1
|
Masalane NS, Bester LA, Ismail A, Essack SY, Mbanga J. Drug resistant Klebsiella pneumoniae from patients and hospital effluent: a correlation? BMC Microbiol 2025; 25:284. [PMID: 40350461 PMCID: PMC12066053 DOI: 10.1186/s12866-025-03987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND The application of wastewater-based epidemiology has gained traction as a cost effective tool in antimicrobial resistance (AMR) surveillance with studies showing a correlation between the presence of resistant bacteria from hospital sewage and patients. This study compared Klebsiella pneumoniae from patients and hospital effluent in terms of antibiotic resistance patterns, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and phylogenomic relationships. RESULTS Pooled effluent samples were collected from the final effluent point of a regional hospital and K. pneumoniae isolates were identified on selective media. Clinical isolates were also collected from the same hospital. Antimicrobial susceptibility testing (AST) was performed using the VITEK® 2 system. DNA was extracted prior to whole genome sequencing (WGS). The resistome, mobilome, and phylogenetic lineages of sequenced isolates were assessed using bioinformatics analysis. A total of 10 randomly selected presumptive and 10 clinical K. pneumoniae constituted the sample and were subjected to AST. Total resistance was observed in the clinical samples to cefuroxime, cefotaxime, piperacillin/tazobactam, gentamicin, tobramycin and trimethoprim/sulfamethoxazole. The effluent isolates exhibited total susceptibility to most antibiotics but showed resistance to amoxicillin/clavulanic acid and piperacillin/tazobactam (100%), and tigecycline (10%). The effluent isolates did not exhibit a diverse resistome, while the clinical isolates harboured genes conferring resistance to aminoglycoside (aph(6)-Id, aph(3'')-Ib, aac(6')-Ib-cr, aadA16), ß-lactam (blaSVH group, blaOXA group, blaTEM group), and fluoroquinolone (oqxA, oqxB) antibiotics. Only class 1 integrons were identified. Phylogenetic analysis revealed that effluent isolates from this study were not closely related to the clinical isolates. CONCLUSION This study showed no correlation between the resistance profiles of the clinical and effluent isolates. The relationship between AMR in hospital effluent and clinical resistance may depend on the antimicrobial agents and bacterial species studied.
Collapse
Affiliation(s)
- Naledi S Masalane
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
- School of Pharmacy, University of Jordan, Amman, Jordan
| | - Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
- Department of Applied Biology and Biochemistry, National University of Science and Technology, AC939, Ascot, Bulawayo, Zimbabwe.
| |
Collapse
|
2
|
Khan Z, Ali Q, Azam S, Khan I, Javed J, Rehman N, Ahmed MM, Uddin J, Khan A, Al-Harrasi A. Current pattern of antibiotic resistance and molecular characterization of virulence genes in Klebsiella pneumoniae obtained from urinary tract infection (UTIs) patients, Peshawar. PLoS One 2025; 20:e0319273. [PMID: 40208900 PMCID: PMC11984708 DOI: 10.1371/journal.pone.0319273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 04/12/2025] Open
Abstract
The current study investigates the prevalence of virulence genes obtained from clinical isolates of multidrug-resistant (MDR) Klebsiella pneumoniae at Khyber Teaching Hospital Peshawar, from October 2021 to January 2023. Upon proper consent, clinical samples of suspected UTIs patients were collected and inoculated on the nutrients agar media, McConkey agar media, and Cysteine Lysine Electrolyte Deficient (CLED) agar media followed by incubation at 37°C for 24 hrs. The phenotypic and genotypic identification were employed for the bacterial isolates. The phenotypic identification includes gram staining followed by the Analytical Profile Index (API 20E). A total of 215 (3.85%) positive isolates were found with the highest prevalence observed among the female patients (4.35%) followed by male (3.26%). The highest prevalence, constituting 52.55% (n = 113), was detected in the age group of 21-40 years, followed by 31.62% (n = 68) in the 41-60 age group. Additionally, 10.23% (n = 22), 3.25% (n = 7), and 2.32% (n = 5) of cases were identified in the age groups of 01-10 years, 11-20 years, and above 60 years, respectively. Among the total positive samples, 44.65% (n = 96) were collected from the Outpatient department (OPD), while inpatient department (IPD) cases contributed 55.35% (n = 119). The antibiotic susceptibility profile of K. pneumoniae showed significant resistance to trimethoprim/Sulfamethoxazole (93%) and Colistin (79.07%). Tigecycline emerged as the most effective antibiotic with a sensitivity rate of 90%, along with Cefepime at the same level. Minimum Inhibitory Concentration (MIC) values indicated higher resistance for CTX, MEM, CN, AK, DO, CIP, and SXT in K. pneumoniae-causing UTIs from KTH, Peshawar. Molecular characterization of virulence genes reveals the highest prevalence of fimH (80%) followed by SAT (65%), papEF (49%), afa (29%), and VAT (16%). The sequencing data of the virulence genes reveals mutations in fimH and papEF, while sat, afa and vat virulence genes showed no mutations. The Chi-square test indicated a significant association between the types of bacteria, supporting our null hypothesis with a significance level of p ≤ 0.05. The current study's finding is to evaluate the rise of antibiotic resistance in hospital settings, which highly demands the focus of health authorities and clinicians to manage the burden of the disease effectively.
Collapse
Affiliation(s)
- Zeeshan Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Qaisar Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sadiq Azam
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ibrar Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Jamila Javed
- Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Noor Rehman
- Department of Pathology, Khyber Teaching Hospital Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mesaik M. Ahmed
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Microbiology, Molecular Microbiology and Infectious Diseases Unit, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
3
|
Tabassum T, Islam A, Andalib KMS, Sarker B, Mia M, Ahmed KS, Hossain H, Habib A. Antibacterial Activity of Ocimum tenuiflorum against Drug Resistant Bacteria Isolated from Raw Beef. J Microbiol Biotechnol 2025; 35:e2409028. [PMID: 40147923 PMCID: PMC11985415 DOI: 10.4014/jmb.2409.09028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 03/29/2025]
Abstract
Recent empirical evidence has acknowledged raw meat, particularly beef, as a significant reservoir for diverse foodborne pathogens and drug-resistant strains, posing severe threat to consumer health. This study aimed to isolate and identify drug-resistant bacteria from raw beef samples, obtained from different butcher shops in Khulna city, Bangladesh, as well as, to determine their susceptibility pattern against Ocimum tenuiflorum extracts. Raw beef samples were randomly collected from various butcher shops, followed by the initial isolation of thirty pure bacterial isolates. Later, 16S rRNA gene amplification and analysis identified twelve distinct bacterial species from those isolates. The antimicrobial susceptibility test results revealed ten of the isolates, including Klebsiella pneumoniae, Aeromonas veronii and Enterobacter hormaechei, to exhibit multidrug resistance pattern. Amoxicillin, nitrofurantoin, and flucloxacillin were found to be ineffective against most isolates. However, the ethanolic extracts of O. tenuiflorum were found effective in inhibiting the growth of eight species at three different concentrations. Subsequent HPLC analysis of O. tenuiflorum reported the presence of five secondary metabolites epicatechin, syringic acid, rutin hydrate, p-coumaric acid, and myricetin as potent contributors to the observed antimicrobial activity. Lastly, in silico binding interaction simulations of the secondary metabolites against five relevant targets predict syringic acid and myricetin to have effective antibacterial properties, primarily mediated by better binding affinity and molecular interactions. Thus, this study identified diverse drug-resistant bacteria in raw beef and provided novel insights into the antibacterial properties of O. tenuiflorum extracts.
