1
|
Montagne J, Preza M, Koziol U. Stem cell proliferation and differentiation during larval metamorphosis of the model tapeworm Hymenolepis microstoma. Front Cell Infect Microbiol 2023; 13:1286190. [PMID: 37908761 PMCID: PMC10614006 DOI: 10.3389/fcimb.2023.1286190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background Tapeworm larvae cause important diseases in humans and domestic animals. During infection, the first larval stage undergoes a metamorphosis where tissues are formed de novo from a population of stem cells called germinative cells. This process is difficult to study for human pathogens, as these larvae are infectious and difficult to obtain in the laboratory. Methods In this work, we analyzed cell proliferation and differentiation during larval metamorphosis in the model tapeworm Hymenolepis microstoma, by in vivo labelling of proliferating cells with the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU), tracing their differentiation with a suite of specific molecular markers for different cell types. Results Proliferating cells are very abundant and fast-cycling during early metamorphosis: the total number of cells duplicates every ten hours, and the length of G2 is only 75 minutes. New tegumental, muscle and nerve cells differentiate from this pool of proliferating germinative cells, and these processes are very fast, as differentiation markers for neurons and muscle cells appear within 24 hours after exiting the cell cycle, and fusion of new cells to the tegumental syncytium can be detected after only 4 hours. Tegumental and muscle cells appear from early stages of metamorphosis (24 to 48 hours post-infection); in contrast, most markers for differentiating neurons appear later, and the detection of synapsin and neuropeptides correlates with scolex retraction. Finally, we identified populations of proliferating cells that express conserved genes associated with neuronal progenitors and precursors, suggesting the existence of tissue-specific lineages among germinative cells. Discussion These results provide for the first time a comprehensive view of the development of new tissues during tapeworm larval metamorphosis, providing a framework for similar studies in human and veterinary pathogens.
Collapse
Affiliation(s)
| | | | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Biserova NM, Mustafina AR, Malakhov VV. Structure of the Excretory System of the Plerocercoid Pyramicocephalus phocarum (Cestoda: Diphyllobothriidea): Proof for the Existence of Independent Terminal Cells. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2021; 496:17-20. [PMID: 33635484 DOI: 10.1134/s0012496621010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/23/2022]
Abstract
The excretory system ultrastructure and immunocytochemistry have been investigated in the plerocercoid Pyramicocephalus phocarum. It has been shown that P. phocarum has independent terminal cells, cyrtocytes. The entire canal system is a single undivided syncytium, which includes nephridial funnels of the terminal tubules, and peripheral and central canals. The nephridial funnel and cyrtocyte form a filtration complex of the protonephridial type. In the caudal region, several peripheral canals open into a deep fold of the tegument, the urinary bladder. The excretory pores are separated from the tegument by annular septate desmosomes. There are no cell junctions inside the excretory system. The presence of the F-actin ring and the expression of non-synaptic serotonin in the collar area have been detected in cyrtocytes by immunocytochemistry methods.
Collapse
Affiliation(s)
- N M Biserova
- Faculty of Biology, Moscow State University, 119991, Moscow, Russia.
