1
|
Moseley B, Archer J, Orton CM, Symons HE, Watson NA, Saccente-Kennedy B, Philip KEJ, Hull JH, Costello D, Calder JD, Shah PL, Bzdek BR, Reid JP. Relationship between Exhaled Aerosol and Carbon Dioxide Emission Across Respiratory Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39138123 PMCID: PMC11360368 DOI: 10.1021/acs.est.4c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Respiratory particles produced during vocalized and nonvocalized activities such as breathing, speaking, and singing serve as a major route for respiratory pathogen transmission. This work reports concomitant measurements of exhaled carbon dioxide volume (VCO2) and minute ventilation (VE), along with exhaled respiratory particles during breathing, exercising, speaking, and singing. Exhaled CO2 and VE measured across healthy adult participants follow a similar trend to particle number concentration during the nonvocalized exercise activities (breathing at rest, vigorous exercise, and very vigorous exercise). Exhaled CO2 is strongly correlated with mean particle number (r = 0.81) and mass (r = 0.84) emission rates for the nonvocalized exercise activities. However, exhaled CO2 is poorly correlated with mean particle number (r = 0.34) and mass (r = 0.12) emission rates during activities requiring vocalization. These results demonstrate that in most real-world environments vocalization loudness is the main factor controlling respiratory particle emission and exhaled CO2 is a poor surrogate measure for estimating particle emission during vocalization. Although measurements of indoor CO2 concentrations provide valuable information about room ventilation, such measurements are poor indicators of respiratory particle concentrations and may significantly underestimate respiratory particle concentrations and disease transmission risk.
Collapse
Affiliation(s)
- Benjamin Moseley
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
| | - Justice Archer
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Christopher M. Orton
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
- Department
of Respiratory Medicine, Chelsea & Westminster
Hospital, London SW10 9NH, U.K.
- National
Heart and Lung Institute, Guy Scadding Building,
Imperial College London, London SW3 6LY, U.K.
| | - Henry E. Symons
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Natalie A. Watson
- Department
of Ear, Nose and Throat Surgery, Guy’s
& St. Thomas NHS Foundation Trust, London SE1 9RT, U.K.
| | - Brian Saccente-Kennedy
- Department
of Speech and Language Therapy (ENT), Royal National Ear, Nose and
Throat and Eastman Dental Hospitals, University
College London Hospitals NHS Foundation Trust, London WC1E 6DG, U.K.
| | - Keir E. J. Philip
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
- National
Heart and Lung Institute, Guy Scadding Building,
Imperial College London, London SW3 6LY, U.K.
| | - James H. Hull
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
- Institute
of Sport, Exercise and Health (ISEH), UCL, London W1T 7HA, U.K.
| | - Declan Costello
- Ear,
Nose and Throat Department, Wexham Park
Hospital, Slough SL2 4HL, U.K.
| | - James D. Calder
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Fortius Clinic, London W1H 6EQ, U.K.
| | - Pallav L. Shah
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
- Department
of Respiratory Medicine, Chelsea & Westminster
Hospital, London SW10 9NH, U.K.
- National
Heart and Lung Institute, Guy Scadding Building,
Imperial College London, London SW3 6LY, U.K.
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Jonathan P. Reid
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
2
|
Link MF, Robertson RL, Shore A, Hamadani BH, Cecelski CE, Poppendieck DG. Ozone generation and chemistry from 222 nm germicidal ultraviolet light in a fragrant restroom. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1090-1106. [PMID: 38787731 PMCID: PMC11421862 DOI: 10.1039/d4em00144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Devices using 222 nm germicidal ultraviolet light (GUV222) have been marketed to reduce virus transmission indoors with low risk of occupant harm from direct UV exposure. GUV222 generates ozone, an indoor air pollutant and oxidant, under constrained laboratory conditions, but the chemistry byproducts of GUV222-generated ozone in real indoor spaces is uncharacterized. We deployed GUV222 in a public restroom, with an air change rate of 1 h-1 one weekend and 2 h-1 the next, to measure ozone formation and byproducts generated from ozone chemistry indoors. Ozone from GUV222 increased background concentrations by 5 ppb on average for both weekends and reacted rapidly (e.g., at rates of 3.7 h-1 for the first weekend and 2.0 h-1 for the second) with gas-phase precursors emitted by urinal screens and on surfaces. These ozone reactions generated volatile organic compound and aerosol byproducts (e.g., up to 2.6 μg m-3 of aerosol mass). We find that GUV222 is enhancing indoor chemistry by at least a factor of two for this restroom. The extent of this enhanced chemistry will likely be different for different indoor spaces and is dependent upon ventilation rates, species and concentrations of precursor VOCs, and surface reactivity. Informed by our measurements of ozone reactivity and background aerosol concentrations, we present a framework for predicting aerosol byproduct formation from GUV222 that can be extended to other indoor spaces. Further research is needed to understand how typical uses of GUV222 could impact air quality in chemically diverse indoor spaces and generate indoor air chemistry byproducts that can affect human health.