Collapse
Affiliation(s)
| | - Anti Islam
- Institute for Integrated Studies on the Sundarbans and Coastal Ecosystems (IISSCE), Khulna University, Bangladesh
| | - K M Salim Andalib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Barnali Sarker
- Pathology and Translational Pathobiology Varsity, LSU Health Shreveport, USA
| | - Mijan Mia
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Khondoker Shahin Ahmed
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Hemayet Hossain
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
4
|
Azra, Khan TA, Ul Haq I, Hinthong W, Campino S, Gohar A, Khan N, Kashif M, Ullah I, Clark TG. Antibiotic Susceptibility Patterns and Virulence Profiles of Classical and Hypervirulent Klebsiella pneumoniae Strains Isolated from Clinical Samples in Khyber Pakhtunkhwa, Pakistan. Pathogens 2025; 14:79. [PMID: 39861040 PMCID: PMC11768992 DOI: 10.3390/pathogens14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The emergence of hypervirulent and carbapenem-resistant hypermucoviscous Klebsiella pneumoniae strains presents a significant public health challenge due to their increased virulence and resistance to multiple antibiotics. This study evaluates the antibiotic susceptibility patterns and virulence profiles of classical and hypervirulent K. pneumoniae strains isolated from various clinical samples. A total of 500 clinical samples were collected from patients at the Mardan Medical Complex and Ayub Medical Complex in KPK between July 2022 and June 2024. Among these, 64 K. pneumoniae strains were isolated and subsequently subjected to antimicrobial susceptibility testing (AST) and phenotypic virulence detection. Among the 64 isolates, 21 (32.8%) exhibited hypermucoviscosity, a characteristic associated with increased pathogenicity. Hemagglutination was observed in 35 (54.1%) of the isolates, indicating the presence of surface adhesins that facilitate bacterial adherence to host tissues. A high prevalence of biofilm formation was noted, with 54 (84%) isolates capable of forming biofilms, which are known to protect bacteria from antibiotics and the host immune response. Most isolates (59/64, 92.1%) were resistant against ampicillin, highlighting its limited efficacy against these strains. Conversely, the lowest resistance was observed for tigecycline, with only 15% (10/64) of the isolates showing resistance, indicating its potential utility as a treatment option. The study also found that 38 (59.3%) of the isolates were extended-spectrum beta-lactamase (ESBL) producers, 42 (65.6%) were multidrug-resistant (MDR), 32 (50%) were extensively drug-resistant (XDR), and 13 (20.3%) were resistant to carbapenems. The genetic study revealed biofilm producer and enhancer genes (mrkD, pgaABCD, fimH, treC, wzc, pilQ, and luxS) mainly in the hypervirulent strains. These hypervirulent strains also show a high number of resistance genes. The findings of this study underscore the critical need for the active surveillance of antimicrobial resistance and virulence determinants in K. pneumoniae. The coexistence of high levels of antibiotic resistance and virulence factors in these isolates poses a severe threat to public health, as it can lead to difficult-to-treat infections and increased morbidity and mortality.
Collapse
Affiliation(s)
- Azra
- Institute of Pathology and Diagnostic Medicines, IPDM, Khyber Medical University Peshawar, Peshawar 25000, Pakistan; (A.); (T.A.K.)
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicines, IPDM, Khyber Medical University Peshawar, Peshawar 25000, Pakistan; (A.); (T.A.K.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Woranich Hinthong
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.H.); (S.C.)
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.H.); (S.C.)
- Faculty of Epidemiology and Population Health, School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Aisha Gohar
- Microbiology Department, Bacha Khan Medical College Mardan, Mardan 23200, Pakistan;
| | - Noman Khan
- Al Rasheed Hospital & Kidney Center, Opposite Gilani Mart, Maneshra Road, Abbottabad 22020, Pakistan;
| | - Muhammad Kashif
- Public Health Reference Laboratory, Khyber Medical University Peshawar, Peshawar 25000, Pakistan
| | - Ihsan Ullah
- Institute of Pathology and Diagnostic Medicines, IPDM, Khyber Medical University Peshawar, Peshawar 25000, Pakistan; (A.); (T.A.K.)
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.H.); (S.C.)
| |
Collapse
|
5
|
Allami M, Mohammed EJ, Alnaji Z, A Jassim S. Antibiotic resistance and its correlation with biofilm formation and virulence genes in Klebsiella pneumoniae isolated from wounds. J Appl Genet 2024; 65:925-935. [PMID: 39031267 DOI: 10.1007/s13353-024-00893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/29/2024] [Accepted: 07/12/2024] [Indexed: 07/22/2024]
Abstract
Klebsiella pneumoniae is the most important species of the Klebsiella genus and often causes hospital infections. These bacteria have a high resistance to most of the available drugs, which has caused concern all over the world. In this study, we investigated the antibiotic resistance profile and the ability to produce extended-spectrum beta-lactamase (ESBL) among K. pneumoniae isolates, and then we investigated the relationship between these two factors with biofilm formation and the prevalence of different virulence genes. In this study, 130 isolates of K. pneumoniae isolated from wounds were investigated. The antibiotic resistance of the isolates was evaluated by the disk diffusion method. The microtiter plate method was used to measure biofilm formation. The prevalence of virulence genes was detected by multiplex PCR. Among the examined isolates, 85.3% showed multidrug resistance. 87.6% of the isolates were ESBL-positive. Imipenem, meropenem, and fosfomycin were the most effective drugs. The ability of the isolates to produce biofilm was strong (80%), moderate (12.3%), and weak (7.6%), respectively. fimH, mrKD, entB, and tolC virulence genes were observed in all isolates. High prevalence of antibiotic resistance (especially multidrug resistance), high prevalence of ESBL-producing isolates, the ability of all isolates to biofilm formation, and the presence of fimH, mrKD, entB, and tolC virulence genes in all isolates show the importance of these factors in the pathogenesis of K. pneumoniae isolates in Iraq.
Collapse
Affiliation(s)
- Mohammed Allami
- Department of Dentistry, Al-Manara College for Medical Sciences, Misan, Iraq.
