1
|
Baeza_Romero MT, Dudzinska MR, Amouei Torkmahalleh M, Barros N, Coggins AM, Ruzgar DG, Kildsgaard I, Naseri M, Rong L, Saffell J, Scutaru AM, Staszowska A. A review of critical residential buildings parameters and activities when investigating indoor air quality and pollutants. INDOOR AIR 2022; 32:e13144. [PMID: 36437669 PMCID: PMC9828800 DOI: 10.1111/ina.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Indoor air in residential dwellings can contain a variety of chemicals, sometimes present at concentrations or in combinations which can have a negative impact on human health. Indoor Air Quality (IAQ) surveys are often required to characterize human exposure or to investigate IAQ concerns and complaints. Such surveys should include sufficient contextual information to elucidate sources, pathways, and the magnitude of exposures. The aim of this review was to investigate and describe the parameters that affect IAQ in residential dwellings: building location, layout, and ventilation, finishing materials, occupant activities, and occupant demography. About 180 peer-reviewed articles, published from 01/2013 to 09/2021 (plus some important earlier publications), were reviewed. The importance of the building parameters largely depends on the study objectives and whether the focus is on a specific pollutant or to assess health risk. When considering classical pollutants such as particulate matter (PM) or volatile organic compounds (VOCs), the building parameters can have a significant impact on IAQ, and detailed information of these parameters needs to be reported in each study. Research gaps and suggestions for the future studies together with recommendation of where measurements should be done are also provided.
Collapse
Affiliation(s)
- María Teresa Baeza_Romero
- Universidad de Castilla‐La Mancha. Dpto. Química‐Física, Escuela de Ingeniería Industrial y AeroespacialToledoSpain
| | | | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public HealthUniversity of Illinois ChicagoChicagoIllinoisUSA
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Nelson Barros
- UFP Energy, Environment and Health Research Unit (FP‐ENAS)University Fernando PessoaPortoPortugal
| | - Ann Marie Coggins
- School of Natural Sciences & Ryan InstituteNational University of IrelandGalwayIreland
| | - Duygu Gazioglu Ruzgar
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Metallurgical and Materials Engineering DepartmentBursa Technical UniversityBursaTurkey
| | | | - Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Li Rong
- Department of Civil and Architectural EngineeringAarhus UniversityAarhus CDenmark
| | | | | | - Amelia Staszowska
- Faculty of Environmental EngineeringLublin University of TechnologyLublinPoland
| |
Collapse
|
2
|
Tracing of Heavy Metals Embedded in Indoor Dust Particles from the Industrial City of Asaluyeh, South of Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137905. [PMID: 35805563 PMCID: PMC9265302 DOI: 10.3390/ijerph19137905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/22/2022]
Abstract
Assessment of indoor air quality is especially important, since people spend substantial amounts of time indoors, either at home or at work. This study analyzes concentrations of selected heavy metals in 40 indoor dust samples obtained from houses in the highly-industrialized Asaluyeh city, south Iran in spring and summer seasons (20 samples each). Furthermore, the health risk due to exposure to indoor air pollution is investigated for both children and adults, in a city with several oil refineries and petrochemical industries. The chemical analysis revealed that in both seasons the concentrations of heavy metals followed the order of Cr > Ni > Pb > As > Co > Cd. A significant difference was observed in the concentrations of potential toxic elements (PTEs) such as Cr, As and Ni, since the mean (±stdev) summer levels were at 60.2 ± 9.1 mg kg−1, 5.6 ± 2.7 mg kg−1 and 16.4 ± 1.9 mg kg−1, respectively, while the concentrations were significantly lower in spring (17.6 ± 9.7 mg kg−1, 3.0 ± 1.7 mg kg−1 and 13.5 ± 2.4 mg kg−1 for Cr, As and Ni, respectively). Although the hazard index (HI) values, which denote the possibility of non-carcinogenic risk due to exposure to household heavy metals, were generally low for both children and adults (HI < 1), the carcinogenic risks of arsenic and chromium were found to be above the safe limit of 1 × 10−4 for children through the ingestion pathway, indicating a high cancer risk due to household dust in Asaluyeh, especially in summer.
Collapse
|
3
|
Wang C, Wang J, Norbäck D. A Systematic Review of Associations between Energy Use, Fuel Poverty, Energy Efficiency Improvements and Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127393. [PMID: 35742650 PMCID: PMC9223700 DOI: 10.3390/ijerph19127393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Energy use in buildings can influence the indoor environment. Studies on green buildings, energy saving measures, energy use, fuel poverty, and ventilation have been reviewed, following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The database PubMed was searched for articles published up to 1 October 2020. In total, 68 relevant peer-reviewed epidemiological or exposure studies on radon, biological agents, and chemicals were included. The main aim was to assess current knowledge on how energy saving measures and energy use can influence health. The included studies concluded that buildings classified as green buildings can improve health. More efficient heating and increased thermal insulation can improve health in homes experiencing fuel poverty. However, energy-saving measures in airtight buildings and thermal insulation without installation of mechanical ventilation can impair health. Energy efficiency retrofits can increase indoor radon which can cause lung cancer. Installation of a mechanical ventilation systems can solve many of the negative effects linked to airtight buildings and energy efficiency retrofits. However, higher ventilation flow can increase the indoor exposure to outdoor air pollutants in areas with high levels of outdoor air pollution. Finally, future research needs concerning energy aspects of buildings and health were identified.
