1
|
Lu Y, Yan M, Hoque S, Tapia IE, Ma N. Towards healthy sleep environments: Ambient, indoor, and personal exposure to PM 2.5 and its implications in children's sleep health. ENVIRONMENTAL RESEARCH 2025; 269:120860. [PMID: 39818351 DOI: 10.1016/j.envres.2025.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The growing impact of climate change and escalating wildfire seasons has led to heightened ambient air pollution, potentially affecting children's sleep health. However, current epidemiological research often relies on outdoor weather data to model the environmental impacts on sleep health, potentially mischaracterizing the actual bedroom environment. To address these challenges, we conducted experiments to investigate the relationships among ambient, indoor, and personal exposure to PM2.5 concentrations and obstructive sleep apnea (OSA) in children. We employed computational fluid dynamics (CFD) simulations to assess how personal exposures are influenced by factors such as air distribution design, supply air temperature (Tsa), body shape, and sleep position. Our statistical analysis revealed notable associations between OSA severity as measured by obstructive apnea-hypopnea index (OAHI) and indoor PM2.5 concentrations (β: 11.52; 95% CI: 5.07 to 17.96; p < 0.01) and personal PM2.5 exposures (β: 18.92; 95% CI: 9.80 to 28.04; p < 0.001), with personal exposure demonstrating a stronger relationship. Our findings highlighted the critical role of Tsa and body shape in exacerbating personal exposure, as they could modify the bedding microenvironment around children's breathing zone during sleep. We assessed the effect of air filtration interventions on mitigating personal PM2.5 exposure and modulating OSA severity in children. Higher air filter efficiencies such as MERV14 or above can modulate severe OSA for more than 80% of the year. However, during wildfire episodes, because air filtration interventions alone may be insufficient, comprehensive strategies, including the potential use of air cleaners and personal protective equipment (PPE), are necessary to ensure children's health. Our research demonstrated that quantifying personal exposure is a more informative predictor than solely relying on ambient or indoor measures for estimating OSA in children.
Collapse
Affiliation(s)
- Yalin Lu
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Ming Yan
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Simi Hoque
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, United States
| | - Ignacio E Tapia
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nan Ma
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States.
| |
Collapse
|
2
|
González Serrano V, Lin EZ, Godri Pollitt KJ, Licina D. Adequacy of stationary measurements as proxies for residential personal exposure to gaseous and particle air pollutants. ENVIRONMENTAL RESEARCH 2023; 231:116197. [PMID: 37224948 DOI: 10.1016/j.envres.2023.116197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
People are exposed to myriad of airborne pollutants in their homes. Owing to diverse potential sources of air pollution and human activity patterns, accurate assessment of residential exposures is complex. In this study, we explored the relationship between personal and stationary air pollutant measurements in residences of 37 participants working from home during the heating season. Stationary environmental monitors (SEMs) were located in the bedroom, living room or home office and personal exposure monitors (PEMs) were worn by the participants. SEMs and PEMs included both real-time sensors and passive samplers. During three consecutive weekdays, continuous data were obtained for particle number concentration (size range 0.3-10 μm), carbon dioxide (CO2), and total volatile organic compounds (TVOC), while passive samplers collected integrated measures of 36 volatile organic compounds (VOCs) and semi volatile organic compounds (SVOCs). The personal cloud effect was detected in >80% of the participants for CO2 and >50% participants for PM10. Multiple linear regression analysis showed that a single CO2 monitor placed in the bedroom efficiently represented personal exposure to CO2 (R2 = 0.90) and moderately so for PM10 (R2 = 0.55). Adding a second or third sensor in a residence did not lead to improved exposure estimates for CO2, with only 6-9% improvement for particles. Selecting data from SEMs when participants were in the same room improved personal exposure estimates by 33% for CO2 and 5% for particles. Out of 36 detected VOCs and SVOCs, 13 had at least 50% higher concentrations in personal versus stationary samples. Findings from this study aid improved understanding of the complex dynamics of gaseous and particle pollutants and their sources in residences, and could support the development of refined procedures for residential air quality monitoring and inhalation exposure assessment.
