenging to quantitatively design UV+Filter due to complex characteristics of SARS-CoV-2 aerosols (e.g. aerodynamic size, biological susceptibility) and hybrid filtration/disinfection processes. This study numerically investigated the overall performances of different air cleaning devices (e.g. Fibrous-filter, UV+Filter, two-stage ESP (electrostatic precipitator) et al.) for control of SARS-CoV-2 aerosols and compared them in term of filtration efficiency, energy consumption and secondary pollution. The prediction of developed models was validated with the experimental data from literature. UV+Filter is the most reliable and safest, while its energy consumption is highest. The newly proposed design method of air cleaning systems could provide essential tools for airborne diseases control.
Collapse
Affiliation(s)
- Zhuangbo Feng
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Shi-Jie Cao
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096, China
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, United Kingdom
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
3
|
Evaluation of Antimicrobial Effect of Zinc Pyrithione against Airborne Fungi and Bacteria Growth Collected onto New and Loaded HVAC Fibrous Filters. Processes (Basel) 2021. [DOI: 10.3390/pr9091528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microbial growth onto HVAC filters was observed in real conditions with possible degradation of the indoor air quality. The filtration performance of marketed antimicrobial filters containing zinc pyrithione was tested under laboratory conditions and compared to that of similar filters with the same classification, F7 (EN779:2002). The filtration performance of the two tested filters during loading with PM10 particles was quantified in an experimental setup with filter pressure drop measurement and particle counting upstream and downstream of the filters. The microbial growth on the new and loaded filters, both contaminated with a microbial airborne consortium composed of two bacteria (Gram-positive and -negative) and fungi, was quantified by colony-forming units after conditioning the filters for a few days under controlled temperature (25 °C) and humidity (50% or 90% relative humidity). The results reveal that there was no degradation of the filtration performance of the filters treated with the antimicrobial agent. The efficiency of the antimicrobial treatment, i.e., the ability to inhibit the growth of microorganisms during the incubation period, was significant with the new filters regarding the fungal growth, but the results demonstrate that the antimicrobial treatment became inefficient with the loaded filters.
Collapse
|
4
|
Joubert A, Abd Ali SAZ, Frossard M, Andrès Y. Dust and microbial filtration performance of regular and antimicrobial HVAC filters in realistic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39907-39919. [PMID: 33765264 DOI: 10.1007/s11356-021-13330-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Two polypropylene HVAC electret filters: a regular filter and an antimicrobial filter containing zinc pyrithione (ZPT), were compared for filtration performance. The study was conducted over 7 months in realistic conditions with semi-urban outdoor air. Several parameters were monitored over the study period: the average temperature was about 20 °C and relative humidity about 60%, the average inlet concentration of cultivable microorganisms was 50 CFU m-3, the average inlet concentration of particles was 10 μg m-3, the filter pressure drop increased moderately by about 30 Pa, and the particle collection efficiency of soda fluorescein (median diameter 0.35 μm) decreased in the first half of the study period by about 30% and then stabilized. The microbial concentration on the filters was quantified every 2 months using an innovative methodology based on media coupons in conjunction with microorganism quantification by CFU counting, with 5 culture media favorable to bacteria and/or fungi growth. The microbial concentrations on the filters were between 100 and 2000 CFU cm-2. The antimicrobial effect of zinc pyrithione was confirmed by the fungi cultivated with DRBC agar: no effects in the level of filter clogging were revealed in the range studied. The high statistical deviation in the results regarding the inhibiting effect of zinc pyrithione on bacteria prevents any conclusion.
Collapse
Affiliation(s)
- Aurélie Joubert
- IMT Atlantique, GEPEA, CNRS UMR 6144, BP 20722, 44307, Nantes cedex3, France.
| | | | - Miora Frossard
- IMT Atlantique, GEPEA, CNRS UMR 6144, BP 20722, 44307, Nantes cedex3, France
| | - Yves Andrès
- IMT Atlantique, GEPEA, CNRS UMR 6144, BP 20722, 44307, Nantes cedex3, France
| |
Collapse
|
5
|
Nakpan W, Yermakov M, Indugula R, Reponen T, Grinshpun SA. Inactivation of bacterial and fungal spores by UV irradiation and gaseous iodine treatment applied to air handling filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:59-65. [PMID: 30927728 DOI: 10.1016/j.scitotenv.2019.03.310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 05/27/2023]
Abstract
Exposure to viable bacterial and fungal spores re-aerosolized from air handling filters may create a major health risk. Assessing and controlling this exposure have been of interest to the bio-defense and indoor air quality communities. Methods are being developed for inactivating stress-resistant viable microorganisms collected on ventilation filters. Here we investigated the inactivation of spores of Bacillus thuringiensis var. kurstaki (Btk), a recognized simulant for B. antracis, and Aspergillus fumigatus, a common opportunistic pathogen used as an indicator for indoor air quality. The viability change was measured on filters treated with ultraviolet (UV) irradiation and gaseous iodine. The spores were collected on high-efficiency particulate air (HEPA) and non-HEPA filters, both flattened for testing purposes to represent "surface" filters. A mixed cellulose ester (MCE) membrane filter was also tested as a reference. Additionally, a commercial HEPA unit with a deep-bed (non-flattened) filter was tested. Combined treatments of Btk spores with UV and iodine on MCE filter produced a synergistic inactivation effect. No similar synergy was observed for A. fumigatus. For spores collected on an MCE filter, the inactivation effect was about an order of magnitude greater for Btk compared to A. fumigatus. The filter type was found to be an important factor affecting the inactivation of Btk spores while it was not as influential for A. fumigatus. Overall, the combined effect of UV irradiation and gaseous iodine on viable bacterial and fungal spores collected on flat filters was found to be potent. The benefit of either simultaneous or sequential treatment was much lower for Btk spores embedded inside the deep-bed (non-flattened) HEPA filter, but for A. fumigatus the inactivation on flattened and non-flattened HEPA filters was comparable. For both species, applying UV first and gaseous iodine second produced significantly higher inactivation than when applying them simultaneously or in an opposite sequence.
Collapse
Affiliation(s)
- Worrawit Nakpan
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Michael Yermakov
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Reshmi Indugula
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Tiina Reponen
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Sergey A Grinshpun
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Environmental microbiology: Perspectives for legal and occupational medicine. Leg Med (Tokyo) 2018; 35:34-43. [DOI: 10.1016/j.legalmed.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/09/2018] [Accepted: 09/23/2018] [Indexed: 11/18/2022]
|