Collapse
|
4
|
Wan Y, Diamond ML, Siegel JA. Quantitative filter forensics for semivolatile organic compounds in social housing apartments. INDOOR AIR 2022; 32:e12994. [PMID: 35225385 DOI: 10.1111/ina.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Residents from low-income social housing are vulnerable to adverse health effects from indoor air pollution. Particle-bound concentrations of eight phthalates and 12 polycyclic aromatic hydrocarbons (PAHs) in indoor air were measured using quantitative filter forensics with portable air cleaners deployed for three one-week periods from 2015 to 2017. The sample included 143 apartments across seven multi-unit social housing buildings in Toronto, Canada, that went through energy retrofits in 2016. Eight phthalates and six PAHs were found in more than 50% of the apartments in either of the three sampling periods. Di(2-ethylhexyl) phthalate (DEHP) and phenanthrene were the dominant phthalate and PAH, with median concentrations of 146, 143, and 130 ng/m3 and 1.51, 0.58, and 0.76 ng/m3 in the late spring of 2015, and after retrofits in late spring 2017 and winter of 2017, respectively. SVOC concentrations were generally lower after energy retrofits, with significant differences for phenanthrene, fluoranthene, and pyrene. Lower concentrations post-retrofit may be related to less overheating and less need for opening windows. Concentrations of phthalates and PAHs in this study were similar to or higher than those reported in the literature. Results suggest that the use of portable air filters is a promising method to assess concentrations of indoor particle-bound SVOCs.
Collapse
Affiliation(s)
- Yuchao Wan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Miriam L Diamond
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
- School of Environment, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey A Siegel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Mannan M, Al-Ghamdi SG. Indoor Air Quality in Buildings: A Comprehensive Review on the Factors Influencing Air Pollution in Residential and Commercial Structure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3276. [PMID: 33810001 PMCID: PMC8004912 DOI: 10.3390/ijerph18063276] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Worldwide people tend to spend approximately 90% of their time in different indoor environments. Along with the penetration of outside air pollutants, contaminants are produced in indoor environments due to different activities such as heating, cooling, cooking, and emissions from building products and the materials used. As people spend most of their lives in indoor environments, this has a significant influence on human health and productivity. Despite the two decades of indoor air quality (IAQ) research from different perspectives, there is still a lack of comprehensive evaluation of peer-reviewed IAQ studies that specifically covers the relationship between the internal characteristics of different types of building environments with IAQ to help understand the progress and limitations of IAQ research worldwide. Therefore, this review of scientific studies presents a broad spectrum of pollutants identified in both residential and commercial indoor environments, highlighting the trends and gaps in IAQ research. Moreover, analysis of literature data enabled us to assess the different IAQs in buildings located in different countries/regions, thus reflecting the current global scientific understanding of IAQ. This review has the potential to benefit building professionals by establishing indoor air regulations that account for all indoor contaminant sources to create healthy and sustainable building environments.
Collapse
Affiliation(s)
| | - Sami G. Al-Ghamdi
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar;
| |
Collapse
|
6
|
Radon concentration in conventional and new energy efficient multi-storey apartment houses: results of survey in four Russian cities. Sci Rep 2020; 10:18136. [PMID: 33093632 PMCID: PMC7581716 DOI: 10.1038/s41598-020-75274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023] Open
Abstract
During last decades, energy saving in new buildings became relevant within the energy efficiency strategies in various countries. Such energy efficient building characteristics as air tightening and low ventilation can compromise indoor air quality, in particular, increase radon concentration. In Russia, a significant part of the new buildings is the energy efficient multi-storey apartment houses. The aim of this study is to assess the significance of possible radon concentration increase in new energy efficient buildings in comparison with typical conventional multi-storey houses of previous periods. Radon surveys were conducted in Russian cities Ekaterinburg, Chelyabinsk, Saint-Petersburg and Krasnodar. The radon measurements were carried out in 478 flats using CR-39 nuclear track detectors. Energy efficiency index (EEI) was assigned to each house. All buildings were divided into six main categories. The smallest average radon concentration was observed in panel and brick houses built according to standard projects of 1970–1990 (four-city average 21 Bq/m3). The highest average radon concentration and EEI were observed in new energy efficient buildings (49 Bq/m3). The trend of radon increase in buildings ranked with high EEI index is observed in all cities. The potential increase of radiation exposure in energy-efficient buildings should be analyzed taking into account the principles of radiological protection.
