1
|
Davey-Young J, Hasan F, Tennakoon R, Rozik P, Moore H, Hall P, Cozma E, Genereaux J, Hoffman KS, Chan PP, Lowe TM, Brandl CJ, O’Donoghue P. Mistranslating the genetic code with leucine in yeast and mammalian cells. RNA Biol 2024; 21:1-23. [PMID: 38629491 PMCID: PMC11028032 DOI: 10.1080/15476286.2024.2340297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.
Collapse
Affiliation(s)
- Josephine Davey-Young
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Peter Rozik
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Henry Moore
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Peter Hall
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Patricia P. Chan
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering & UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Cox D, Ormsby AR, Reid GE, Hatters DM. Protein painting reveals pervasive remodeling of conserved proteostasis machinery in response to pharmacological stimuli. NPJ Syst Biol Appl 2022; 8:46. [DOI: 10.1038/s41540-022-00256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractThe correct spatio-temporal organization of the proteome is essential for cellular homeostasis. However, a detailed mechanistic understanding of this organization and how it is altered in response to external stimuli in the intact cellular environment is as-yet unrealized. ‘Protein painting methods provide a means to address this gap in knowledge by monitoring the conformational status of proteins within cells at the proteome-wide scale. Here, we demonstrate the ability of a protein painting method employing tetraphenylethene maleimide (TPE-MI) to reveal proteome network remodeling in whole cells in response to a cohort of commonly used pharmacological stimuli of varying specificity. We report specific, albeit heterogeneous, responses to individual stimuli that coalesce on a conserved set of core cellular machineries. This work expands our understanding of proteome conformational remodeling in response to cellular stimuli, and provides a blueprint for assessing how these conformational changes may contribute to disorders characterized by proteostasis imbalance.
Collapse
|
3
|
Osana S, Kitajima Y, Naoki S, Takada H, Murayama K, Kano Y, Nagatomi R. Little involvement of recycled-amino acids from proteasomal proteolysis in de novo protein synthesis. Biochem Biophys Res Commun 2022; 634:40-47. [DOI: 10.1016/j.bbrc.2022.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
4
|
Osburn SC, Vann CG, Church DD, Ferrando AA, Roberts MD. Proteasome- and Calpain-Mediated Proteolysis, but Not Autophagy, Is Required for Leucine-Induced Protein Synthesis in C2C12 Myotubes. PHYSIOLOGIA 2021; 1:22-33. [PMID: 34927140 PMCID: PMC8681867 DOI: 10.3390/physiologia1010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Muscle protein synthesis and proteolysis are tightly coupled processes. Given that muscle growth is promoted by increases in net protein balance, it stands to reason that bolstering protein synthesis through amino acids while reducing or inhibiting proteolysis could be a synergistic strategy in enhancing anabolism. However, there is contradictory evidence suggesting that the proper functioning of proteolytic systems in muscle is required for homeostasis. To add clarity to this issue, we sought to determine if inhibiting different proteolytic systems in C2C12 myotubes in conjunction with acute and chronic leucine treatments affected markers of anabolism. In Experiment 1, myotubes underwent 1-h, 6-h, and 24-h treatments with serum and leucine-free DMEM containing the following compounds (n = 6 wells per treatment): (i) DMSO vehicle (CTL), (ii) 2 mM leucine + vehicle (Leu-only), (iii) 2 mM leucine + 40 μM MG132 (20S proteasome inhibitor) (Leu + MG132), (iv) 2 mM leucine + 50 μM calpeptin (calpain inhibitor) (Leu + CALP), and (v) 2 mM leucine + 1 μM 3-methyladenine (autophagy inhibitor) (Leu + 3MA). Protein synthesis levels significantly increased (p < 0.05) in the Leu-only and Leu + 3MA 6-h treatments compared to CTL, and levels were significantly lower in Leu + MG132 and Leu + CALP versus Leu-only and CTL. With 24-h treatments, total protein yield was significantly lower in Leu + MG132 cells versus other treatments. Additionally, the intracellular essential amino acid (EAA) pool was significantly greater in 24-h Leu + MG132 treatments versus other treatments. In a follow-up experiment, myotubes were treated for 48 h with CTL, Leu-only, and Leu + MG132 for morphological assessments. Results indicated Leu + MG132 yielded significantly smaller myotubes compared to CTL and Leu-only. Our data are limited in scope due to the utilization of select proteolysis inhibitors. However, this is the first evidence to suggest proteasome and calpain inhibition with MG132 and CALP, respectively, abrogate leucine-induced protein synthesis in myotubes. Additionally, longer-term Leu + MG132 treatments translated to an atrophy phenotype. Whether or not proteasome inhibition in vivo reduces leucine- or EAA-induced anabolism remains to be determined.