Collapse
Affiliation(s)
- Michael F Link
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Rileigh L Robertson
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Andrew Shore
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Behrang H Hamadani
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | | | | |
Collapse
|
3
|
Ackermann A, Weihrauch D, Wiesmüller GA, Hurraß J. [From the practice of monitoring SARS-CoV-2 test sites in the city of Cologne]. DAS GESUNDHEITSWESEN 2024; 86:28-36. [PMID: 37852277 PMCID: PMC11248172 DOI: 10.1055/a-2144-5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In spring 2021, a law for the nationwide opening of test centers in Germany was passed. The local health department fulfilled the task of monitoring the test centers that subsequently opened throughout Cologne regarding the infectious and hygienic risks. Inspections were carried out using structured checklists. A retrospect evaluation of the identified deficiencies was run for the period between March 15 and July 31, 2021. In 84% of the cases, hygienic deficiencies were found when the test sites were inspected for the first time. 35% of the test sites were closed immediately, most of them temporarily. These first results provide information on frequent and important hygienic problems of the rapid set up of test sites and important advice for avoiding those and thus protecting employees and test persons.
Collapse
Affiliation(s)
| | | | - Gerhard A Wiesmüller
- Institut für Arbeits-, Sozial- und Umweltmedizin, Uniklinik RWTH Aachen, Aachen, Germany
- Zentrum für Umwelt, Hygiene und Mykologie Köln GmbH, ZfMK Köln, Köln, Germany
| | | |
Collapse
|
4
|
Hoffman SA, Maldonado YA. Emerging and re-emerging pediatric viral diseases: a continuing global challenge. Pediatr Res 2024; 95:480-487. [PMID: 37940663 PMCID: PMC10837080 DOI: 10.1038/s41390-023-02878-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The twenty-first century has been marked by a surge in viral epidemics and pandemics, highlighting the global health challenge posed by emerging and re-emerging pediatric viral diseases. This review article explores the complex dynamics contributing to this challenge, including climate change, globalization, socio-economic interconnectedness, geopolitical tensions, vaccine hesitancy, misinformation, and disparities in access to healthcare resources. Understanding the interactions between the environment, socioeconomics, and health is crucial for effectively addressing current and future outbreaks. This scoping review focuses on emerging and re-emerging viral infectious diseases, with an emphasis on pediatric vulnerability. It highlights the urgent need for prevention, preparedness, and response efforts, particularly in resource-limited communities disproportionately affected by climate change and spillover events. Adopting a One Health/Planetary Health approach, which integrates human, animal, and ecosystem health, can enhance equity and resilience in global communities. IMPACT: We provide a scoping review of emerging and re-emerging viral threats to global pediatric populations This review provides an update on current pediatric viral threats in the context of the COVID-19 pandemic This review aims to sensitize clinicians, epidemiologists, public health practitioners, and policy stakeholders/decision-makers to the role these viral diseases have in persistent pediatric morbidity and mortality.