Collapse
|
7
|
Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects. SUSTAINABILITY 2020. [DOI: 10.3390/su12187465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The research about energy efficiency in buildings has exponentially increased during the last few years. Nevertheless, both research and practice still cannot rely on complete methodologies tailored for building portfolios as a whole, because the attention has always been drawn to individual premises. Yet, energy efficiency analyses need to go beyond the single building perspective and incorporate strategic district approaches to optimize the retrofit investment. For this purpose, several aspects should be considered simultaneously, and new methodologies should also be promoted. Therefore, this paper aims to discuss energy retrofit campaigns in building portfolios, drawing an exhaustive and updated review about the challenge of jumping from the single-building perspective to a stock-based analysis. This research discusses the publications available on the topic from five key aspects that are all essential steps in achieving a complete and reliable study of energy efficiency at a portfolio level. They are energy modelling and assessment, energy retrofit design, decision-making criteria assessment, optimal allocation of (financial) resources and risk valuation. This review, therefore, advocates for joint consideration of the problem as a basis on which to structure further disciplinary developments. Research gaps are highlighted, and new directions for future research are suggested.
Collapse
|
8
|
Yang S, Perret V, Hager Jörin C, Niculita‐Hirzel H, Goyette Pernot J, Licina D. Volatile organic compounds in 169 energy-efficient dwellings in Switzerland. INDOOR AIR 2020; 30:481-491. [PMID: 32190933 PMCID: PMC7216845 DOI: 10.1111/ina.12667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 03/15/2020] [Indexed: 05/06/2023]
Abstract
Exposure to elevated levels of certain volatile organic compounds (VOCs) in households has been linked to deleterious health effects. This study presents the first large-scale investigation of VOC levels in 169 energy-efficient dwellings in Switzerland. Through a combination of physical measurements and questionnaire surveys, we investigated the influence of diverse building characteristics on indoor VOCs. Among 74 detected compounds, carbonyls, alkanes, and alkenes were the most abundant. Median concentration levels of formaldehyde (14 μg/m3 ), TVOC (212 μg/m3 ), benzene (<0.1 μg/m3 ), and toluene (22 μg/m3 ) were below the upper exposure limits. Nonetheless, 90% and 50% of dwellings exceeded the chronic exposure limits for formaldehyde (9 μg/m3 ) and TVOC (200 μg/m3 ), respectively. There was a strong positive correlation among VOCs that likely originated from common sources. Dwellings built between 1950s and 1990s, and especially, those with attached garages had higher TVOC concentrations. Interior thermal retrofit of dwellings and absence of mechanical ventilation system were associated with elevated levels of formaldehyde, aromatics, and alkanes. Overall, energy-renovated homes had higher levels of certain VOCs compared with newly built homes. The results suggest that energy efficiency measures in dwellings should be accompanied by actions to mitigate VOC exposures as to avoid adverse health outcomes.
Collapse
Affiliation(s)
- Shen Yang
- Human‐Oriented Built Environment LabSchool of ArchitectureCivil and Environmental EngineeringÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | | | - Corinne Hager Jörin
- School of Engineering and Architecture of FribourgHumanTech InstituteHES‐SO University of Applied Sciences and Arts Western SwitzerlandFribourgSwitzerland
| | - Hélène Niculita‐Hirzel
- Department of Health, Work and EnvironmentCenter for Primary Care and Public Health (Unisanté)University of LausanneLausanneSwitzerland
| | - Joëlle Goyette Pernot
- School of Engineering and Architecture of FribourgTransform InstituteWestern Swiss Center for Indoor Air Quality and Radon (croqAIR)HES‐SO University of Applied Sciences and Arts Western SwitzerlandFribourgSwitzerland
| | - Dusan Licina
- Human‐Oriented Built Environment LabSchool of ArchitectureCivil and Environmental EngineeringÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
9
|
Radon Investigation in 650 Energy Efficient Dwellings in Western Switzerland: Impact of Energy Renovation and Building Characteristics. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As part of more stringent energy targets in Switzerland, we witness the appearance of new green-certified dwellings while many existing dwellings have undergone energy efficiency measures. These measures have led to reduced energy consumption, but rarely consider their impact on indoor air quality. Consequently, such energy renovation actions can lead to an accumulation of radon in dwellings located in radon-prone areas at doses that can affect human health. This study compared the radon levels over 650 energy-efficient dwellings in western Switzerland between green-certified (Minergie) and energy-renovated dwellings, and analyzed the building characteristics responsible of this accumulation. We found that the newly green-certified dwellings had significantly lower radon level than energy-renovated, which were green- and non-green-certified houses (geometric mean 52, 87, and 105 Bq/m3, respectively). The new dwellings with integrated mechanical ventilation exhibited lower radon concentrations. Thermal retrofitting of windows, roofs, exterior walls, and floors were associated with a higher radon level. Compared to radon measurements prior to energy renovation, we found a 20% increase in radon levels. The results highlight the need to consider indoor air quality when addressing energy savings to avoid compromising occupants’ health, and are useful for enhancing the ventilation design and energy renovation procedures in dwellings.
Collapse
|