| | - A R Mustafina
- Faculty of Biology, Moscow State University, 119991, Moscow, Russia
| | - V V Malakhov
- Faculty of Biology, Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
3
|
Ultrastructure of the uterus, embryonic envelopes and the coracidium of the enigmatic tapeworm Tetracampos ciliotheca (Cestoda: Bothriocephalidea) from African sharptooth catfish (Clarias gariepinus). Parasitol Res 2020; 119:847-858. [PMID: 31901107 DOI: 10.1007/s00436-019-06496-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
Transmission electron microscopy (TEM) was used to study the ultrastructure of the uterus and egg morphology in the enigmatic bothriocephalidean tapeworm Tetracampos ciliotheca. The uterine wall, underlain by well-developed muscle bundles, consists of a syncytial epithelium which is characterized by the abundance of free ribosomes, mitochondria and cisternae of granular endoplasmic reticulum (GER). On the apical surface of the uterine epithelium, there is an abundant network of cytoplasmic microlamellae projecting into the uterine lumen. The lumen is filled with freely lying eggs which are located close to the uterine wall but do not contact with the microlamellae of the uterine epithelium. The developed eggs possess an oncosphere surrounded by four envelopes: (1) a thin egg shell; (2) an outer envelope; (3) a syncytial, ciliated inner envelope; and (4) the oncospheral membrane. The mature hexacanth is armed with three pairs of oncospheral hooks, as well as somatic and hook muscles and five types of cells (1) binucleated subtegumental cell, (2) somatic cells, (3) penetration gland cells, (4) nerve cells and (5) germinative cells. Considering the relative scarcity of descriptive and comparative studies on the ultrastructure of the uterus and egg morphology in the order Bothriocephalidea, we concluded that Tet. ciliotheca displays a unique type of egg development. Based on these results, we discuss plausible ideas relating to the function of these structures for consideration in future studies.
Collapse
|
4
|
Świderski Z, Miquel J, Azzouz-Maache S, Pétavy AF. Echinococcus multilocularis (Cestoda, Cyclophyllidea, Taeniidae): functional ultrastructure of the penetration glands and nerve cells within the oncosphere. Parasitol Res 2018; 117:2653-2663. [PMID: 29948200 PMCID: PMC6061043 DOI: 10.1007/s00436-018-5957-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/01/2018] [Indexed: 11/18/2022]
Abstract
The fine structure of the infective hexacanths of Echinococcus multilocularis was examined with particular emphasis on the functional ultrastructure of penetration glands and nerve cells directly involved in the mechanism of initial host infection. The oncosphere contains two types of penetration glands, PG1 and PG2, that differ slightly in size and form a large U-shaped bi-nucleated syncytial structure. The arms of each gland at each end of the U, directed towards the hook region, exit into the tegument peripheral layer between the median and lateral hook pairs. The lobate nuclei of PG1 and PG2 contain prominent spherical nucleoli surrounded by several large electron-dense islands of heterochromatin. The syncytial cytoplasm of both types of glands is rich in free ribosomes, polysomes, several mitochondria, and heavy accumulations of discoid secretory granules of moderate to high electron density. The secretory granules, sg1 and sg2, differ in their ultrastructure and electron density; the sg2 are much smaller and more flattened in shape. A common characteristic for sg1 and sg2, evident under high magnification, is their high electron density and discoidal shape, with two bi-concave surfaces. Both sg1 and sg2 are frequently grouped in characteristic parallel stacks, the "rouleau"-shaped assemblages with sometimes six to ten granules. Two nerve cells of neurosecretory type are situated in the central part of the hexacanth, each one in a deep U-shaped invagination between the two penetration glands. The nuclei of nerve cells contain several large heterochromatin islands closely adjacent to their nuclear membranes. Their cytoplasm is characterized by having membrane-bound, dense-cored neurosecretory-like granules not only in nerve cell perikarya but also in the elongated nerve processes frequently adjacent to gland arms and to both somatic or body musculature, including the complex system of hook muscles. The results of the present study, when supported with literature data on oncospheres of other cestode species, allow for a better understanding of the important role and coordinated functions of three structural components, i.e., oncospheral hooks, penetration glands, and nerve cells, in the mechanism of intermediate host infection. Presence or absence of nerve cells in oncospheres of various cestodes is reviewed, and perspectives on the value and application of research on functional morphology of oncospheres are discussed.
Collapse
Affiliation(s)
- Zdzisław Świderski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 51/55 Twarda Street, 00-818, Warszawa, Poland.
| | - Jordi Miquel
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, sn, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
| | - Samira Azzouz-Maache
- Laboratoire de Parasitologie et Mycologie Médicale, Faculté de Pharmacie, Université Claude Bernard-Lyon 1, 8 Av. Rockefeller, 69373, Lyon Cedex 08, France
| | - Anne-Françoise Pétavy
- Laboratoire de Parasitologie et Mycologie Médicale, Faculté de Pharmacie, Université Claude Bernard-Lyon 1, 8 Av. Rockefeller, 69373, Lyon Cedex 08, France
| |
Collapse
|
5
|
Abstract
Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of parasitocidal drugs should also target the parasite's stem cell system.