Collapse
Affiliation(s)
- Seth A Hoffman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yvonne A Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Ratliff KM, Oudejans L, Archer J, Calfee W, Gilberry JU, Hook DA, Schoppman WE, Yaga RW, Brooks L, Ryan S. Impact of test methodology on the efficacy of triethylene glycol (Grignard Pure) against bacteriophage MS2. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2023; 57:1178-1185. [PMID: 38268721 PMCID: PMC10805242 DOI: 10.1080/02786826.2023.2262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 01/26/2024]
Abstract
The COVID-19 pandemic has raised interest in using chemical air treatments as part of a strategy to reduce the risk of disease transmission, but more information is needed to characterize their efficacy at scales translatable to applied settings and to develop standardized test methods for characterizing the performance of these products. Grignard Pure, a triethylene glycol (TEG) active ingredient air treatment, was evaluated using two different test protocols in a large bioaerosol test chamber and observed to inactivate bacteriophage MS2 in air (up to 99.9% at 90 min) and on surfaces (up to 99% at 90 min) at a concentration of approximately 1.2 - 1.5 mg/m3. Introducing bioaerosol into a TEG-charged chamber led to overall greater reductions compared to when TEG was introduced into a bioaerosol-charged chamber, although the differences in efficacy against airborne MS2 were only significant in the first 15 min. Time-matched control conditions (no TEG present) and replicate tests for each condition were essential for characterizing treatment efficacy. These findings suggest that chemical air treatments could be effective in reducing the air and surface concentrations of infectious pathogens in occupied spaces, although standard methods are needed for evaluating their efficacy and comparing results across studies. The potential health impacts of chronic exposure to chemicals should also be considered, but those were not evaluated here.
Collapse
Affiliation(s)
- Katherine M. Ratliff
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Lukas Oudejans
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - John Archer
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Worth Calfee
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | - David Adam Hook
- Jacobs Technology Inc, Research Triangle Park, North Carolina, USA
| | | | - Robert W. Yaga
- Jacobs Technology Inc, Research Triangle Park, North Carolina, USA
| | - Lance Brooks
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shawn Ryan
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
6
|
Castellini JE, Faulkner CA, Zuo W, Sohn MD. Quantifying spatiotemporal variability in occupant exposure to an indoor airborne contaminant with an uncertain source location. BUILDING SIMULATION 2023; 16:889-913. [PMID: 37192915 PMCID: PMC9986047 DOI: 10.1007/s12273-022-0971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 05/18/2023]
Abstract
Well-mixed zone models are often employed to compute indoor air quality and occupant exposures. While effective, a potential downside to assuming instantaneous, perfect mixing is underpredicting exposures to high intermittent concentrations within a room. When such cases are of concern, more spatially resolved models, like computational-fluid dynamics methods, are used for some or all of the zones. But, these models have higher computational costs and require more input information. A preferred compromise would be to continue with a multi-zone modeling approach for all rooms, but with a better assessment of the spatial variability within a room. To do so, we present a quantitative method for estimating a room's spatiotemporal variability, based on influential room parameters. Our proposed method disaggregates variability into the variability in a room's average concentration, and the spatial variability within the room relative to that average. This enables a detailed assessment of how variability in particular room parameters impacts the uncertain occupant exposures. To demonstrate the utility of this method, we simulate contaminant dispersion for a variety of possible source locations. We compute breathing-zone exposure during the releasing (source is active) and decaying (source is removed) periods. Using CFD methods, we found after a 30 minutes release the average standard deviation in the spatial distribution of exposure was approximately 28% of the source average exposure, whereas variability in the different average exposures was lower, only 10% of the total average. We also find that although uncertainty in the source location leads to variability in the average magnitude of transient exposure, it does not have a particularly large influence on the spatial distribution during the decaying period, or on the average contaminant removal rate. By systematically characterizing a room's average concentration, its variability, and the spatial variability within the room important insights can be gained as to how much uncertainty is introduced into occupant exposure predictions by assuming a uniform in-room contaminant concentration. We discuss how the results of these characterizations can improve our understanding of the uncertainty in occupant exposures relative to well-mixed models.