Collapse
Affiliation(s)
| | - Christopher G. Vann
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC 27708, USA
| | - David D. Church
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Arny A. Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
5
|
Chu V, Feng Q, Lim Y, Shao S. Selective destabilization of polypeptides synthesized from NMD-targeted transcripts. Mol Biol Cell 2021; 32:ar38. [PMID: 34586879 PMCID: PMC8694075 DOI: 10.1091/mbc.e21-08-0382] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The translation of mRNAs that contain a premature termination codon (PTC) generates truncated proteins that may have toxic dominant negative effects. Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that degrades PTC-containing mRNAs to limit the production of truncated proteins. NMD activation requires a ribosome terminating translation at a PTC, but what happens to the polypeptides synthesized during the translation cycle needed to activate NMD is incompletely understood. Here, by establishing reporter systems that encode the same polypeptide sequence before a normal termination codon or PTC, we show that termination of protein synthesis at a PTC is sufficient to selectively destabilize polypeptides in mammalian cells. Proteasome inhibition specifically rescues the levels of nascent polypeptides produced from PTC-containing mRNAs within an hour, but also disrupts mRNA homeostasis within a few hours. PTC-terminated polypeptide destabilization is also alleviated by depleting the central NMD factor UPF1 or SMG1, the kinase that phosphorylates UPF1 to activate NMD, but not by inhibiting SMG1 kinase activity. Our results suggest that polypeptide degradation is linked to PTC recognition in mammalian cells and clarify a framework to investigate these mechanisms.
Collapse
Affiliation(s)
- Vincent Chu
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Qing Feng
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115
| | - Yang Lim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115
| |
Collapse
|
6
|
A role for the ribosome-associated complex in activation of the IRE1 branch of UPR. Cell Rep 2021; 35:109217. [PMID: 34107246 DOI: 10.1016/j.celrep.2021.109217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The ubiquitous ribosome-associated complex (RAC) is a chaperone that spans ribosomes, making contacts near both the polypeptide exit tunnel and the decoding center, a position prime for sensing and coordinating translation and folding. Loss of RAC is known to result in growth defects and sensitization to translational and osmotic stresses. However, the physiological substrates of RAC and the mechanism(s) by which RAC is involved in responding to specific stresses in higher eukaryotes remain obscure. The data presented here uncover an essential function of mammalian RAC in the unfolded protein response (UPR). Knockdown of RAC sensitizes mammalian cells to endoplasmic reticulum (ER) stress and selectively interferes with IRE1 branch activation. Higher-order oligomerization of the inositol-requiring enzyme 1α (IRE1α) kinase/endoribonuclease depends upon RAC. These results reveal a surveillance function for RAC in the UPR, as follows: modulating IRE1α clustering as required for endonuclease activation and splicing of the substrate Xbp1 mRNA.
Collapse
|
7
|
Dybas JM, O'Leary CE, Ding H, Spruce LA, Seeholzer SH, Oliver PM. Integrative proteomics reveals an increase in non-degradative ubiquitylation in activated CD4 + T cells. Nat Immunol 2019; 20:747-755. [PMID: 31061531 DOI: 10.1038/s41590-019-0381-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022]
Abstract
Despite gathering evidence that ubiquitylation can direct non-degradative outcomes, most investigations of ubiquitylation in T cells have focused on degradation. Here, we integrated proteomic and transcriptomic datasets from primary mouse CD4+ T cells to establish a framework for predicting degradative or non-degradative outcomes of ubiquitylation. Di-glycine remnant profiling was used to reveal ubiquitylated proteins, which in combination with whole-cell proteomic and transcriptomic data allowed prediction of protein degradation. Analysis of ubiquitylated proteins identified by di-glycine remnant profiling indicated that activation of CD4+ T cells led to an increase in non-degradative ubiquitylation. This correlated with an increase in non-proteasome-targeted K29, K33 and K63 polyubiquitin chains. This study revealed over 1,200 proteins that were ubiquitylated in primary mouse CD4+ T cells and highlighted the relevance of non-proteasomally targeted ubiquitin chains in T cell signaling.
Collapse
Affiliation(s)
- Joseph M Dybas
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Claire E O'Leary
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hua Ding
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven H Seeholzer
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paula M Oliver
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Hsp27 Responds to and Facilitates Enterovirus A71 Replication by Enhancing Viral Internal Ribosome Entry Site-Mediated Translation. J Virol 2019; 93:JVI.02322-18. [PMID: 30814282 PMCID: PMC6475798 DOI: 10.1128/jvi.02322-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target. Enterovirus 71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease (HFMD) and fatal neurological diseases, and no effective treatment is available. Characterization of key host factors is important for understanding its pathogenesis and developing antiviral drugs. Here we report that Hsp27 is one of the most upregulated proteins in response to EV-A71 infection, as revealed by two-dimensional gel electrophoresis-based proteomics studies. Depletion of Hsp27 by small interfering RNA or CRISPR/Cas9-mediated knockout significantly inhibited viral replication, protein expression, and reproduction, while restoration of Hsp27 restored such virus activities. Furthermore, we show that Hsp27 plays a crucial role in regulating viral internal ribosome entry site (IRES) activities by two different mechanisms. Hsp27 markedly promoted 2Apro-mediated eukaryotic initiation factor 4G cleavage, an important process for selecting and initiating IRES-mediated translation. hnRNP A1 is a key IRES trans-acting factor (ITAF) for enhancing IRES-mediated translation. Surprisingly, knockout of Hsp27 differentially blocked hnRNP A1 but not FBP1 translocation from the nucleus to the cytoplasm and therefore abolished the hnRNP A1 interaction with IRES. Most importantly, the Hsp27 inhibitor 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), a compound isolated from a traditional Chinese herb, significantly protected against cytopathic effects and inhibited EV-A71 infection. Collectively, our results demonstrate new functions of Hsp27 in facilitating virus infection and provide novel options for combating EV-A71 infection by targeting Hsp27. IMPORTANCE Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target.