Collapse
Affiliation(s)
- U Koziol
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany; Sección Bioquímica, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - K Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany.
| |
Collapse
|
6
|
Conn DB, Swiderski Z. A standardised terminology of the embryonic envelopes and associated developmental stages of tapeworms (Platyhelminthes: Cestoda). Folia Parasitol (Praha) 2008; 55:42-52. [PMID: 18578166 DOI: 10.14411/fp.2008.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over the past 40 years, much has been published on the ultrastructure and cellular development of embryonic structures in a wide range of cestodes. However, the literature contains many discrepancies in both terminology and interpretations because of the facts that these organisms are phylogenetically diverse within their respective orders and families, the habitats that affect embryonic envelope structure are diverse, and the work has been done in various laboratories around the world. This review and synthesis was initiated by a working group of biologists from around the world convened at the Fifth International Workshop on Cestode Systematics and Phylogeny in Ceské Budejovice, at the Institute of Parasitology of the Biology Centre, Academy of Sciences of the Czech Republic. It brings together the data from published work and establishes a uniform terminology and interpretation based on the data as they are presented. A consensus was reached for standardised definitions of the oncosphere, hexacanth, coracidium, embryonic envelopes, outer envelope, inner envelope, embryophore, vitelline capsule, shell, and outer coat. All of these are defined as components of the embryo or its vitellocyte-derived or uterine-derived coatings.
Collapse
Affiliation(s)
- David Bruce Conn
- School of Mathematical and Natural Sciences, Berry College, Mount Berry, Georgia 30149-5036, USA.
| | | |
Collapse
|
7
|
Spiliotis M, Lechner S, Tappe D, Scheller C, Krohne G, Brehm K. Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. Int J Parasitol 2007; 38:1025-39. [PMID: 18086473 DOI: 10.1016/j.ijpara.2007.11.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/03/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
Abstract
A major limitation in studying molecular interactions between parasitic helminths and their hosts is the lack of suitable in vitro cultivation systems for helminth cells and larvae. Here we present a method for long-term in vitro cultivation of larval cells of the tapeworm Echinococcus multilocularis, the causative agent of alveolar echinococcosis. Primary cells isolated from cultivated metacestode vesicles in vitro showed a morphology typical of Echinococcus germinal cells, displayed an Echinococcus-specific gene expression profile and a cestode-like DNA content of approximately 300Mbp. When kept under reducing conditions in the presence of Echinococcus vesicle fluid, the primary cells could be maintained in vitro for several months and proliferated. Most interestingly, upon co-cultivation with host hepatocytes in a trans-well system, mitotically active Echinococcus cells formed cell aggregates that subsequently developed central cavities, surrounded by germinal cells. After 4 weeks, the cell aggregates gave rise to young metacestode vesicles lacking an outer laminated layer. This layer was formed after 6 weeks of cultivation indicating the complete in vitro regeneration of metacestode larvae. As an initial step toward the creation of a fully transgenic strain, we carried out transient transfection of Echinococcus primary cells using plasmids and obtained heterologous expression of a reporter gene. Furthermore, we successfully carried out targeted infection of Echinococcus cells with the facultatively intracellular bacterium Listeria monocytogenes, a DNA delivery system for genetic manipulation of mammalian cells. Taken together, the methods presented herein constitute important new tools for molecular investigations on host-parasite interactions in alveolar echinococcosis and on the roles of totipotent germinal cells in parasite regeneration and metastasis formation. Moreover, they enable the development of fully transgenic techniques in this group of helminth parasites for the first time.
Collapse
Affiliation(s)
- Markus Spiliotis
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2, D97080 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|