1
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
2
|
Zheng XY, Guo SJ, Hu JX, Meng RL, Xu YJ, Lv YH, Wang Y, Xiao N, Li C, Xu XJ, Zhao DJ, Zhou HY, He JH, Tan XM, Wei J, Lin LF, Guan WJ. Long-term associations of PM 1 versus PM 2.5 and PM 10 with asthma and asthma-related respiratory symptoms in the middle-aged and elderly population. ERJ Open Res 2024; 10:00972-2023. [PMID: 38957167 PMCID: PMC11215765 DOI: 10.1183/23120541.00972-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/25/2024] [Indexed: 07/04/2024] Open
Abstract
Background Few studies have compared the associations between long-term exposures to particulate matters (aerodynamic diameter ≤1, ≤2.5 and ≤10 µm: PM1, PM2.5 and PM10, respectively) and asthma and asthma-related respiratory symptoms. The objective of the present study was to compare the strength of the aforementioned associations in middle-aged and elderly adults. Methods We calculated the mean 722-day personal exposure estimates of PM1, PM2.5 and PM10 at 1 km×1 km spatial resolution between 2013 and 2019 at individual levels from China High Air Pollutants (CHAP) datasets. Using logistic regression models, we presented the associations as odds ratios and 95% confidence intervals, for each interquartile range (IQR) increase in PM1/PM2.5/PM10 concentration. Asthma denoted a self-reported history of physician-diagnosed asthma or wheezing in the preceding 12 months. Results We included 7371 participants in COPD surveillance from Guangdong, China. Each IQR increase in PM1, PM2.5 and PM10 was associated with a greater odds (OR (95% CI)) of asthma (PM1: 1.22 (1.02-1.45); PM2.5: 1.24 (1.04-1.48); PM10: 1.30 (1.07-1.57)), wheeze (PM1: 1.27 (1.11-1.44); PM2.5: 1.30 (1.14-1.48); PM10: 1.34 (1.17-1.55)), persistent cough (PM1: 1.33 (1.06-1.66); PM2.5: 1.36 (1.09-1.71); PM10: 1.31 (1.02-1.68)) and dyspnoea (PM1: 2.10 (1.84-2.41); PM2.5: 2.17 (1.90-2.48); PM10: 2.29 (1.96-2.66)). Sensitivity analysis results were robust after excluding individuals with a family history of allergy. Associations of PM1, PM2.5 and PM10 with asthma and asthma-related respiratory symptoms were slightly stronger in males. Conclusion Long-term exposure to PM is associated with increased risks of asthma and asthma-related respiratory symptoms.
Collapse
Affiliation(s)
- Xue-yan Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Xue-yan Zheng, Shu-jun Guo and Jian-xiong Hu contributed equally to this article as joint first authors
| | - Shu-jun Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Xue-yan Zheng, Shu-jun Guo and Jian-xiong Hu contributed equally to this article as joint first authors
| | - Jian-xiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Xue-yan Zheng, Shu-jun Guo and Jian-xiong Hu contributed equally to this article as joint first authors
| | - Rui-lin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yan-jun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yun-hong Lv
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ye Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ni Xiao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Chuan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiao-jun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - De-jian Zhao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hong-ye Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia-hui He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-min Tan
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Li-feng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
- Li-feng Lin and Wei-jie Guan contributed equally to this article as lead authors and supervised the work
| | - Wei-jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Li-feng Lin and Wei-jie Guan contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
3
|
Lin L, Yi X, Liu H, Meng R, Li S, Liu X, Yang J, Xu Y, Li C, Wang Y, Xiao N, Li H, Liu Z, Xiang Z, Shu W, Guan WJ, Zheng XY, Sun J, Wang Z. The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans. Nat Med 2023:10.1038/s41591-023-02424-2. [PMID: 37349537 DOI: 10.1038/s41591-023-02424-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Exposure to environmental pollution influences respiratory health. The role of the airway microbial ecosystem underlying the interaction of exposure and respiratory health remains unclear. Here, through a province-wide chronic obstructive pulmonary disease surveillance program, we conducted a population-based survey of bacterial (n = 1,651) and fungal (n = 719) taxa and metagenomes (n = 1,128) from induced sputum of 1,651 household members in Guangdong, China. We found that cigarette smoking and higher PM2.5 concentration were associated with lung function impairment through the mediation of bacterial and fungal communities, respectively, and that exposure was associated with an enhanced inter-kingdom microbial interaction resembling the pattern seen in chronic obstructive pulmonary disease. Enrichment of Neisseria was associated with a 2.25-fold increased risk of high respiratory symptom burden, coupled with an elevation in Aspergillus, in association with occupational pollution. We developed an individualized microbiome-based health index, which covaried with exposure, respiratory symptoms and diseases, with potential generalizability to global datasets. Our results may inform environmental risk prevention and guide interventions that harness airway microbiome.
