1
|
Xu X, Wang C, Wang P, Chu Y, Guo J, Bo X, Lin A. Bioaerosol dispersion and environmental risk simulation: Method and a case study for a biopharmaceutical plant of Gansu province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160506. [PMID: 36442625 PMCID: PMC9691505 DOI: 10.1016/j.scitotenv.2022.160506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/04/2023]
Abstract
Pathogenic bacteria pose a great threat to global public health from environmental and public health perspectives, especially regarding the impact of the COVID-19 pandemic worldwide. As a result, the increased risk of pathogenic bioaerosol exposure imposes a considerable health burden and raises specific concerns about the layout and location of vaccine manufacturers. This study proposed a grid computing method based on the CALPUFF modelling system and population-based environmental risks to reduce bioaerosol-related potential risks. We previously used the CALPUFF model to quantify the diffusion level, the spatial distribution of emissions, and potential environmental risks of bioaerosol leakage in Gansu province's Zhongmu Lanzhou biopharmaceutical plant from July 24, 2019, to August 20, 2019. By combining it with publicly available test data, the credibility was confirmed. Based on our previous research, the CALPUFF model application combined with the environmental population-based environmental risks in two scenarios: the layout and site selection, was explored by using the leakage accident of Zhongmu Lanzhou biopharmaceutical plant of Gansu province as a case study. Our results showed that the site selection method of scenario 2 coupled with the buffer area was more reasonable than scenario 1, and the final layout site selection point of scenario 2 was grid 157 as the optimal layout point. The simulation results demonstrated agreement with the actual survey. Our findings could assist global bioaerosol manufacturers in developing appropriate layout and site selection strategies to reduce bioaerosol-related potential environmental risks.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengxin Wang
- School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Peng Wang
- 3Clear Technology Co., Ltd, Beijing 100029, China
| | - Yinghao Chu
- School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jing Guo
- School of Economics and Management, Beihang University, Beijing 100191, China
| | - Xin Bo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022; 14:975. [PMID: 35632717 PMCID: PMC9143368 DOI: 10.3390/v14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for efficient vaccine platforms that can rapidly be developed and manufactured on a large scale to immunize the population against emerging viruses. Viral-vectored vaccines are prominent vaccine platforms that have been approved for use against the Ebola virus and SARS-CoV-2. The Newcastle Disease Virus is a promising viral vector, as an avian paramyxovirus that infects poultry but is safe for use in humans and other animals. NDV has been extensively studied not only as an oncolytic virus but also a vector for human and veterinary vaccines, with currently ongoing clinical trials for use against SARS-CoV-2. However, there is a gap in NDV research when it comes to process development and scalable manufacturing, which are critical for future approved vaccines. In this review, we summarize the advantages of NDV as a viral vector, describe the steps and limitations to generating recombinant NDV constructs, review the advances in human and veterinary vaccine candidates in pre-clinical and clinical tests, and elaborate on production in embryonated chicken eggs and cell culture. Mainly, we discuss the existing data on NDV propagation from a process development perspective and provide prospects for the next steps necessary to potentially achieve large-scale NDV-vectored vaccine manufacturing.
Collapse
Affiliation(s)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
3
|
Delgadillo-Gutiérrez K, Castelán-Vega JA, Jiménez-Alberto A, Fernández-Lizárraga MDC, Aparicio-Ozores G, Monterrubio-López GP, Ribas-Aparicio RM. Characterization and use in neutralization assays of avian influenza codon-optimized H5 and H7 retroviral pseudotypes. J Virol Methods 2021; 300:114391. [PMID: 34890710 DOI: 10.1016/j.jviromet.2021.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/12/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Influenza is a relevant problem for public and animal health, with a significant economic impact. In recent years, outbreaks of avian influenza virus have resulted in devastating losses in the poultry industry worldwide, and although its transmission to humans is very rare, there is always a potential risk for an even more severe outbreak. Currently, vaccination is considered the most effective tool for the control and prevention of influenza infections in both humans and animals. The maintenance of animal welfare and the successful implementation of animal health programs depend on the timely administration of vaccines, which must comply with quality specifications indicated by health authorities; for example, the capability to ensure a minimum antibody titer. The production of viral antigens used in these tests can pose a biosafety risk, and some viral strains can be difficult to grow. Therefore, new biotechnological alternatives are required to overcome these disadvantages. In this study, we produced pseudotypes carrying H5 and H7 hemagglutinins from lowly and highly pathogenic avian influenza viruses. These pseudotypes were used in neutralization assays to detect neutralizing antibodies in avian sera, which were confirmed positive by inhibition of the hemagglutination test. Our results showed that the pseudotype neutralization assay is a viable alternative for the detection of neutralizing antibodies, by demonstrating subtype specificity and requiring reduced biosafety requirements. Therefore, it represents a versatile platform that can facilitate technology transfer protocols between laboratories, and an immediate application in serological tools for quality control of veterinary vaccines against avian influenza.