Collapse
Affiliation(s)
- Viviana González Serrano
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Elizabeth Z Lin
- Environmental Health Sciences Department, School of Public Health, Yale University, New Haven, USA
| | - Krystal J Godri Pollitt
- Environmental Health Sciences Department, School of Public Health, Yale University, New Haven, USA
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
3
|
Yang S, Muthalagu A, Serrano VG, Licina D. Human personal air pollution clouds in a naturally ventilated office during the COVID-19 pandemic. BUILDING AND ENVIRONMENT 2023; 236:110280. [PMID: 37064616 PMCID: PMC10080864 DOI: 10.1016/j.buildenv.2023.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Personal cloud, termed as the difference in air pollutant concentrations between breathing zone and room sites, represents the bias in approximating personal inhalation exposure that is linked to accuracy of health risk assessment. This study performed a two-week field experiment in a naturally ventilated office during the COVID-19 pandemic to assess occupants' exposure to common air pollutants and to determine factors contributing to the personal cloud effect. During occupied periods, indoor average concentrations of endotoxin (0.09 EU/m3), TVOC (231 μg/m3), CO2 (630 ppm), and PM10 (14 μg/m3) were below the recommended limits, except for formaldehyde (58 μg/m3). Personal exposure concentrations, however, were significantly different from, and mostly higher than, concentrations measured at room stationary sampling sites. Although three participants shared the same office, their personal air pollution clouds were mutually distinct. The mean personal cloud magnitude ranged within 0-0.05 EU/m3, 35-192 μg/m3, 32-120 ppm, and 4-9 μg/m3 for endotoxin, TVOC, CO2, and PM10, respectively, and was independent from room concentrations. The use of hand sanitizer was strongly associated with an elevated personal cloud of endotoxin and alcohol-based VOCs. Reduced occupancy density in the office resulted in more pronounced personal CO2 clouds. The representativeness of room stationary sampling for capturing dynamic personal exposures was as low as 28% and 5% for CO2 and PM10, respectively. The findings of our study highlight the necessity of considering the personal cloud effect when assessing personal exposure in offices.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akila Muthalagu
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Environmental Systems Group, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Viviana González Serrano
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Rohra H, Pipal AS, Satsangi PG, Taneja A. Revisiting the atmospheric particles: Connecting lines and changing paradigms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156676. [PMID: 35700785 DOI: 10.1016/j.scitotenv.2022.156676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Historically, the atmospheric particles constitute the most primitive and recent class of air pollutants. The science of atmospheric particles erupted more than a century ago covering more than four decades of size, with past few years experiencing major advancements on both theoretic and data-based observational grounds. More recently, the plausible recognition between particulate matter (PM) and the diffusion of the COVID-19 pandemic has led to the accretion of interest in particle science. With motivation from diverse particle research interests, this paper is an 'old engineer's survey' beginning with the evolution of atmospheric particles and identifies along the way many of the global instances signaling the 'size concept' of PM. A theme that runs through the narrative is a 'previously known' generational evolution of particle science to the 'newly procured' portfolio of knowledge, with important gains on the application of unmet concepts and future approaches to PM exposure and epidemiological research.
Collapse
Affiliation(s)
- Himanshi Rohra
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Atar Singh Pipal
- Centre for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - P G Satsangi
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Ajay Taneja
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, India.
| |
Collapse
|
5
|
Kvasnicka J, Cohen Hubal EA, Siegel JA, Scott JA, Diamond ML. Modeling Clothing as a Vector for Transporting Airborne Particles and Pathogens across Indoor Microenvironments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5641-5652. [PMID: 35404579 PMCID: PMC9069698 DOI: 10.1021/acs.est.1c08342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Evidence suggests that human exposure to airborne particles and associated contaminants, including respiratory pathogens, can persist beyond a single microenvironment. By accumulating such contaminants from air, clothing may function as a transport vector and source of "secondary exposure". To investigate this function, a novel microenvironmental exposure modeling framework (ABICAM) was developed. This framework was applied to a para-occupational exposure scenario involving the deposition of viable SARS-CoV-2 in respiratory particles (0.5-20 μm) from a primary source onto clothing in a nonhealthcare setting and subsequent resuspension and secondary exposure in a car and home. Variability was assessed through Monte Carlo simulations. The total volume of infectious particles on the occupant's clothing immediately after work was 4800 μm3 (5th-95th percentiles: 870-32 000 μm3). This value was 61% (5-95%: 17-300%) of the occupant's primary inhalation exposure in the workplace while unmasked. By arrival at the occupant's home after a car commute, relatively rapid viral inactivation on cotton clothing had reduced the infectious volume on clothing by 80% (5-95%: 26-99%). Secondary inhalation exposure (after work) was low in the absence of close proximity and physical contact with contaminated clothing. In comparison, the average primary inhalation exposure in the workplace was higher by about 2-3 orders of magnitude. It remains theoretically possible that resuspension and physical contact with contaminated clothing can occasionally transmit SARS-CoV-2 between humans.