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Microbiology Laboratory, Qal'at Saleh General Hospital, Misan Health Department, Misan, Iraq.
| | - Eman Jassim Mohammed
- Department of Microbiology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Zainab Alnaji
- College of Pharmacy, University of Misan, Misan, Iraq
| | - Salsabil A Jassim
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
6
|
Afiff U, Hidayat R, Indrawati A, Sunartatie T, Hardiati A, Rotinsulu DA, Arifiantini RI, Naoremisa D, Mar’ah N, Safika S. Antibiotic resistance and virulence profile of Klebsiella pneumoniae isolated from wild Sumatran Orangutans ( Pongo abelii). J Adv Vet Anim Res 2024; 11:1066-1075. [PMID: 40013287 PMCID: PMC11855422 DOI: 10.5455/javar.2024.k858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 02/28/2025] Open
Abstract
Objective Orangutans (Pongo abelii), as endemic primates of Indonesia, are characterized by a predominantly arboreal lifestyle. Klebsiella pneumoniae (K. pneumonia) and other Gram-negative bacteria are present in the Indigenous flora of many mammals, including orangutans. This study aimed to investigate the antibiotic resistance and virulence profile of K. pneumonia isolated from wild Sumatran orangutans. Materials and Methods This study investigated 10 fecal samples from wild Sumatran orangutans from the Gunung Leuser National Park, Aceh, Indonesia. Biochemical and molecular identification of K. pneumoniae using the RNA polymerase subunit b gene and detection of virulence-associated genes. In addition, molecular detection of antibiotic resistance genes was performed to characterize the resistance mechanisms in the isolates. Results K. pneumonia was detected in 6 out of 10 fecal samples from wild Sumatran orangutans. The virulence genes mrkD and entB were detected in all (100%) of the isolates, whereas wabG was identified in 83.33% of the strains. Antibiotic susceptibility testing against K. pneumoniae revealed that three isolates were susceptible to streptomycin (S) and nalidixic acid (NA), while all six isolates were susceptible to chloramphenicol and ciprofloxacin. One isolate demonstrated intermediate resistance to NA, while the remaining two exhibited intermediate resistance to S. Six isolates were resistant to ampicillin, tetracycline, and erythromycin, indicating multidrug resistance. Furthermore, antibiotic resistance genes were detected in the isolates with the following prevalence: bla TEM gene (six isolates; 100%), bla SHV (six isolates; 100%), bla CTX-M gene (four isolates; 66.67%), and tetA gene (four isolates; 66.67%). Conclusion This study revealed the virulence and resistance profile of K. pneumoniae bacterium isolated from wild Sumatran orangutans, which is essential for formulating effective conservation and healthcare strategies.
Collapse
Affiliation(s)
- Usamah Afiff
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Rahmat Hidayat
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Agustin Indrawati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Titiek Sunartatie
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Aprilia Hardiati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Dordia Anindita Rotinsulu
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Raden Iis Arifiantini
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Deandarla Naoremisa
- Student of School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Nurhashunatil Mar’ah
- Faculty of Vocation, Study Program of Veterinary Paramadics, Hasanuddin University, Makassar, Indonesia
| | - Safika Safika
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
7
|
Elkady FM, Badr BM, Alfeky AAE, Abdulrahman MS, Hashem AH, Al-Askar AA, AbdElgayed G, Hashem HR. Genetic Insights on Meropenem Resistance Concerning Klebsiella pneumoniae Clinical Isolates. Life (Basel) 2024; 14:1408. [PMID: 39598206 PMCID: PMC11595234 DOI: 10.3390/life14111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The transferable genetic elements are associated with the dissemination of virulence determinants amongst Klebsiella pneumoniae. Thus, we assessed the correlated antimicrobial resistance in carbapenem-resistant Klebsiella pneumoniae clinical isolates. Each isolate's ability to biosynthesize biofilm, carbapenemase, and extended-spectrum β-lactamase were examined. Genotypically, the biofilm-, outer membrane porin-, and some plasmid-correlated antimicrobial resistance genes were screened. About 50% of the isolates were multidrug-resistant while 98.4% were extended-spectrum β-lactamase producers and 89.3% were carbapenem-resistant. Unfortunately, 93.1% of the multidrug-resistant isolates produced different biofilm levels. Additionally, fimD and mrkD genes encoding adhesins were detected in 100% and 55.2% of the tested isolates, respectively. Also, the blaKPC, blaOXA-48-like, and blaNDM-encoding carbapenemases were observed in 16.1%, 53.6%, and 55.4% of the tested isolates, respectively. Moreover, the blaSHV and blaCTX-M extended-spectrum β-lactamase-associated genes were detected at 95.2% and 61.3%, respectively. Furthermore, aac(3)IIa, qnrB, and tetB resistance-correlated genes were observed in 38.1%, 46%, and 7.9% of the tested isolates, respectively. Certainly, the tested antimicrobial resistance-encoding genes were concurrently observed in 3.2% of the tested isolates. These findings confirmed the elevated prevalence of various antimicrobial resistance-associated genes in Klebsiella pneumoniae. The concurrent transferring of plasmid-encoding antimicrobial resistance-related genes could be associated with the possible acquisition of multidrug-resistant Klebsiella pneumoniae phenotypes.
Collapse
Affiliation(s)
- Fathy M. Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Bahaa M. Badr
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa P.O. Box 132222, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut P.O. Box 71524, Egypt
| | - Abdel-Aty E. Alfeky
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Mohammed S. Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Hany R. Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Al-Fayoum P.O. Box 53514, Egypt
| |
Collapse
|
8
|
Taha ZM. Characterization, Antibiotic Susceptibility, and Clonal Analysis of Carbapenem-Resistant Klebsiella pneumoniae From Different Clinical Cases. Cureus 2024; 16:e71889. [PMID: 39564009 PMCID: PMC11573929 DOI: 10.7759/cureus.71889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Carbapenem-resistant Klebsiella pneumoniae (CRKP) is recognized for its great ability to resist prescription drugs and its association with severe infections in humans. OBJECTIVES This study was designed to evaluate the characteristic resistance spectrum, to characterize the implicated carbapenem-resistant genes (CRGs), and to determine the extent of genetic diversity among Klebsiella pneumoniae isolates from human clinical cases in Duhok province. Methodology: The VITEK-2 system was used to investigate the phenotypic antibiotic susceptibility of 23 K. pneumoniae isolated from distinct human clinical situations, multiplex PCR was used to assign the key common carbapenem-resistant genes (IMP, OXA48-like, bla-NDM, and KPC) in phenotypically carbapenem-resistant isolates, and the Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) assay was utilized to ascertain the clonal associations among those isolates. RESULTS Phenotypic resistance analysis revealed high resistance rates to various antibiotics, with all isolates exhibiting multidrug resistance (MDR). Coronavirus disease 2019 (COVID-19) patient isolates demonstrated significantly higher resistance compared to other sources. In addition, all isolates showed complete phenotypic resistance to carbapenems, PCR screening for CRGs identified blaOXA-48 as the predominant gene, present in all isolates. Genetic fingerprinting revealed diverse genotypes, with COVID-19 patient isolates exhibiting high similarity, contrasting with maximum diversity in non-COVID-19 clinical isolates.