Collapse
Affiliation(s)
- Karen Delgadillo-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Juan Arturo Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Gloria Paulina Monterrubio-López
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
| |
Collapse
|
4
|
Sparrow E, Wood JG, Chadwick C, Newall AT, Torvaldsen S, Moen A, Torelli G. Global production capacity of seasonal and pandemic influenza vaccines in 2019. Vaccine 2021; 39:512-520. [PMID: 33341308 PMCID: PMC7814984 DOI: 10.1016/j.vaccine.2020.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Vaccines will be an important element in mitigating the impact of an influenza pandemic. While research towards developing universal influenza vaccines is ongoing, the current strategy for vaccine supply in a pandemic relies on seasonal influenza vaccine production to be switched over to pandemic vaccines. Understanding how much vaccine could be produced, in which regions of the world and in what timeframe is critical to informing influenza pandemic preparedness. Through the Global Action Plan for Influenza Vaccines, 2006-2016, WHO promoted an increase in vaccine production capacity and monitors the landscape through periodically surveying influenza vaccine manufacturers. This study compares global capacity for production of influenza vaccines in 2019 with estimates from previous surveys; provides an overview of countries with established production facilities; presents vaccine production by type and manufacturing process; and discusses limitations to these estimates. Results of the current survey show that estimated annual seasonal influenza vaccine production capacity changed little since 2015 increasing from 1.47 billion to 1.48 billion doses with potential maximum annual influenza pandemic vaccine production capacity increasing from 6.37 billion to 8.31 billion doses. However, this figure should be interpreted with caution as it presents a best-case scenario with several assumptions which may impact supply. Further, pandemic vaccines would not be immediately available and could take four to six months for first supplies with several more months needed to reach maximum capacity. A moderate-case scenario is also presented of 4.15 billion doses of pandemic vaccine in 12 months. It is important to note that two doses of pandemic vaccine are likely to be required to elicit an adequate immune response. Continued efforts are needed to ensure the sustainability of this production and to conduct research for vaccines that are faster to produce and more broadly protective taking into account lessons learned from COVID-19 vaccine development.
Collapse
Affiliation(s)
- Erin Sparrow
- The World Health Organization, Geneva, Switzerland; School of Public Health and Community Medicine, UNSW Sydney, NSW, Australia.
| | - James G Wood
- School of Public Health and Community Medicine, UNSW Sydney, NSW, Australia
| | - Christopher Chadwick
- The World Health Organization, Geneva, Switzerland; Institute of Global Health, Faculty of Medicine, University of Geneva, Switzerland
| | - Anthony T Newall
- School of Public Health and Community Medicine, UNSW Sydney, NSW, Australia
| | - Siranda Torvaldsen
- School of Public Health and Community Medicine, UNSW Sydney, NSW, Australia; Women and Babies Research, The University of Sydney Northern Clinical School, NSW, Australia
| | - Ann Moen
- The World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
5
|
Chen L, Donis RO, Suarez DL, Wentworth DE, Webby R, Engelhardt OG, Swayne DE. Biosafety risk assessment for production of candidate vaccine viruses to protect humans from zoonotic highly pathogenic avian influenza viruses. Influenza Other Respir Viruses 2020; 14:215-225. [PMID: 31659871 PMCID: PMC7040978 DOI: 10.1111/irv.12698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/01/2022] Open
Abstract
A major lesson learned from the public health response to the 2009 H1N1 pandemic was the need to shorten the vaccine delivery timeline to achieve the best pandemic mitigation results. A gap analysis of previous pre-pandemic vaccine development activities identified possible changes in the Select Agent exclusion process that would maintain safety and shorten the timeline to develop candidate vaccine viruses (CVVs) for use in pandemic vaccine manufacture. Here, we review the biosafety characteristics of CVVs developed in the past 15 years to support a shortened preparedness timeline for A(H5) and A(H7) subtype highly pathogenic avian influenza (HPAI) CVVs. Extensive biosafety experimental evidence supported recent changes in the implementation of Select Agent regulations that eliminated the mandatory chicken pathotype testing requirements and expedited distribution of CVVs to shorten pre-pandemic and pandemic vaccine manufacturing by up to 3 weeks.
Collapse
Affiliation(s)
- Li‐Mei Chen
- Virology, Surveillance, and Diagnosis BranchInfluenza DivisionNational Center for Immunization and Respiratory DiseaseCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
- Present address:
IDT‐BiologikaRockvilleMDUSA
| | - Ruben O. Donis
- Virology, Surveillance, and Diagnosis BranchInfluenza DivisionNational Center for Immunization and Respiratory DiseaseCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
- Present address:
Biomedical Advanced Research and Development AuthorityDepartment of Health and Human ServicesWashingtonDCUSA
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research UnitAgricultural Research ServiceU.S. National Poultry Research CenterU.S. Department of AgricultureAthensGAUSA
| | - David E. Wentworth
- Virology, Surveillance, and Diagnosis BranchInfluenza DivisionNational Center for Immunization and Respiratory DiseaseCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
| | - Richard Webby
- Department of Infectious DiseasesSt Jude Children's Research HospitalMemphisTNUSA
| | - Othmar G. Engelhardt
- Division of VirologyNational Institute for Biological Standards and ControlPotters BarUK
| | - David E. Swayne
- Exotic and Emerging Avian Viral Diseases Research UnitAgricultural Research ServiceU.S. National Poultry Research CenterU.S. Department of AgricultureAthensGAUSA
| |
Collapse
|