Collapse
Affiliation(s)
- Jacob Kvasnicka
- Department
of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Elaine A. Cohen Hubal
- Center
for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Jeffrey A. Siegel
- Department
of Civil and Mineral Engineering, University
of Toronto, Toronto, Ontario M5S 1A4, Canada
- Dalla
Lana School of Public Health, University
of Toronto, Toronto, Ontario M5T 3M7, Canada
| | - James A. Scott
- Dalla
Lana School of Public Health, University
of Toronto, Toronto, Ontario M5T 3M7, Canada
- Department
of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Miriam L. Diamond
- Department
of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
- Dalla
Lana School of Public Health, University
of Toronto, Toronto, Ontario M5T 3M7, Canada
- School of
the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
| |
Collapse
|
6
|
Ghaddar N, Ghali K. Ten questions concerning the paradox of minimizing airborne transmission of infectious aerosols in densely occupied spaces via sustainable ventilation and other strategies in hot and humid climates. BUILDING AND ENVIRONMENT 2022; 214:108901. [PMID: 35197667 PMCID: PMC8853966 DOI: 10.1016/j.buildenv.2022.108901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 05/14/2023]
Abstract
Airborne disease transmission in indoor spaces and resulting cross-contamination has been a topic of broad concern for years - especially recently with the outbreak of COVID-19. Global recommendations on this matter consist of increasing the outdoor air supply in the aim of diluting the indoor air. Nonetheless, a paradoxical relationship has risen between increasing amount of outdoor air and its impact on increased energy consumption - especially densely occupied spaces. The paradox is more critical in hot and humid climates, where large amounts of energy are required for the conditioning of the outdoor air. Therefore, many literature studies investigated new strategies for the mitigation of cross-contamination with little-to-no additional cost of energy. These strategies mainly consist of the dilution and/or the capture and removal of contaminants at the levels of macroenvironment room air and occupant-adjacent microenvironment. On the macroenvironment level, the dilution occurs by the supply of large amounts of outdoor air in a sustainable way using passive cooling systems, and the removal of contaminants happens via filtering. Similarly, the microenvironment of the occupant can be diluted using localized ventilation techniques, and contaminants can be captured and removed by direct exhaust near the source of contamination. Thus, this work answers ten questions that explore the most prevailing technologies from the above-mentioned fronts that are used to mitigate cross-contamination in densely occupied spaces located in hot and humid climates at minimal energy consumption. The paper establishes a basis for future work and insights for new research directives for macro and microenvironment approaches.
Collapse
Affiliation(s)
- Nesreen Ghaddar
- Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Beirut, 1107-2020, Lebanon
| | - Kamel Ghali
- Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Beirut, 1107-2020, Lebanon
| |
Collapse
|
7
|
González Serrano V, Licina D. Longitudinal assessment of personal air pollution clouds in ten home and office environments. INDOOR AIR 2022; 32:e12993. [PMID: 35225383 DOI: 10.1111/ina.12993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Elevated exposure to indoor air pollution is associated with negative human health and well-being outcomes. Inhalation exposure studies commonly rely on stationary monitors in combination with human time-activity patterns; however, this method is susceptible to exposure misclassification. We tracked ten participants during five consecutive workdays with stationary air pollutant monitors at their homes and offices, and wearable personal monitors. Real-time measures of size-resolved particulate matter (within range 0.3-10 μm) and CO2 , and integrated samples of PM10 , VOCs, and aldehydes were collected. The PM10 cloud magnitude (excess of PM10 beyond stationary room concentration) was detected for all participants in homes and offices. The PM10 cloud magnitude ranged within 5-37 μg/m3 and was the most discernible in the coarse particle size fraction. Particles associated with "Urban mix," "Traffic," and "Human activities" sources contributed the most to PM10 exposures. The personal CO2 clouds were detected for participants with the SEMs in their living rooms and private or low-occupancy offices. The stationary monitors placed in bedrooms were better predictors of personal PM10 and CO2 exposures. An overall of 33 VOCs and aldehydes were detected in both microenvironments, with the majority exhibiting high correlation between personal and stationary stations.
Collapse
Affiliation(s)
- Viviana González Serrano
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|