Collapse
|
9
|
Vannini C, Marsoni M, Scoccianti V, Ceccarini C, Domingo G, Bracale M, Crinelli R. Proteasome-mediated remodeling of the proteome and phosphoproteome during kiwifruit pollen germination. J Proteomics 2019; 192:334-345. [DOI: 10.1016/j.jprot.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023]
|
10
|
De Marchis F, Colanero S, Klein EM, Mainieri D, Prota VM, Bellucci M, Pagliuca G, Zironi E, Gazzotti T, Vitale A, Pompa A. Expression of CLAVATA3 fusions indicates rapid intracellular processing and a role of ERAD. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:67-80. [PMID: 29650159 DOI: 10.1016/j.plantsci.2018.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The 12 amino acid peptide derived from the Arabidopsis soluble secretory protein CLAVATA3 (CLV3) acts at the cell surface in a signalling system that regulates the size of apical meristems. The subcellular pathway involved in releasing the peptide from its precursor is unknown. We show that a CLV3-GFP fusion expressed in transfected tobacco protoplasts or transgenic tobacco plants has very short intracellular half-life that cannot be extended by the secretory traffic inhibitors brefeldin A and wortmannin. The fusion is biologically active, since the incubation medium of protoplasts from CLV3-GFP-expressing tobacco contains the CLV3 peptide and inhibits root growth. The rapid disappearance of intact CLV3-GFP requires the signal peptide and is inhibited by the proteasome inhibitor MG132 or coexpression with a mutated CDC48 that inhibits endoplasmic reticulum-associated protein degradation (ERAD). The synthesis of CLV3-GFP is specifically supported by the endoplasmic reticulum chaperone endoplasmin in an in vivo assay. Our results indicate that processing of CLV3 starts intracellularly in an early compartment of the secretory pathway and that ERAD could play a regulatory or direct role in the active peptide synthesis.
Collapse
Affiliation(s)
- Francesca De Marchis
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Sara Colanero
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Eva M Klein
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Viviana M Prota
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Michele Bellucci
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Giampiero Pagliuca
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna 40064 Ozzano Emilia, BO, Italy
| | - Elisa Zironi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna 40064 Ozzano Emilia, BO, Italy
| | - Teresa Gazzotti
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna 40064 Ozzano Emilia, BO, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy.
| | - Andrea Pompa
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy.
| |
Collapse
|
11
|
Van Hoewyk D. Use of the non-radioactive SUnSET method to detect decreased protein synthesis in proteasome inhibited Arabidopsis roots. PLANT METHODS 2016; 12:20. [PMID: 26989430 PMCID: PMC4794914 DOI: 10.1186/s13007-016-0120-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND In eukaryotic cells, the proteasome maintains homeostasis by selectively degrading regulatory and misfolded proteins, and in doing so contributes to the amino acid pool. Inhibition of the proteasome in yeast and human cells decreases de novo protein synthesis. However, it is not know if proteasome inhibition in plants similarly suppresses protein synthesis. To address this gap in plant biology, protein synthesis in Arabidopsis roots was estimated using SUface SEnsing of Translation (SUnSET) techniques. This non-radioactive method has been validated in animal cells, but has not yet been applied to plants. The goal of this study was to investigate the suitability of SUnSET methodology to measure protein synthesis in plants, and to determine if proteasome inhibition decreases levels of newly synthesized proteins. RESULTS The SUnSET technique revealed that Arabidopsis plants treated with cycloheximide-an inhibitor of protein synthesis-severely decreased levels of newly synthesized proteins in root and shoot tissue, as detected on a Western Blot. Therefore, the non-radioactive method is suitable to detect changes in protein synthesis, and was subsequently used to monitor protein synthesis in proteasome-inhibited roots. The proteasome inhibitor MG132 decreased levels of newly synthesized proteins by 70-80 % after 4 and 16 h. Removal of MG132 from liquid media resulted in roots with increased levels of newly synthesized proteins compared to untreated plants, suggesting that recovery from proteasome inhibition results in elevated levels of protein synthesis. Additionally, SUnSET was used to detect a decrease in protein synthesis in the roots of plants subjected to salt stress or sulfur starvation. CONCLUSIONS Proteasome inhibition has been shown to decrease protein synthesis in yeast and human cells, and this study now shows that MG132's inhibitory effects also applies to plants. These data represent the first time that SUnSET has been used to measure protein synthesis in plants. The study demonstrates that SUnSET is a suitable and robust technique to measure protein synthesis in plants. The use of this non-radioactive method to gauge protein synthesis offers a fast, safe, and cost-effective alternative compared to traditional techniques that rely upon radioactive material. The method is likely to have broad applicability to different disciplines in plant biology.