Collapse
Affiliation(s)
- Zanan M Taha
- Pathology and Microbiology, University of Duhok, College of Veterinary Medicine, Duhok, IRQ
| |
Collapse
|
9
|
Niyazi D, Vergiev S, Markovska R, Stoeva T. Prevalence and Molecular Epidemiology of Intestinal Colonization by Multidrug-Resistant Bacteria among Hematopoietic Stem-Cell Transplantation Recipients: A Bulgarian Single-Center Study. Antibiotics (Basel) 2024; 13:920. [PMID: 39452187 PMCID: PMC11504062 DOI: 10.3390/antibiotics13100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Intestinal colonization by multidrug-resistant (MDR) bacteria is considered one of the main risk factors for invasive infections in the hematopoietic stem-cell transplant (HSCT) setting, associated with hard-to-eradicate microorganisms. The aim of this study was to assess the rate of intestinal colonization by MDR bacteria and their microbial spectrum in a group of post-HSCT patients to study the genetic determinants of beta-lactam and glycopeptide resistance in the recovered isolates, as well as to determine the epidemiological relation between them. Methods: The intestinal colonization status of 74 patients admitted to the transplantation center of University Hospital "St. Marina"-Varna in the period January 2019 to December 2021 was investigated. Stool samples/rectal swabs were screened for third-generation cephalosporin and/or carbapenem-resistant Gram-negative bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Stenotrophomonas maltophilia. Identification and antimicrobial susceptibility testing were performed by Phoenix (BD, Sparks, MD, USA) and MALDI Biotyper sirius (Bruker, Bremen, Germany). Molecular genetic methods (PCR, DNA sequencing) were used to study the mechanisms of beta-lactam and glycopeptide resistance in the collected isolates, as well as the epidemiological relationship between them. Results: A total of 28 patients (37.8%) were detected with intestinal colonization by MDR bacteria. Forty-eight non-duplicate MDR bacteria were isolated from their stool samples. Amongst them, the Gram-negative bacteria prevailed (68.8%), dominated by ESBL-producing Escherichia coli (30.3%), and followed by carbapenem-resistant Pseudomonas sp. (24.2%). The Gram-positive bacteria were represented exclusively by Enterococcus faecium (31.2%). The main beta-lactam resistance mechanisms were associated with CTX-M and VIM production. VanA was detected in all vancomycin-resistant enterococci. A clonal relationship was observed among Enterobacter cloacae complex and among E. faecium isolates. Conclusions: To the best of our knowledge, this is the first Bulgarian study that presents detailed information about the prevalence, resistance genetic determinants, and molecular epidemiology of MDR gut-colonizing bacteria in HSCT patients.
Collapse
Affiliation(s)
- Denis Niyazi
- Clinical Microbiology Laboratory, University Hospital “St. Marina”—Varna, 9010 Varna, Bulgaria;
- Department of Microbiology and Virology, Medical University—Varna, 9002 Varna, Bulgaria
| | - Stoyan Vergiev
- Department of Ecology and Environmental Protection, Technical University of Varna, 9010 Varna, Bulgaria;
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical University—Sofia, 1431 Sofia, Bulgaria;
| | - Temenuga Stoeva
- Clinical Microbiology Laboratory, University Hospital “St. Marina”—Varna, 9010 Varna, Bulgaria;
- Department of Microbiology and Virology, Medical University—Varna, 9002 Varna, Bulgaria
| |
Collapse
|
10
|
Beig M, Aghamohammad S, Majidzadeh N, Asforooshani MK, Rezaie N, Abed S, Khiavi EHG, Sholeh M. Antibiotic resistance rates in hypervirulent Klebsiella pneumoniae strains: A systematic review and meta-analysis. J Glob Antimicrob Resist 2024; 38:376-388. [PMID: 39069234 DOI: 10.1016/j.jgar.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES In response to the growing global concerns regarding antibiotic resistance, we conducted a meta-analysis to assess the prevalence of antibiotic resistance in hypervirulent Klebsiella pneumoniae (hvKp) strains. METHODS We conducted a meta-analysis of antibiotic resistance in the hvKp strains. Eligible studies published in English until April 10, 2023, were identified through a systematic search of various databases. After removing duplicates, two authors independently assessed and analysed the relevant publications, and a third author resolved any discrepancies. Data extraction included publication details and key information on antibiotic resistance. Data synthesis employed a random-effects model to account for heterogeneity, and various statistical analyses were conducted using R and the metafor package. RESULTS This meta-analysis of 77 studies from 17 countries revealed the prevalence of antibiotic resistance in hvKp strains. A high resistance rates have been observed against various classes of antibiotics. Ampicillin-sulbactam faced 45.3% resistance, respectively, rendering them largely ineffective. The first-generation cephalosporin cefazolin exhibited a resistance rate of 38.1%, whereas second-generation cefuroxime displayed 26.7% resistance. Third-generation cephalosporins, cefotaxime (65.8%) and ceftazidime (57.1%), and fourth-generation cephalosporins, cefepime (51.3%), showed substantial resistance. The last resort carbapenems, imipenem (45.7%), meropenem (51.0%) and ertapenem (40.6%), were not spared. CONCLUSION This study emphasizes the growing issue of antibiotic resistance in hvKp strains, with notable resistance to both older and newer antibiotics, increasing resistance over time, regional disparities and methodological variations. Effective responses should involve international cooperation, standardized testing and tailored regional interventions.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nahal Majidzadeh
- Departments of Biological and Biomedical Sciences, Cancer Biomedical Center, Tehran, Iran
| | - Mahshid Khazani Asforooshani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | | | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Khan MM, Mushtaq MA, Abbas N, Fatima F, Gibbon MJ, Schierack P, Mohsin M. Occurrence, antimicrobial resistance and genomic features of Klebsiella pneumoniae from broiler chicken in Faisalabad, Pakistan. Front Vet Sci 2024; 11:1433124. [PMID: 39224453 PMCID: PMC11366712 DOI: 10.3389/fvets.2024.1433124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The dissemination of antimicrobial resistance (AMR) in critical priority pathogens is a significant threat. Non-clinical reservoirs of AMR, such as agriculture and food production facilities, may contribute to the transmission of clinically relevant pathogens such as multidrug-resistant (MDR) Klebsiella pneumoniae. There is currently very limited knowledge regarding the population structure and genomic diversity of K. pneumoniae in poultry production in Pakistan. Methods We explored healthy broilers in a commercial farm from Faisalabad, Pakistan, and identified six K. pneumoniae strains from 100 broiler birds. We characterized the strains, determining clonality, virulence and antimicrobial resistance genes using next generation sequencing. Results The evaluation of antimicrobial susceptibility revealed that all the strains were MDR. Genomic analysis showed that 3/6 strains belonged to ST152, harbouring acquired resistance aminoglycosides [aadA2, aph(4')-Ia], β-lactams (blaSHV-187 , blaLAP2 ), fosfomycin (fosA6), tetracycline (tetA), trimethoprim (dfrA12), quinolone (qnrS1), sulphonamides (sul2) and phenicol (floR). All the strains harboured the efflux pump genes oqxA, oqxB, emrR, kpnG, kpnH, kpnF, baeR, mtdB and mtdC. All six strains encoded identical virulence profiles possessing six genes, i.e., ureA, iutA, entB, allS, fimH and mrkD. Phylogenomic analysis of the dominant sequence type (ST152) present in our dataset with publicly available genomes showed that the isolates clustered to strains mainly from human sources and could pose a potential threat to food safety and public health. Discussion The combination of these findings with antimicrobial use data would allow a better understanding of the selective pressures that may be driving the spread of AMR. This is the first report of MDR K. pneumoniae isolated from broiler hens in Pakistan, and the finding suggests that routine surveillance of WHO critical priority pathogens in such settings would be beneficial to the development of effective control strategies to reduce AMR.
Collapse
Affiliation(s)
- Muhammad Moman Khan
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Muhammad Ahmed Mushtaq
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Nayyar Abbas
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Fariha Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Marjorie J. Gibbon
- Department of Life Sciences, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Peter Schierack
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
12
|
Rezaei S, Tajbakhsh S, Naeimi B, Yousefi F. Investigation of gyrA and parC mutations and the prevalence of plasmid-mediated quinolone resistance genes in Klebsiella pneumoniae clinical isolates. BMC Microbiol 2024; 24:265. [PMID: 39026143 PMCID: PMC11256406 DOI: 10.1186/s12866-024-03383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83→ Ile and Asp87→Gly, and double substitutions, Ser83→Phe plus Asp87→Ala, Ser83→Tyr plus Asp87→Ala, Ser83→Ile plus Asp87→Tyr, Ser83→Phe plus Asp87→Asn and Ser83→Ile plus Asp87→Gly were detected. In addition, Ser80→Ile and Glu84→Lys single substitution were found in parC gene. CONCLUSIONS Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.