Collapse
Affiliation(s)
- Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic Testing, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Saiqiang Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Liu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Junhao Yang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanjun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Chuan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ye Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ni Xiao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zuheng Liu
- Xiamen Key Laboratory of Cardiac Electrophysiology, Department of Cardiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiming Xiang
- Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xue-Yan Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Jiufeng Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
4
|
Jiang N, Bao WW, Gui ZH, Chen YC, Zhao Y, Huang S, Zhang YS, Liang JH, Pu XY, Huang SY, Dong GH, Chen YJ. Findings of indoor air pollution and childhood obesity in a cross-sectional study of Chinese schoolchildren. ENVIRONMENTAL RESEARCH 2023; 225:115611. [PMID: 36878271 DOI: 10.1016/j.envres.2023.115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Air pollution exposures are increasingly suspected to influence the development of childhood adiposity, especially focusing on outdoor exposure, but few studies investigated indoor exposure and childhood obesity. OBJECTIVES We aimed to examine the association between exposure to multiple indoor air pollutants and childhood obesity in Chinese schoolchildren. METHODS In 2019, we recruited 6499 children aged 6-12 years from five Chinese elementary schools in Guangzhou, China. We measured age-sex-specific body mass index z score (z-BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) on standard procedures. Four different indoor air pollution (IAP) exposures, including cooking oil fumes (COFs), home decoration, secondhand smoke (SHS), and incense burning, were collected by questionnaire and then converted into an IAP exposure index with four categories. Association between indoor air pollutants and childhood overweight/obesity as well as four obese anthropometric indices were assessed by logistic regression models and multivariable linear regression models, respectively. RESULTS Children exposed to ≥3 types of indoor air pollutants had higher z-BMI (coefficient [β]:0.142, 95% confidence interval [CI]:0.011-0.274) and higher risk of overweight/obesity (odd ratio [OR]:1.27, 95%CI:1.01-1.60). And a dose-response relationship was discovered between the IAP exposure index and z-BMI as well as overweight/obesity (pfor trend<0.05). We also found that exposure to SHS and COFs was positively associated with z-BMI and overweight/obesity (p < 0.05). Moreover, there was a significant interaction between SHS exposure and COFs on the higher risk of overweight/obesity among schoolchildren. Boys appear more susceptible to multiple indoor air pollutants than girls. CONCLUSIONS Indoor air pollution exposures were positively associated with higher obese anthropometric indices and increased odds of overweight/obesity in Chinese schoolchildren. More well-designed cohort studies are needed to verify our results.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Wen Bao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhao-Huan Gui
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi-Can Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Zhao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shan Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Shan Zhang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing-Hong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xue-Ya Pu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao-Yi Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Jun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet 2022; 399:2227-2242. [PMID: 35533707 DOI: 10.1016/s0140-6736(22)00470-6] [Citation(s) in RCA: 372] [Impact Index Per Article: 186.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health-care use worldwide. COPD is caused by exposure to inhaled noxious particles, notably tobacco smoke and pollutants. However, the broad range of factors that increase the risk of development and progression of COPD throughout the life course are increasingly being recognised. Innovations in omics and imaging techniques have provided greater insight into disease pathobiology, which might result in advances in COPD prevention, diagnosis, and treatment. Although few novel treatments have been approved for COPD in the past 5 years, advances have been made in targeting existing therapies to specific subpopulations using new biomarker-based strategies. Additionally, COVID-19 has undeniably affected individuals with COPD, who are not only at higher risk for severe disease manifestations than healthy individuals but also negatively affected by interruptions in health-care delivery and social isolation. This Seminar reviews COPD with an emphasis on recent advances in epidemiology, pathophysiology, imaging, diagnosis, and treatment.