Collapse
Affiliation(s)
- Doug Van Hoewyk
- />Biology Department, Coastal Carolina University, Conway, SC 29526 USA
- />Ankara University, Biotechnology Institute, Tandoğan Campus, 06110 Ankara, Turkey
| |
Collapse
|
12
|
Pollard HJ, Willett M, Morley SJ. mTOR kinase-dependent, but raptor-independent regulation of downstream signaling is important for cell cycle exit and myogenic differentiation. Cell Cycle 2015; 13:2517-25. [PMID: 25486193 PMCID: PMC4614745 DOI: 10.4161/15384101.2014.941747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Myogenic differentiation in the C2C12 myoblast model system reflects a concerted and controlled activation of transcription and translation following the exit of cells from the cell cycle. Previously we have shown that the mTORC1 signaling inhibitor, RAD001, decreased protein synthesis rates, delayed C2C12 myoblast differentiation, decreased p70S6K activity but did not affect the hypermodification of 4E-BP1. Here we have further investigated the modification of 4E-BP1 during the early phase of differentiation as cells exit the cell cycle, using inhibitors to target mTOR kinase and siRNAs to ablate the expression of raptor and rictor. As predicted, inhibition of mTOR kinase activity prevented p70S6K, 4E-BP1 phosphorylation and was associated with an inhibition of myogenic differentiation. Surprisingly, extensive depletion of raptor did not affect p70S6K or 4E-BP1 phosphorylation, but promoted an increase in mTORC2 activity (as evidenced by increased Akt Ser473 phosphorylation). These data suggest that an mTOR kinase-dependent, but raptor-independent regulation of downstream signaling is important for myogenic differentiation.
Collapse
Affiliation(s)
- Hilary J Pollard
- a Department of Biochemistry, School of Life Sciences ; University of Sussex ; Brighton , UK
| | | | | |
Collapse
|
13
|
Brodskii VY, Sharova NP, Mal’chenko LA, Konchenko DS, Dubovaya TK, Zvezdina ND. Blockade of proteasome activity disturbs the rhythm of synthesis of the protein marker of direct cell-cell interactions. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Feng Q, Snider L, Jagannathan S, Tawil R, van der Maarel SM, Tapscott SJ, Bradley RK. A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy. eLife 2015; 4. [PMID: 25564732 PMCID: PMC4383350 DOI: 10.7554/elife.04996] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a muscular dystrophy caused by
inefficient epigenetic repression of the D4Z4 macrosatellite array and somatic
expression of the DUX4 retrogene. DUX4 is a double homeobox
transcription factor that is normally expressed in the testis and causes apoptosis
and FSHD when misexpressed in skeletal muscle. The mechanism(s) of DUX4 toxicity in
muscle is incompletely understood. We report that DUX4-triggered proteolytic
degradation of UPF1, a central component of the nonsense-mediated decay (NMD)
machinery, is associated with profound NMD inhibition, resulting in global
accumulation of RNAs normally degraded as NMD substrates. DUX4 mRNA is itself
degraded by NMD, such that inhibition of NMD by DUX4 protein stabilizes DUX4 mRNA
through a double-negative feedback loop in FSHD muscle cells. This feedback loop
illustrates an unexpected mode of autoregulatory behavior of a transcription factor,
is consistent with ‘bursts’ of DUX4 expression in FSHD
muscle, and has implications for FSHD pathogenesis. DOI:http://dx.doi.org/10.7554/eLife.04996.001 Genes are sequences of DNA that contain instructions for the cell that must be
carefully controlled because it is not always appropriate or safe for these
instructions to be followed. When genes are active, copies of the DNA are made using
molecules of ribonucleic acid (RNA) and these can then be used as templates to make
proteins. One way genes can be controlled is by adding small chemical tags that mark them out
to be activated or deactivated, known as epigenetic control. The muscle disease
facioscapulohumeral muscular dystrophy (FSHD) is caused by the loss of the chemical
tags that normally keep certain genes switched off in many cell types. One of these
genes is DUX4, which in healthy males is normally only active in the
testes, but in FSHD patients it is also active in other parts of the body. Another way to control genes is by nonsense-mediated decay, where incorrect or
incomplete RNA molecules are destroyed before they can be used to make defective
proteins. In this study, Feng et al. show that when DUX4 is
activated following the failure of epigenetic control in FSHD patients, the
effectiveness of nonsense-mediated decay is also reduced. This results in the
build-up of incorrect RNA molecules inside muscle cells, which can harm the cell. In
fact, 13% of the incorrect RNA molecules that are normally destroyed in cells were
found at higher levels when DUX4 was active. To investigate how DUX4 could work, Feng et al. focused on another
gene called UPF1 because cells without the protein encoded by this
gene have similar defects in nonsense-mediated decay as cells with active
DUX4. No difference was found in how often the
UPF1 gene is activated in FSHD cells and normal cells. However,
the amount of the protein encoded by UPF1 was lower in cells with
FSHD than in normal muscle cells. The experiments show that the protein encoded by
UPF1 is broken down as a result of the activation of the
DUX4 gene, leading to problems with nonsense-mediated decay,
which may result in the worsening of FSHD symptoms. The twist in the tale is that DUX4 itself is also controlled by
nonsense-mediated decay under normal circumstances. Therefore, in diseased cells, a
failure in epigenetic control allows DUX4 to prevent its own
destruction by tampering with nonsense-mediated decay. These findings offer new
insights into the role of the DUX4 gene in FSHD. The next step is to
test whether these defects in nonsense-mediated decay can explain any of the symptoms
of FSHD, such as muscle inflammation. DOI:http://dx.doi.org/10.7554/eLife.04996.002
Collapse
Affiliation(s)
- Qing Feng
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Lauren Snider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Sujatha Jagannathan
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, United States
| | | | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
15
|
Lysine suppresses protein degradation through autophagic-lysosomal system in C2C12 myotubes. Mol Cell Biochem 2014; 391:37-46. [PMID: 24532005 DOI: 10.1007/s11010-014-1984-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/29/2014] [Indexed: 12/17/2022]
Abstract
Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic-lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0-3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic-lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic-lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic-lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic-lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes.
