Liu X, Xu L, Zheng J, Lin J, Li X, Liu L, Tian R, Mu C. Great Gerbils (
Rhombomys opimus) in Central Asia Are Spreading to Higher Latitudes and Altitudes.
Ecol Evol 2024;
14:e70517. [PMID:
39530029 PMCID:
PMC11554374 DOI:
10.1002/ece3.70517]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The great gerbil (Rhombomys opimus) is a gregarious rodent in Central Asia and is one of the major pests found in desert forest and grassland areas. The distribution changes and migration routes of R. opimus in Central Asia under climate change remain unexplored. This study employed multi-model ensemble, correlation analysis, jackknife method, and minimum cumulative resistance (MCR) model to simulate the potential habitat of R. opimus under current and future (2030 and 2050) climate scenarios and estimate its possible migration routes. The results indicate that the ensemble model integrating Random Forest (RF), Gradient Boosting Machine (GBM), and Maximum Entropy Model (MaxEnt) performed best within the present climate context. The model predicted the potential distribution of R. opimus in Central Asia with an area under the curve (AUC) of 0.986 and a True Skill Statistic (TSS) of 0.899, demonstrating excellent statistical accuracy and spatial performance. Under future climate scenarios, northern Xinjiang and southeastern Kazakhstan will remain the core areas of R. opimus distribution. However, the optimal habitat region will expand relative to the current one. This expansion will increase with the rising CO2 emission levels and over time, potentially enlarging the suitable area by up to 39.49 × 104 km2. In terms of spatial distribution, the suitable habitat for R. opimus is shifting toward higher latitudes and elevations. For specific migration routes, R. opimus tends to favor paths through farmland and grassland. This study can provide guidance for managing and controlling R. opimus under future climate change scenarios.
Collapse