Collapse
Affiliation(s)
- Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin M Smith
- Department of Medicine, Columbia University Medical Center, New York, NY, USA; Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Mona Bafadhel
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Department of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Zheng XY, Tang SL, Guan WJ, Ma SL, Li C, Xu YJ, Meng RL, Lin LF. Exposure to biomass fuel is associated with high blood pressure and fasting blood glucose impairment in females in southern rural China. ENVIRONMENTAL RESEARCH 2021; 199:111072. [PMID: 33812878 DOI: 10.1016/j.envres.2021.111072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES We sought to investigate the association between household exposure to biomass fuel and metabolic syndrome (MetS) and its components including blood pressure, triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG) and waist circumference among females in southern rural China. METHODS We surveyed 1664 residents in the Chronic Disease and Risk Factors Surveillance, conducted in 14 districts of Guangdong province. We recorded the use of biomass fuel, MetS and its components, and other covariates by using a structured questionnaire. Logistic regression model and multivariate linear regression model were adopted for analysis. RESULTS Exposure to biomass fuel was significantly associated with an increase of systolic blood pressure (SBP) (β: 2.15, 95% confidence interval: 0.13 to 4.17) and FBG (β: 0.19, 95% confidence interval: 0.01 to 0.37) in the adjusted and unadjusted models (all P < 0.05). Among participants with exposure to biomass fuel, being overweight or obese was associated with an increased risk of having hypertension (odds ratio: 3.19, 95% confidence interval: 2.13 to 4.76) and higher FBG levels (odds ratio: 2.10, 95% confidence interval: 1.46 to 3.02). Exposure to biomass fuel was significantly associated with a decrease of the prevalence of central obesity (P < 0.05). However, exposure to biomass fuel was not associated with MetS, diastolic blood pressure and TG (all P > 0.05). CONCLUSIONS Exposure to biomass fuel is associated with an increase in blood pressure and FBG levels, but not MetS per se. Efforts should be made to protect females in southern rural China from the adverse effects associated with biomass fuel pollution.
Collapse
Affiliation(s)
- Xue-Yan Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Si-Li Tang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, China
| | - Shu-Li Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chuan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Yan-Jun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Rui-Lin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China.
| | - Li-Feng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China.
| |
Collapse
|
7
|
Pan M, Gu J, Li R, Chen H, Liu X, Tu R, Chen R, Yu S, Mao Z, Huo W, Hou J, Wang C. Independent and combined associations of solid-fuel use and smoking with obesity among rural Chinese adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13081-8. [PMID: 33650053 DOI: 10.1007/s11356-021-13081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Although solid-fuel use or smoking is associated with obesity measured by body mass index (BMI), research on their interactive effects on general and central obesity is limited. Data of 20,140 individuals in the Henan Rural Cohort Study was examined the independent and combined associations of solid-fuel use and smoking with prevalent obesity, which was measured by BMI, waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), body fat percentage (BFP), and visceral fat index (VFI). Multiple adjusted logistic regression models showed that the OR (95% CI) of prevalent obesity measured by BMI associated with exposure to solid fuels alone or with smoking was 0.78 (0.70, 0.86) or 0.46 (0.32, 0.66), compared with neither smoking nor solid-fuel exposure. Similar results had been found in other obese anthropometric indices and in the results of linear regression analysis. The results indicated that solid-fuel use and smoking have a synergistic effect on reduction in obesity indices. The effects of household air pollution from solid-fuel use and smoking on obesity should be considered when exploring the influencing factors of obesity.
Collapse
Affiliation(s)
- Mingming Pan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jianjun Gu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hao Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Songcheng Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|