Collapse
|
16
|
mRNA encoding WAVE-Arp2/3-associated proteins is co-localized with foci of active protein synthesis at the leading edge of MRC5 fibroblasts during cell migration. Biochem J 2013; 452:45-55. [PMID: 23452202 DOI: 10.1042/bj20121803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During cell spreading, mammalian cells migrate using lamellipodia formed from a large dense branched actin network which produces the protrusive force required for leading edge advancement. The formation of lamellipodia is a dynamic process and is dependent on a variety of protein cofactors that mediate their local regulation, structural characteristics and dynamics. In the present study, we show that mRNAs encoding some structural and regulatory components of the WAVE [WASP (Wiskott-Aldrich syndrome protein) verprolin homologous] complex are localized to the leading edge of the cell and associated with sites of active translation. Furthermore, we demonstrate that steady-state levels of ArpC2 and Rac1 proteins increase at the leading edge during cell spreading, suggesting that localized protein synthesis has a pivotal role in controlling cell spreading and migration.
Collapse
|
17
|
Analysing the role of UVB-induced translational inhibition and PP2Ac deactivation in NF-κB signalling using a minimal mathematical model. PLoS One 2012; 7:e40274. [PMID: 22815735 PMCID: PMC3399864 DOI: 10.1371/journal.pone.0040274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/03/2012] [Indexed: 02/08/2023] Open
Abstract
Activation of nuclear factor κB (NF-κB) by interleukin-1β (IL-1) usually results in an anti-apoptotic activity that is rapidly terminated by a negative feedback loop involving NF-κB dependent resynthesis of its own inhibitor IκBα. However, apoptosis induced by ultraviolet B radiation (UVB) is not attenuated, but significantly enhanced by co-stimulation with IL-1 in human epithelial cells. Under these conditions NF-κB remains constitutively active and turns into a pro-apoptotic factor by selectively repressing anti-apoptotic genes. Two different mechanisms have been separately proposed to explain UV-induced lack of IκBα recurrence: global translational inhibition as well as deactivation of the Ser/Thr phosphatase PP2Ac. Using mathematical modelling, we show that the systems behaviour requires a combination of both mechanisms, and we quantify their contribution in different settings. A mathematical model including both mechanisms is developed and fitted to various experimental data sets. A comparison of the model results and predictions with model variants lacking one of the mechanisms shows that both mechanisms are present in our experimental setting. The model is successfully validated by the prediction of independent data. Weak constitutive IKKβ phosphorylation is shown to be a decisive process in IκBα degradation induced by UVB stimulation alone, but irrelevant for (co-)stimulations with IL-1. In silico knockout experiments show that translational inhibition is predominantly responsible for lack of IκBα recurrence following IL-1+UVB stimulation. In case of UVB stimulation alone, cooperation of both processes causes the observed decrease of IκBα. This shows that the processes leading to activation of transcription factor NF-κB upon stimulation with ultraviolet B radiation with and without interleukin-1 costimulation are more complex than previously thought, involving both a cross talk of UVB induced translational inhibition and PP2Ac deactivation. The importance of each of the mechanisms depends on the specific cellular setting.
Collapse
|
18
|
Cap-dependent mRNA translation and the ubiquitin-proteasome system cooperate to promote ERBB2-dependent esophageal cancer phenotype. Cancer Gene Ther 2012; 19:609-18. [PMID: 22767218 DOI: 10.1038/cgt.2012.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pathological post-transcriptional control of the proteome composition is a central feature of malignancy. Two steps in this pathway, eIF4F-driven cap-dependent mRNA translation and the ubiquitin-proteasome system (UPS), are deregulated in most if not all cancers. We tested a hypothesis that eIF4F is aberrantly activated in human esophageal adenocarcinoma (EAC) and requires elevated rates of protein turnover and proteolysis and thereby activated UPS for its pro-neoplastic function. Here, we show that 80% of tumors and cell lines featuring amplified ERBB2 display an aberrantly activated eIF4F. Direct genetic targeting of the eIF4F in ERBB2-amplified EAC cells with a constitutively active form of the eIF4F repressor 4E-BP1 decreased colony formation and proliferation and triggered apoptosis. In contrast, suppression of m-TOR-kinase activity towards 4E-BP1with rapamycin only modestly inhibited eIF4F-driven cap-dependent translation and EAC malignant phenotype; and promoted feedback activation of other cancer pathways. Our data show that co-treatment with 2 FDA-approved agents, the m-TOR inhibitor rapamycin and the proteasome inhibitor bortezomib, leads to strong synergistic growth-inhibitory effects. Moreover, direct targeting of eIF4F with constitutively active 4E-BP1 is significantly more potent in collaboration with bortezomib than rapamycin. These data support the hypothesis that a finely tuned balance between eIF4F-driven protein synthesis and proteasome-mediated protein degradation is required for the maintenance of ERBB2-mediated EAC malignant phenotype. Altogether, our study supports the development of pharmaceuticals to directly target eIF4F as most efficient strategy; and provides a clear rationale for the clinical evaluation of combination therapy with m-TOR inhibitors and bortezomib for EAC treatment.