Collapse
Affiliation(s)
- Sepideh Rezaei
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Tajbakhsh
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behrouz Naeimi
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Forough Yousefi
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
13
|
Lutfi LL, Shaaban MI, Elshaer SL. Vitamin D and vitamin K1 as novel inhibitors of biofilm in Gram-negative bacteria. BMC Microbiol 2024; 24:173. [PMID: 38762474 PMCID: PMC11102130 DOI: 10.1186/s12866-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The persistent surge in antimicrobial resistance represents a global disaster. The initial attachment and maturation of microbial biofilms are intimately related to antimicrobial resistance, which in turn exacerbates the challenge of eradicating bacterial infections. Consequently, there is a pressing need for novel therapies to be employed either independently or as adjuvants to diminish bacterial virulence and pathogenicity. In this context, we propose a novel approach focusing on vitamin D and vitamin K1 as potential antibiofilm agents that target Gram-negative bacteria which are hazardous to human health. RESULTS Out of 130 Gram-negative bacterial isolates, 117 were confirmed to be A. baumannii (21 isolates, 17.9%), K. pneumoniae (40 isolates, 34.2%) and P. aeruginosa (56 isolates, 47.9%). The majority of the isolates were obtained from blood and wound specimens (27.4% each). Most of the isolates exhibited high resistance rates to β-lactams (60.7-100%), ciprofloxacin (62.5-100%), amikacin (53.6-76.2%) and gentamicin (65-71.4%). Approximately 93.2% of the isolates were biofilm producers, with 6.8% categorized as weak, 42.7% as moderate, and 50.4% as strong biofilm producers. The minimum inhibitory concentrations (MICs) of vitamin D and vitamin K1 were 625-1250 µg mL-1 and 2500-5000 µg mL-1, respectively, against A. baumannii (A5, A20 and A21), K. pneumoniae (K25, K27 and K28), and P. aeruginosa (P8, P16, P24 and P27) clinical isolates and standard strains A. baumannii (ATCC 19606 and ATCC 17978), K. pneumoniae (ATCC 51503) and P. aeruginosa PAO1 and PAO14. Both vitamins significantly decreased bacterial attachment and significantly eradicated mature biofilms developed by the selected standard and clinical Gram-negative isolates. The anti-biofilm effects of both supplements were confirmed by a notable decrease in the relative expression of the biofilm-encoding genes cusD, bssS and pelA in A. baumannii A5, K. pneumoniae K28 and P. aeruginosa P16, respectively. CONCLUSION This study highlights the anti-biofilm activity of vitamins D and K1 against the tested Gram-negative strains, which emphasizes the potential of these vitamins for use as adjuvant therapies to increase the efficacy of treatment for infections caused by multidrug-resistant (MDR) strains and biofilm-forming phenotypes. However, further validation through in vivo studies is needed to confirm these promising results.
Collapse
Affiliation(s)
- Lekaa L Lutfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
14
|
Jafari-Sales A, Al-Khafaji NSK, Al-Dahmoshi HOM, Sadeghi Deylamdeh Z, Akrami S, Shariat A, Judi HK, Nasiri R, Bannazadeh Baghi H, Saki M. Occurrence of some common carbapenemase genes in carbapenem-resistant Klebsiella pneumoniae isolates collected from clinical samples in Tabriz, northwestern Iran. BMC Res Notes 2023; 16:311. [PMID: 37924149 PMCID: PMC10623837 DOI: 10.1186/s13104-023-06558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVES This study aimed to evaluate the antibiotic resistance patterns and prevalence of carbapenemase genes in Klebsiella pneumoniae isolates in different clinical samples from Tabriz city, northwestern Iran. RESULTS This cross-sectional study was conducted in the Department of Microbiology, Islamic Azad University, Ahar Branch, Iran, in 2020. K. pneumoniae isolates were collected from different clinical samples, including blood, wounds, sputum, and urine. The isolates were identified using a series of standard bacteriological tests. Antibiotic resistance was determined by the disc diffusion method. The presence of blaVIM, blaNDM, blaKPC, blaOXA, and blaIMP genes were screened by polymerase chain reaction (PCR). A total of 100 non-duplicated K. pneumoniae isolates were collected from 57 urine samples, 27 blood samples, 13 wound samples, and 3 sputum samples. Overall, 70.0% of the samples were from inpatients, while 30.0% were from outpatients. The most resistance rate was related to ampicillin (94.0%), while the lowest resistance rate was related to imipenem (18.0%) and meropenem (20.0%). Overall, 25.0% of the isolates were carbapenem-resistant, of which 13.0% were resistant to both imipenem and meropenem. The PCR showed the total prevalence of 23.0% for carbapenemase genes, including 18.0% for blaKPC, 3.0% for blaVIM, 1.0% for blaIMP, and 1.0% for blaOXA gene. The blaNDM gene was not detected in any isolate. The prevalence of carbapenemase-producing K. pneumoniae isolates was relatively lower in northwestern Iran than in other regions of the country. However, special attention should be paid to the proper use of antibiotics, particularly carbapenems, to prevent further spread of antibiotic resistance and its related genes.
Collapse
Affiliation(s)
- Abolfazl Jafari-Sales
- Department of Microbiology, School of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Noor S K Al-Khafaji
- Department of Biology, College of Science, University of Babylon, Babylon, Hilla City, Iraq
| | | | - Zahra Sadeghi Deylamdeh
- Department of Biology, Faculty of Sciences, Malayer Branch, Islamic Azad University, Malayer, Iran
| | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Afsoon Shariat
- Department of Microbiology, School of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Hawraa K Judi
- Department of Medical Physics, Hilla University College, Babylon, Iraq
| | - Rozita Nasiri
- Iran National Elite Foundation, 93111-14578, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Fatima S, Akbar A, Irfan M, Shafee M, Ali A, Ishaq Z, Raza SK, Samad A, Alshahrani MY, Hassan SS. Virulence Factors and Antimicrobial Resistance of Uropathogenic Escherichia coli EQ101 UPEC Isolated from UTI Patient in Quetta, Balochistan, Pakistan. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7278070. [PMID: 37727279 PMCID: PMC10506881 DOI: 10.1155/2023/7278070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/31/2023] [Accepted: 07/11/2023] [Indexed: 09/21/2023]
Abstract
Infectious diseases have been tremendously increasing as the organisms of even normal flora become opportunistic and cause an infection, and Escherichia coli (E. coli EQ101) is one of them. Urinary tract infections are caused by various microorganisms, but Escherichia coli is the primary cause of almost 70%-90% of all UTIs. It has multiple strains, possessing diverse virulence factors, contributing to its pathogenicity. Furthermore, these virulent strains also can cause overlapping pathogenesis by sharing resistance and virulence factors among each other. The current study is aimed at analyzing the genetic variants associated with multi-drug-resistant (MDR) E. coli using the whole genome sequencing platform. The study includes 100 uropathogenic Escherichia coli (UPEC) microorganisms obtained from urine samples out of which 44% were multi-drug-resistant (MDR) E. coli. Bacteria have been isolated and antimicrobial susceptibility test (AST) was determined by disk diffusion method on the Mueller-Hinton agar plate as recommended by the Clinical and Laboratory Standards Institute (CLSI) 2020, and one isolate has been selected which shows resistance to most of the antibiotics, and that isolate has been analyzed by whole genome sequencing (WGS), accompanied by data and phylogenetic analysis, respectively. Organisms were showing resistance against ampicillin (10 μg), cefixime (5 μg), ceftriaxone (30 μg), nalidixic acid (30 μg), ciprofloxacin (5 μg), and ofloxacin (5 μg) on antimicrobial susceptibility test. WGS were done on selected isolate which identified 25 virulence genes (air, astA, chuA, fyuA, gad, hra, iha, irp2, iss, iucC, iutA, kpsE, kpsMII_K1, lpfA, mchF, ompT, papA_F43, sat, senB, sitA, terC, traT, usp, vat, and yfcV) and seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Among resistance genes, seven genes (TolC, emrR, evgA, qacEdelta1, H-NS, cpxA, and mdtM) were identified to be involved in antibiotic efflux, three AMR genes (aadA5, mphA, and CTX-M-15) were involved in antibiotic inactivation, and two genes (sul1 and dfrA14) were found to be involved in antibiotic drug replacement. Our data identified antibiotic resistance and virulence genes of the isolate. We suggest further research work to establish region-based resistance profile in comparison with the global resistance pattern.