Collapse
Affiliation(s)
- John E. Castellini
- Department of Mechanical Engineering, University of Colorado Boulder, UCB 427, Boulder, CO 80309 USA
| | - Cary A. Faulkner
- Department of Mechanical Engineering, University of Colorado Boulder, UCB 427, Boulder, CO 80309 USA
| | - Wangda Zuo
- Department Architectural Engineering, The Pennsylvania State University, University Park, PA 16802 USA
- National Renewable Energy National Laboratory, Golden, CO 80401 USA
| | - Michael D. Sohn
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
| |
Collapse
|
7
|
Sun Y, Koo JR, Park M, Yi H, Dickens BL, Cook AR. Use of Bluetooth contact tracing technology to model COVID-19 quarantine policies in high-risk closed populations. Digit Health 2023; 9:20552076231178418. [PMID: 37312947 PMCID: PMC10259105 DOI: 10.1177/20552076231178418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Containment measures in high-risk closed settings, like migrant worker (MW) dormitories, are critical for mitigating emerging infectious disease outbreaks and protecting potentially vulnerable populations in outbreaks such as coronavirus disease 2019 (COVID-19). The direct impact of social distancing measures can be assessed through wearable contact tracing devices. Here, we developed an individual-based model using data collected through a Bluetooth wearable device that collected 33.6M and 52.8M contact events in two dormitories in Singapore, one apartment style and the other a barrack style, to assess the impact of measures to reduce the social contact of cases and their contacts. The simulation of highly detailed contact networks accounts for different infrastructural levels, including room, floor, block, and dormitory, and intensity in terms of being regular or transient. Via a branching process model, we then simulated outbreaks that matched the prevalence during the COVID-19 outbreak in the two dormitories and explored alternative scenarios for control. We found that strict isolation of all cases and quarantine of all contacts would lead to very low prevalence but that quarantining only regular contacts would lead to only marginally higher prevalence but substantially fewer total man-hours lost in quarantine. Reducing the density of contacts by 30% through the construction of additional dormitories was modelled to reduce the prevalence by 14 and 9% under smaller and larger outbreaks, respectively. Wearable contact tracing devices may be used not just for contact tracing efforts but also to inform alternative containment measures in high-risk closed settings.
Collapse
Affiliation(s)
| | | | - Minah Park
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Huso Yi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Borame L Dickens
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Bueno de Mesquita J. Airborne Transmission and Control of Influenza and Other Respiratory Pathogens. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite uncertainty about the specific transmission risk posed by airborne, spray-borne, and contact modes for influenza, SARS-CoV-2, and other respiratory viruses, there is evidence that airborne transmission via inhalation is important and often predominates. An early study of influenza transmission via airborne challenge quantified infectious doses as low as one influenza virion leading to illness characterized by cough and sore throat. Other studies that challenged via intranasal mucosal exposure observed high doses required for similarly symptomatic respiratory illnesses. Analysis of the Evaluating Modes of Influenza Transmission (EMIT) influenza human-challenge transmission trial—of 52 H3N2 inoculated viral donors and 75 sero-susceptible exposed individuals—quantifies airborne transmission and provides context and insight into methodology related to airborne transmission. Advances in aerosol sampling and epidemiologic studies examining the role of masking, and engineering-based air hygiene strategies provide a foundation for understanding risk and directions for new work.