Collapse
|
19
|
Translation initiation factors and active sites of protein synthesis co-localize at the leading edge of migrating fibroblasts. Biochem J 2011; 438:217-27. [PMID: 21539520 DOI: 10.1042/bj20110435] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell migration is a highly controlled essential cellular process, often dysregulated in tumour cells, dynamically controlled by the architecture of the cell. Studies involving cellular fractionation and microarray profiling have previously identified functionally distinct mRNA populations specific to cellular organelles and architectural compartments. However, the interaction between the translational machinery itself and cellular structures is relatively unexplored. To help understand the role for the compartmentalization and localized protein synthesis in cell migration, we have used scanning confocal microscopy, immunofluorescence and a novel ribopuromycylation method to visualize translating ribosomes. In the present study we show that eIFs (eukaryotic initiation factors) localize to the leading edge of migrating MRC5 fibroblasts in a process dependent on TGN (trans-Golgi network) to plasma membrane vesicle transport. We show that eIF4E and eIF4GI are associated with the Golgi apparatus and membrane microdomains, and that a proportion of these proteins co-localize to sites of active translation at the leading edge of migrating cells.
Collapse
|
20
|
Tuckow AP, Jefferson SJ, Kimball SR, Jefferson LS. Simvastatin represses protein synthesis in the muscle-derived C₂C₁₂ cell line with a concomitant reduction in eukaryotic initiation factor 2B expression. Am J Physiol Endocrinol Metab 2011; 300:E564-70. [PMID: 21224482 PMCID: PMC3064004 DOI: 10.1152/ajpendo.00383.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Statins are a widely prescribed class of cholesterol lowering drugs whose use is frequently associated with muscle-related ailments. A number of mechanisms have been implicated in statin-induced myotoxicity including alterations in both protein synthesis and protein degradation. The objective of the present study was to explore the mechanism(s) contributing to the statin-induced reduction in protein synthesis in the muscle-derived C₂C₁₂ cell line. Cells were treated with 10 μM simvastatin or vehicle alone for 24 h in 1% serum. Cells exposed to simvastatin exhibited reduced rates of protein synthesis, as evidenced by [(35)S]methionine and [(35)S]cysteine incorporation into protein. The reduction in protein synthesis occurred with a concomitant decrease in expression and activity of eukaryotic initiation factor 2B (eIF2B), a regulated and rate-controlling guanine nucleotide exchange factor known to affect global rates of protein synthesis. The reductions in protein synthesis and eIF2B expression were prevented by coincubation with mevalonate. Simvastatin treatment also resulted in a proteasome-sensitive reduction in the protein expression of all the subunits of the eIF2B heteropentameric complex. Finally, increased phosphorylation of the catalytic ε-subunit at Ser(535) was observed, an event consistent with an observed reduction in eIF2B activity. These results suggest that repression of eIF2B expression and activity may contribute, at least in part, to the statin-induced reduction in protein synthesis.
Collapse
Affiliation(s)
- Alexander P Tuckow
- Dept. of Cellular & Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
21
|
Localization of ribosomes and translation initiation factors to talin/beta3-integrin-enriched adhesion complexes in spreading and migrating mammalian cells. Biol Cell 2010; 102:265-76. [PMID: 19929852 DOI: 10.1042/bc20090141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND INFORMATION The spatial localization of translation can facilitate the enrichment of proteins at their sites of function while also ensuring that proteins are expressed in the proximity of their cognate binding partners. RESULTS Using human embryonic lung fibroblasts and employing confocal imaging and biochemical fractionation techniques, we show that ribosomes, translation initiation factors and specific RNA-binding proteins localize to nascent focal complexes along the distal edge of migrating lamellipodia. 40S ribosomal subunits appear to associate preferentially with beta3 integrin in focal adhesions at the leading edges of spreading cells, with this association strongly augmented by a synergistic effect of cell engagement with a mixture of extracellular matrix proteins. However, both ribosome and initiation factor localizations do not require de novo protein synthesis. CONCLUSIONS Taken together, these findings demonstrate that repression, complex post-transcriptional regulation and modulation of mRNA stability could potentially be taking place along the distal edge of migrating lamellipodia.