Collapse
Affiliation(s)
- Sareen Fatima
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, 19120 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Irfan
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Muhammad Shafee
- Center for Advanced Studies in Vaccinology & Biotechnology (CASVAB), University of Balochistan, Quetta, Balochistan, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Zaara Ishaq
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | | | - Abdul Samad
- Center for Advanced Studies in Vaccinology & Biotechnology (CASVAB), University of Balochistan, Quetta, Balochistan, Pakistan
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Syed Shah Hassan
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
16
|
Kao CY, Zhang YZ, Bregente CJB, Kuo PY, Chen PK, Chao JY, Duong TTT, Wang MC, Thuy TTD, Hidrosollo JH, Tsai PF, Li YC, Lin WH. A 24-year longitudinal study of Klebsiella pneumoniae isolated from patients with bacteraemia and urinary tract infections reveals the association between capsular serotypes, antibiotic resistance, and virulence gene distribution. Epidemiol Infect 2023; 151:e155. [PMID: 37675569 PMCID: PMC10548544 DOI: 10.1017/s0950268823001486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023] Open
Abstract
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Zhen Zhang
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Carl Jay Ballena Bregente
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pek Kee Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Yen Chao
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Thuy Duong
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Dieu Thuy
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chi Li
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Davoudabadi S, Goudarzi M, Hashemi A. Detection of Virulence Factors and Antibiotic Resistance among Klebsiella pneumoniae Isolates from Iran. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3624497. [PMID: 36825037 PMCID: PMC9943618 DOI: 10.1155/2023/3624497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The current study assessed the detection of virulence genes and drug resistance among Klebsiella pneumoniae isolates from Iran. During 2018 to 2020, 52 K. pneumoniae isolates were obtained from patients at Iran hospitals. By disk diffusion method, the antimicrobial susceptibility of K. pneumoniae isolates was assessed, and ESBL-producing K. pneumoniae isolates were detected by CDDT method. PCR analysis was done to detect virulence genes (iucB, iutA, iroN, kfu, allS, fimH, ybtS, mrkD, and entB); ESBL-encoding genes (bla TEM, bla PER, bla CTX-M, bla VEB, and bla SHV); and class D (bla OXA-48), class B (bla VIM, bla NDM, and bla IMP), and class A (bla KPC and bla GES) carbapenemase genes. Among all isolates, 84.6%, 13.5%, and 1.9% isolates were multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR), respectively. Also, 84.6% were ESBL-producing and 71.2%, 53.8%, 40.4%, and 9.6% of all isolates were carrying bla TEM, bla SHV, bla CTX-M, and bla OXA-48 genes, respectively. Six isolates (11.5%) were positive for bla NDM gene. In contrast, no isolates were positive for the presence of bla KPC, bla IMP, and bla VIM. Virulence factor genes including iucB, iutA, iroN, kfu, allS, fimH, ybtS, mrkD, and entB were carried by 24%, 46.2%, 25%, 11.5%, 17.3%, 86.5%, 75%, 88.5%, and 100% isolates, respectively. This study evaluated the distribution and prevalence of virulence factor genes among K. pneumoniae isolates. The treatment of these infections is challenging due to the existence of particular virulence factors and the rise of antibiotic resistance. Therefore, the current study accentuates the necessity of finding new and efficient solutions for stopping the increase of antibiotic resistance.
Collapse
Affiliation(s)
- Sara Davoudabadi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Shyaula M, Khadka C, Dawadi P, Banjara MR. Systematic Review and Meta-analysis on Extended-Spectrum β-lactamases Producing Klebsiella pneumoniae in Nepal. Microbiol Insights 2023; 16:11786361221145179. [PMID: 36655025 PMCID: PMC9841864 DOI: 10.1177/11786361221145179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/26/2022] [Indexed: 01/15/2023] Open
Abstract
Objective This systematic review and meta-analysis aimed to assess the pool estimates of extended-spectrum β-lactamases producing K. pneumoniae (ESBL-KP) and study their drug resistance profile by evaluating the studies from Nepal. Methods A literature search was carried out in PubMed, Google Scholar, and NepJOL to screen all articles on ESBL-KP published between 2011 and 2021 from Nepal. This review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Relevant data were extracted, and R language 4.2.0 software was used for statistical analysis. Results The pooled prevalence of K. pneumoniae was 5%, while the pooled prevalence of ESBL and multidrug resistance (MDR) in K. pneumoniae were 23% and 55%, respectively. Imipenem was the drug of choice (in vitro) against ESBL-KP infection. Conclusion Our analyses showed a high prevalence of ESBL-KP and their high resistance toward commonly used drugs. This study highlights the need for the development of new antibiotics for the management of ESBL-KP infections.
Collapse
Affiliation(s)
| | | | - Prabin Dawadi
- Prabin Dawadi, Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, BA 44618, Nepal.
| | | |
Collapse
|
19
|
First Report of Potentially Pathogenic Klebsiella pneumoniae from Serotype K2 in Mollusk Tegillarca granosa and Genetic Diversity of Klebsiella pneumoniae in 14 Species of Edible Aquatic Animals. Foods 2022; 11:foods11244058. [PMID: 36553800 PMCID: PMC9778296 DOI: 10.3390/foods11244058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae can cause serious pneumonitis in humans. The bacterium is also the common causative agent of hospital-acquired multidrug-resistant (MDR) infections. Here we for the first time reported the genetic diversity of K. pneumoniae strains in 14 species of edible aquatic animals sampled in the summer of 2018 and 2019 in Shanghai, China. Virulence-related genes were present in the K. pneumoniae strains (n = 94), including the entB (98.9%), mrkD (85.1%), fimH (50.0%), and ybtA (14.9%) strains. Resistance to sulfamethoxazole-trimethoprim was the most prevalent (52.1%), followed by chloramphenicol (31.9%), and tetracycline (27.7%), among the strains, wherein 34.0% had MDR phenotypes. Meanwhile, most strains were tolerant to heavy metals Cu2+ (96.8%), Cr3+ (96.8%), Zn2+ (91.5%), Pb2+ (89.4%), and Hg2+ (81.9%). Remarkably, a higher abundance of the bacterium was found in bottom-dwelling aquatic animals, among which mollusk Tegillarca granosa contained K. pneumoniae 8-2-5-4 isolate from serotype K2 (ST-2026). Genome features of the potentially pathogenic isolate were characterized. The enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR)−based genome fingerprinting classified the 94 K. pneumoniae strains into 76 ERIC genotypes with 63 singletons, demonstrating considerable genetic diversity in the strains. The findings of this study fill the gap in the risk assessment of K. pneumoniae in edible aquatic animals.