Collapse
|
9
|
Zhang Y, Hui FKP, Duffield C, Saeed AM. A review of facilities management interventions to mitigate respiratory infections in existing buildings. BUILDING AND ENVIRONMENT 2022; 221:109347. [PMID: 35782231 PMCID: PMC9238148 DOI: 10.1016/j.buildenv.2022.109347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/01/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The Covid-19 pandemic reveals that the hazard of the respiratory virus was a secondary consideration in the design, development, construction, and management of public and commercial buildings. Retrofitting such buildings poses a significant challenge for building owners and facilities managers. This article reviews current research and practices in building operations interventions for indoor respiratory infection control from the perspective of facilities managers to assess the effectiveness of available solutions. This review systematically selects and synthesises eighty-six articles identified through the PRISMA process plus supplementary articles identified as part of the review process, that deal with facilities' operations and maintenance (O&M) interventions. The paper reviewed the context, interventions, mechanisms, and outcomes discussed in these articles, concluding that interventions for respiratory virus transmission in existing buildings fall into three categories under the Facilities Management (FM) discipline: Hard services (HVAC and drainage system controls) to prevent aerosol transmissions, Soft Services (cleaning and disinfection) to prevent fomite transmissions, and space management (space planning and occupancy controls) to eliminate droplet transmissions. Additionally, the research emphasised the need for FM intervention studies that examine occupant behaviours with integrated intervention results and guide FM intervention decision-making. This review expands the knowledge of FM for infection control and highlights future research opportunities.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Infrastructure Engineering, University of Melbourne, Level 6, Building 290, 700 Swanston Street, Carlton, Victoria, Australia
| | - Felix Kin Peng Hui
- Department of Infrastructure Engineering, University of Melbourne, Australia
| | - Colin Duffield
- Department of Infrastructure Engineering, University of Melbourne, Australia
| | - Ali Mohammed Saeed
- Department of Jobs, Regions and Precincts, Level 13, 1 Spring Street, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Persily A. Development and application of an indoor carbon dioxide metric. INDOOR AIR 2022; 32:e13059. [PMID: 35904382 DOI: 10.1111/ina.13059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Indoor carbon dioxide (CO2 ) concentrations have been considered for decades in evaluating indoor air quality (IAQ) and ventilation, and more recently in discussions of the risk of airborne infectious disease transmission. However, many of these applications reflect a lack of understanding of the connection between indoor CO2 levels, ventilation, and IAQ. For example, a single indoor concentration such as 1000 ppmv is often used as a metric of IAQ and ventilation without an understanding of the significance of this or any other value. CO2 concentrations are of limited value as IAQ metrics, and a single concentration will not serve as a ventilation indicator for spaces with different occupancies and ventilation requirements. An approach has been developed to estimate a space-specific CO2 level that can serve as a metric of outdoor ventilation rates. The concept is to estimate the CO2 concentration that would be expected in a specific space given its intended or expected ventilation rate, the number of occupants, the rate at which they generate CO2 , and the time that has transpired since the space was occupied. This paper describes the approach and presents example calculations for several commercial, institutional, and residential occupancies.
Collapse
Affiliation(s)
- Andrew Persily
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
11
|
de la Hoz‐Torres ML, Aguilar AJ, Costa N, Arezes P, Ruiz DP, Martínez‐Aires MD. Reopening higher education buildings in post-epidemic COVID-19 scenario: monitoring and assessment of indoor environmental quality after implementing ventilation protocols in Spain and Portugal. INDOOR AIR 2022; 32:e13040. [PMID: 35622718 PMCID: PMC9325358 DOI: 10.1111/ina.13040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 05/27/2023]
Abstract
Post-epidemic protocols have been implemented in public buildings to keep indoor environments safe. However, indoor environmental conditions are affected by this decision, which also affect the occupants of buildings. This fact has major implications in educational buildings, where the satisfaction and learning performance of students may also be affected. This study investigates the impact of post-epidemic protocols on indoor environmental conditions in higher education buildings of one Portuguese and one Spanish university. A sensor monitoring campaign combined with a simultaneous questionnaire was conducted during the reopening of the educational buildings. Results showed that although renewal air protocols were effective and the mean CO2 concentration levels remained low (742 ppm and 519 ppm in Portugal and Spain universities, respectively), students were dissatisfied with the current indoor environmental conditions. Significant differences were also found between the responses of Portuguese and Spanish students. Indeed, Spanish students showed warmer preferences (thermal neutrality = 23.3℃) than Portuguese students (thermal neutrality = 20.7℃). In terms of involved indoor factors, the obtained data showed significant correlations (p < 0.001) between acoustic factors and overall satisfaction in the Portuguese students (ρ = 0.540) and between thermal factors and overall satisfaction in the Spanish students (ρ = 0.522). Therefore, indoor environmental conditions should be improved by keeping spaces safe while minimizing the impact of post-epidemic protocols on student learning performance.
Collapse
Affiliation(s)
| | | | - Nélson Costa
- ALGORITMI Research CenterSchool of EngineeringUniversity of MinhoGuimarãesPortugal
| | - Pedro Arezes
- ALGORITMI Research CenterSchool of EngineeringUniversity of MinhoGuimarãesPortugal
| | - Diego P. Ruiz
- Department of Applied PhysicsUniversity of GranadaGranadaSpain
| | | |
Collapse
|