Collapse
|
22
|
Neznanov N, Gorbachev AV, Neznanova L, Komarov AP, Gurova KV, Gasparian AV, Banerjee AK, Almasan A, Fairchild RL, Gudkov AV. Anti-malaria drug blocks proteotoxic stress response: anti-cancer implications. Cell Cycle 2009; 8:3960-70. [PMID: 19901558 DOI: 10.4161/cc.8.23.10179] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The number of physical conditions and chemical agents induce accumulation of misfolded proteins creating proteotoxic stress. This leads to activation of adaptive pro-survival pathway, known as heat shock response (HSR), resulting in expression of additional chaperones. Several cancer treatment approaches, such as proteasome inhibitor Bortezomib and hsp90 inhibitor geldanamycin, involve activation of proteotoxic stress. Low efficacy of these therapies is likely due to the protective effects of HSR induced in treated cells, making this pathway an attractive target for pharmacological suppression. We found that the anti-malaria drugs quinacrine (QC) and emetine prevented HSR in cancer cells, as judged by induction of hsp70 expression. As opposed to emetine, which inhibited general translation, QC did not affect protein synthesis, but rather suppressed inducible HSF1-dependent transcription of the hsp70 gene in a relatively selective manner. The treatment of tumor cells in vitro with a combination of non-toxic concentrations of QC and proteotoxic stress inducers resulted in rapid induction of apoptosis. The effect was similar if QC was substituted by siRNA against hsp70, suggesting that the HSR inhibitory activity of QC was responsible for cell sensitization to proteotoxic stress inducers. QC was also found to enhance the antitumor efficacy of proteotoxic stress inducers in vivo: combinatorial treatment with 17-DMAG + QC resulted in suppression of tumor growth in two mouse syngeneic models. These results reveal that QC is an inhibitor of HSF1-mediated HSR. As such, this compound has significant clinical potential as an adjuvant in therapeutic strategies aimed at exploiting the cytotoxic potential of proteotoxic stress.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
NAD(P)H quinone-oxydoreductase 1 protects eukaryotic translation initiation factor 4GI from degradation by the proteasome. Mol Cell Biol 2009; 30:1097-105. [PMID: 20028737 DOI: 10.1128/mcb.00868-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The eukaryotic translation initiation factor 4GI (eIF4GI) serves as a central adapter in cap-binding complex assembly. Although eIF4GI has been shown to be sensitive to proteasomal degradation, how the eIF4GI steady-state level is controlled remains unknown. Here, we show that eIF4GI exists in a complex with NAD(P)H quinone-oxydoreductase 1 (NQO1) in cell extracts. Treatment of cells with dicumarol (dicoumarol), a pharmacological inhibitor of NQO1 known to preclude NQO1 binding to its protein partners, provokes eIF4GI degradation by the proteasome. Consistently, the eIF4GI steady-state level also diminishes upon the silencing of NQO1 (by transfection with small interfering RNA), while eIF4GI accumulates upon the overexpression of NQO1 (by transfection with cDNA). We further reveal that treatment of cells with dicumarol frees eIF4GI from mRNA translation initiation complexes due to strong activation of its natural competitor, the translational repressor 4E-BP1. As a consequence of cap-binding complex dissociation and eIF4GI degradation, protein synthesis is dramatically inhibited. Finally, we show that the regulation of eIF4GI stability by the proteasome may be prominent under oxidative stress. Our findings assign NQO1 an original role in the regulation of mRNA translation via the control of eIF4GI stability by the proteasome.
Collapse
|
24
|
Willett M, Cowan JL, Vlasak M, Coldwell MJ, Morley SJ. Inhibition of mammalian target of rapamycin (mTOR) signalling in C2C12 myoblasts prevents myogenic differentiation without affecting the hyperphosphorylation of 4E-BP1. Cell Signal 2009; 21:1504-12. [PMID: 19481146 DOI: 10.1016/j.cellsig.2009.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
Current accepted models suggest that hypophosphorylated 4E-binding protein (4E-BP1) binds to initiation factor 4E (eIF4E) to inhibit cap-dependent translation, a process readily reversed by its phosphorylation following activation of mammalian target of rapamycin (mTORC1) signalling. Myogenic differentiation in the C2C12 myoblast model system reflects a concerted and controlled activation of transcription and translation following the exit of cells from the cell cycle. Here we show that myogenic differentiation is associated with increased rates of translation, the up-regulation of both 4E-BP1 mRNA and protein levels and enhanced levels of eIF4E/4E-BP1 complex. Paradoxically, treatment of C2C12 myoblasts with an inhibitor of mTOR signalling (RAD001) which inhibits translation, promotes the hyperphosphorylation of 4E-BP1 on novel sites and prevents the increase in 4E-BP1 levels. In contrast, eIF4E appears to be under translational control with a significant delay between induction of mRNA and subsequent protein expression.
Collapse
Affiliation(s)
- Mark Willett
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN19QG, UK
| | | | | | | | | |
Collapse
|
25
|
Phosphorylation of eIF2alpha in response to 26S proteasome inhibition is mediated by the haem-regulated inhibitor (HRI) kinase. Biochem J 2008; 412:579-88. [PMID: 18290760 DOI: 10.1042/bj20080324] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present study demonstrates that even brief inhibition of degradation by the 26S proteasome inhibits global protein synthesis, mediated through increased phosphorylation of eIF2alpha (eukaryotic translational initiation factor 2alpha) by the HRI (haem-regulated inhibitor) kinase. Exposure of COS-7 cells to the proteasome inhibitor MG-132 (the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-leucinal) for 4 h resulted in a 55-60% decrease in protein synthesis rate compared with control cells. This repression of protein synthesis after treatment with MG-132 is not due to induction of apoptosis, which is known to occur after longer periods of 26S inhibition. Instead, we observed a significantly increased phosphorylation of eIF2alpha, which is known to repress global protein synthesis. In three MEF (mouse embryonic fibroblast) knockout cell lines lacking one of the four kinases known to phosphorylate eIF2alpha, increased phosphorylation of eIF2alpha still occurred after inhibition of the 26S proteasome. These three cell lines included a deletion of the PKR (double-stranded-RNA-dependent protein kinase); a deletion of the PERK (PKR-like endoplasmic reticulum resident kinase); or a deletion of the GCN2 (positive general control of transcription-2) kinase, indicating that none of these kinases was primarily responsible for the observed phosphorylation of eIF2alpha. In contrast, in a fourth MEF knockout cell line, HRI(-/-) cells lacking the HRI kinase failed to increase eIF2alpha phosphorylation upon proteasome inhibitor treatment (MG-132 or various doses of Bortezomib), indicating that the HRI kinase is the primary kinase activated by brief treatment of MEFs with 26S proteasome inhibitors.