Collapse
|
20
|
Hospital Acquired Pathogenic Escherichia coli from Clinical and Hospital Water Samples of Quetta Balochistan. J Trop Med 2022; 2022:6495044. [PMID: 36274748 PMCID: PMC9584739 DOI: 10.1155/2022/6495044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
A study was conducted to determine the prevalence and drug resistance of Escherichia coli present in urinary tract infected patients and hospital drinking water. A total of eighty urine samples from clinically suspected patients and thirty tap water samples from hospital vicinity were collected and analyzed for the presence of E. coli. The isolates were preliminary identified based on morphological characteristics, biochemical test and further confirmed by polymerase chain reaction (PCR) using uidA primer. Isolates were subjected to antibiogram studies and analyzed for the presence of drug resistance (ESBL blaCTX-M-15, tetA, and TMP-SMX dfrA1) and pathogenicity associated pyelonephritis-associated pili (PAP) and Heat-labile (LT) toxin genes. Urine samples 19/80 (23.75%) and water samples 8/30 (26.7%) were found contaminated with E. coli. It was found that 12/19 (63%) bacterial isolates were extended spectrum beta-lactamase (ESBL) producers in clinical and 6/8 (75%) in water isolates whereas tetracycline resistance in clinical and water isolates was 11/19 (58%) and 6/8 (75%), respectively. The trimethoprim resistance gene was confirmed in 12/19 (63%) in clinical and 2/8 (25%) in water isolates. All the clinical and water isolates were found carrying pili PAP gene. It was concluded that the presence of drug resistant and pathogenic E. coli in clinical and water samples is extremely alarming for public health due to cross contamination and bacterial transfer from clinical samples to water and vice versa.
Collapse
|
21
|
Liu A, Dai J, Shen R, Zhong F, Sheng X, Huang H. Correlation between Drug Resistance of Klebsiella Pneumonia and Antimicrobial Drug Usage. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2691134. [PMID: 35586696 PMCID: PMC9110160 DOI: 10.1155/2022/2691134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022]
Abstract
Objective. To assess the correlation between the drug resistance of Klebsiella pneumoniae and antimicrobial drug usage. Methods. The drug resistance rate of Klebsiella pneumoniae and the antimicrobial drug dosage of inpatients admitted to The Second Affiliated Hospital of Wannan Medical College from January 2016 to December 2020 were retrospectively recorded, and their correlation was analyzed using the Pearson method. Results. There are 6493 strains of Gram-negative bacteria, including 1272 strains of Klebsiella pneumoniae, ranking first in respiratory medicine. Klebsiella pneumoniae showed an overall increasing trend in resistance to piperacillin/tazobactam and ampicillin/sulbactam and a high resistance to aztreonam, ceftazidime, and ciprofloxacin (all P < 0.05). The top 3 antimicrobial drugs used in 2016-2020 were β-lactams, quinolones, and macrolides. The rates of resistance to piperacillin/tazobactam, cefoperazone/sulbactam, and ampicillin/sulbactam were highly positively correlated with the use of β-lactams. The use of carbapenems and glycopeptides was negatively correlated with the resistance to ciprofloxacin, and the resistance to ceftazidime had a high positive correlation with the use of glycopeptides and carbapenems. Conclusion. The use of antimicrobial drugs is correlated with the resistance rate of Klebsiella pneumoniae. To reduce bacterial drug resistance, the rational use of antimicrobial drugs requires joint control through multiple departments to improve the clinical use of antimicrobial drugs and improve in-hospital control.
Collapse
Affiliation(s)
- Anyun Liu
- The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Wuhu City, Anhui Province, China
| | - Jun Dai
- The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Wuhu City, Anhui Province, China
| | - Ru Shen
- The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Wuhu City, Anhui Province, China
| | - Feng Zhong
- The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Wuhu City, Anhui Province, China
| | - Xuehe Sheng
- The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Wuhu City, Anhui Province, China
| | - Houbao Huang
- The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Wuhu City, Anhui Province, China
| |
Collapse
|
22
|
Arafa AA, Hedia RH, Dorgham SM, Ibrahim ES, Bakry MA, Abdalhamed AM, Abuelnaga ASM. Determination of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from horses with respiratory manifestation. Vet World 2022; 15:827-833. [PMID: 35698500 PMCID: PMC9178564 DOI: 10.14202/vetworld.2022.827-833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: The World Health Organization considers multidrug-resistant (MDR) Klebsiella pneumoniae a major global threat. Horses harbor commensal isolates of this bacterial species and potentially serve as reservoirs for human MDR bacteria. This study investigated antimicrobial resistance in horses caused by extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae. Materials and Methods: One hundred fifty-nine nasal swab samples were collected from horses with respiratory distress not treated with cefotaxime and erythromycin. Biochemical and serological identification was performed on all samples. Polymerase chain reaction (PCR) was used to detect 16S-23S ITS, mucoviscosity-associated gene (magA), uridine diphosphate galacturonate 4-epimerase gene (uge), and iron uptake system gene (kfu), blaTEM, blaSHV, and blaCTX genes. Sequence analysis and phylogenetic relatedness of randomly selected K. pneumoniae isolates carrying the blaTEM gene were performed. Results: Ten isolates of Klebsiella spp. were obtained from 159 samples, with an incidence of 6.28% (10 of 159). Based on biochemical and serological identification, K. pneumoniae was detected in 4.4% (7 of 159) of the samples. Using PCR, all tested K. pneumoniae isolates (n=7) carried the 16S-23S ITS gene. By contrast, no isolates carried magA, uge, and kfu genes. The blaTEM gene was detected in all test isolates. Moreover, all isolates did not harbor the blaSHV or blaCTX gene. Sequence analysis and phylogenetic relatedness reported that the maximum likelihood unrooted tree generated indicated the clustering of the test isolate with the other Gram-negative isolate blaTEM. Finally, the sequence distance of the blaTEM gene of the test isolate (generated by Lasergene) showed an identity range of 98.4-100% with the blaTEM gene of the different test isolates. Conclusion: The misuse of antimicrobials and insufficient veterinary services might help generate a population of ESBL-producing K. pneumoniae in equines and humans, representing a public health risk.
Collapse
Affiliation(s)
- Amany A. Arafa
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Riham H. Hedia
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Sohad M. Dorgham
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Eman S. Ibrahim
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Magdy A. Bakry
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Abeer M. Abdalhamed
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| | - Azza S. M. Abuelnaga
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| |
Collapse
|
23
|
Ballén V, Gabasa Y, Ratia C, Ortega R, Tejero M, Soto S. Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated From Different Clinical Sources. Front Cell Infect Microbiol 2021; 11:738223. [PMID: 34540722 PMCID: PMC8440954 DOI: 10.3389/fcimb.2021.738223] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium capable of colonizing, invading, and causing infections in different anatomical sites of the human body. Its ability to evade the immune system, its increasing antimicrobial resistance and the emergence of hypervirulent pathotypes have become a major challenge in the medical field. In this study, 127 strains from different clinical sources (urine, respiratory tract or blood) were characterized for antimicrobial resistance, the presence of virulence factor genes, serum resistance, hypermucoviscosity and the ability to form biofilms. Specific characteristics of the uropathogenic strains were examined and compared with the other clinical groups. Differences were found between urine and the other groups of strains. Urine strains showed the highest antibiotic resistance (64.91%) compared to blood (63.64%) or respiratory strains (51.35%) as well as the highest extended-spectrum beta-lactamases (ESBL) production. These strains also showed statistically significant high resistance to fosfomycin (24.56%) compared to the other groups (p = 0.008). Regarding virulence, 84.21% of the urine strains presented the uge gene, showing a statistically significant difference (p = 0.03) compared to the other clinical sources, indicating a possible role of this gene in the development of urinary tract infection. In addition, 46% of biofilm-forming strains belonged to the urine sample group (p = 0.043). In conclusion, K. pneumoniae strains isolated from urine samples showed higher antimicrobial resistance, ESBL production, and biofilm-forming ability compared to those isolated from respiratory or blood samples. The rapid spread of clinical strains with these characteristics is of concern, and new therapeutic alternatives are essential to mitigate their harmful effects.
Collapse
Affiliation(s)
- Victoria Ballén
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Carlos Ratia
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Raquel Ortega
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Marc Tejero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sara Soto
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Asghari B, Goodarzi R, Mohammadi M, Nouri F, Taheri M. Detection of mobile genetic elements in multidrug-resistant Klebsiella pneumoniae isolated from different infection sites in Hamadan, west of Iran. BMC Res Notes 2021; 14:330. [PMID: 34446103 PMCID: PMC8394604 DOI: 10.1186/s13104-021-05748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Klebsiella pneumoniae is one of most opportunistic pathogens that can be related to nosocomial infections. Increased acquisitions of multidrug resistance in this bacterium as well as the transfer of genes to other strains have caused concern. Integrons play key role in the acquisition and the spread of resistance genes. The aim of this study was evaluated the frequency of resistance genes sulI, sulII, tetA, tetB, class I (intI gene), class II integrons (intII gene) and the association between multidrug resistance and the presence of integrons in K. pneumoniae. Results Antibiotics susceptibility test was performed on 126 of K. pneumoniae isolates. Also, DNA extraction was done and genes were detected using PCR method. In this study, 67 isolates (53%), carrying both the sulI and sulII genes. Forty-five percent tetracycline-resistant isolates were tetA or tetB positive. The prevalence of intI gene was 96%, while only sixteen isolate harboring intII gene (12.5%). Our results showed the high prevalence of integrons in MDR K. pneumoniae, indicating the important role of these genes in the transmission of antibiotic resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05748-9.
Collapse
Affiliation(s)
- Babak Asghari
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Goodarzi
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milad Mohammadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
25
|
Fatima S, Liaqat F, Akbar A, Sahfee M, Samad A, Anwar M, Iqbal S, Khan SA, Sadia H, Makai G, Bahadur A, Naeem W, Khan A. Virulent and multidrug-resistant Klebsiella pneumoniae from clinical samples in Balochistan. Int Wound J 2021; 18:510-518. [PMID: 33480117 PMCID: PMC8273605 DOI: 10.1111/iwj.13550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 01/11/2021] [Indexed: 01/17/2023] Open
Abstract
Klebsiella pneumoniae is an important pathogen causing hospital-acquired infections in human beings. Samples from suspected patients of K pneumoniae associated with respiratory and urinary tract infections were collected at Bolan Medical Complex, Quetta, Balochistan. Clinical samples (n = 107) of urine and sputum were collected and processed for K pneumoniae isolation using selective culture media. Initially, 30 of 107 isolates resembling Klebsiella spp. were processed for biochemical profiling and molecular detection using gyrase A (gyrA) gene for conformation. The K pneumoniae isolates were analysed for the presence of drug resistance and virulence genes in their genomes. The 21 of 107 (19.6%) isolates were finally confirmed as K pneumoniae pathogens. An antibiogram study conducted against 17 different antibiotics showed that a majority of the isolates are multidrug resistant. All the isolates (100%) were resistant to amoxicillin, cefixime, amoxicillin-clavulanic acid, cefotaxime, and ceftriaxone followed by tetracycline (95.2%), ciprofloxacin and gentamicin (76.2%), sulphamethoxazol (66.7%), nalidixic acid (61.9%), norfloxacine (42.9%), piperacillin-tazobactam (23.8%), cefoperazone-sulbactam (19%), and cefotaxime-clavulanic acid (33.3%), whereas all the isolates showed sensitivity to amikacin, chloramphenicol, and imipenem. The presence of tetracycline, sulphamethoxazol-resistant genes, and extended-spectrum beta-lactamase was reconfirmed using different specific genes. The presence of virulence genes fimH1 and EntB responsible for adherence and enterobactin production was confirmed in the isolates. The high virulence and drug resistance potential of these Klebsiella isolates are of high public health concern. Multidrug resistance and virulence potential in K. pneumoniae are converting these nosocomial pathogens into superbugs and making its management harder.
Collapse
Affiliation(s)
- Sareeen Fatima
- Department of Microbiology, Faculty of Life SciencesUniversity of BalochistanQuettaPakistan
| | - Faiza Liaqat
- Department of Microbiology, Faculty of Life SciencesUniversity of BalochistanQuettaPakistan
| | - Ali Akbar
- Department of Microbiology, Faculty of Life SciencesUniversity of BalochistanQuettaPakistan
| | - Muhammad Sahfee
- CASVAB, Faculty of Life SciencesUniversity of BalochistanQuettaPakistan
| | - Abdul Samad
- CASVAB, Faculty of Life SciencesUniversity of BalochistanQuettaPakistan
| | - Muhammad Anwar
- Institute of Biochemistry, Faculty of Life SciencesUniversity of BalochistanQuettaPakistan
| | - Shazia Iqbal
- Department of ChemistryBalochistan University of Information Technology Engineering and Management SciencesQuettaPakistan
| | - Shabir Ahmad Khan
- Department of Microbiology, Faculty of Life SciencesUniversity of BalochistanQuettaPakistan
| | - Haleema Sadia
- Department of MicrobiologyBalochistan University of Information Technology Engineering and Management SciencesQuettaPakistan
| | - Gul Makai
- Department of Microbiology, Faculty of Life SciencesUniversity of BalochistanQuettaPakistan
| | - Anila Bahadur
- Department of Environmental ScienceSardar Bahadur Khan Women UniversityQuettaPakistan
| | - Wajeeha Naeem
- Department of Microbiology, Faculty of Life SciencesUniversity of BalochistanQuettaPakistan
| | - Adnan Khan
- Department of MicrobiologyUniversity of KarachiSindhPakistan
| |
Collapse
|