Collapse
|
26
|
Neznanov N, Dragunsky EM, Chumakov KM, Neznanova L, Wek RC, Gudkov AV, Banerjee AK. Different effect of proteasome inhibition on vesicular stomatitis virus and poliovirus replication. PLoS One 2008; 3:e1887. [PMID: 18382670 PMCID: PMC2268745 DOI: 10.1371/journal.pone.0001887] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/26/2008] [Indexed: 12/22/2022] Open
Abstract
Proteasome activity is an important part of viral replication. In this study, we examined the effect of proteasome inhibitors on the replication of vesicular stomatitis virus (VSV) and poliovirus. We found that the proteasome inhibitors significantly suppressed VSV protein synthesis, virus accumulation, and protected infected cells from toxic effect of VSV replication. In contrast, poliovirus replication was delayed, but not diminished in the presence of the proteasome inhibitors MG132 and Bortezomib. We also found that inhibition of proteasomes stimulated stress-related processes, such as accumulation of chaperone hsp70, phosphorylation of eIF2α, and overall inhibition of translation. VSV replication was sensitive to this stress with significant decline in replication process. Poliovirus growth was less sensitive with only delay in replication. Inhibition of proteasome activity suppressed cellular and VSV protein synthesis, but did not reduce poliovirus protein synthesis. Protein kinase GCN2 supported the ability of proteasome inhibitors to attenuate general translation and to suppress VSV replication. We propose that different mechanisms of translational initiation by VSV and poliovirus determine their sensitivity to stress induced by the inhibition of proteasomes. To our knowledge, this is the first study that connects the effect of stress induced by proteasome inhibition with the efficiency of viral infection.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America.
| | | | | | | | | | | | | |
Collapse
|
27
|
A decrease in cellular energy status stimulates PERK-dependent eIF2alpha phosphorylation and regulates protein synthesis in pancreatic beta-cells. Biochem J 2008; 410:485-93. [PMID: 18052927 DOI: 10.1042/bj20071367] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, we demonstrate that, in pancreatic beta-cells, eIF2alpha (eukaryotic initiation factor 2alpha) phosphorylation in response to a decrease in glucose concentration is primarily mediated by the activation of PERK [PKR (protein kinase RNA activated)-like endoplasmic reticulum kinase]. We provide evidence that this increase in PERK activity is evoked by a decrease in the energy status of the cell via a potentially novel mechanism that is independent of IRE1 (inositol requiring enzyme 1) activation and the accumulation of unfolded nascent proteins within the endoplasmic reticulum. The inhibition of eIF2alpha phosphorylation in glucose-deprived cells by the overexpression of dominant-negative PERK or an N-terminal truncation mutant of GADD34 (growth-arrest and DNA-damage-inducible protein 34) leads to a 53% increase in the rate of total protein synthesis. Polysome analysis revealed that this coincides with an increase in the amplitude but not the number of ribosomes per mRNA, indicating that eIF2alpha dephosphorylation mobilizes hitherto untranslated mRNAs on to polysomes. In summary, we show that PERK is activated at low glucose concentrations in response to a decrease in energy status and that this plays an important role in glucose-regulated protein synthesis in pancreatic beta-cells.
Collapse
|
28
|
Lelouard H, Schmidt EK, Camosseto V, Clavarino G, Ceppi M, Hsu HT, Pierre P. Regulation of translation is required for dendritic cell function and survival during activation. ACTA ACUST UNITED AC 2008; 179:1427-39. [PMID: 18166652 PMCID: PMC2373495 DOI: 10.1083/jcb.200707166] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control antigen processing and presentation. Here, we show that in response to lipopolysaccharides, protein synthesis is rapidly enhanced in DCs. This enhancement occurs via a PI3K-dependent signaling pathway and is key for DC activation. In addition, we show that later on, in a manner similar to viral or apoptotic stress, DC activation leads to the phosphorylation and proteolysis of important translation initiation factors, thus inhibiting cap-dependent translation. This inhibition correlates with major changes in the origin of the peptides presented by MHC class I and the ability of mature DCs to prevent cell death. Our observations have important implications in linking translation regulation with DC function and survival during the immune response.
Collapse
Affiliation(s)
- Hugues Lelouard
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK. Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem 2008; 388:1301-12. [PMID: 18020946 DOI: 10.1515/bc.2007.149] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dietary zinc deficiency in mice is accompanied by enhanced expression of the zinc uptake transporter Slc39a4 (Zip4) and repressed expression of Slc39a5 (Zip5) in tissues which regulate zinc homeostasis (intestine, pancreas and visceral yolk sac). Herein, mechanisms controlling this differential expression were investigated. The induction of Zip4 mRNA during zinc deficiency, and its repression in response to zinc repletion were found to reflect changes in Zip4 mRNA stability and not changes in the relative rate of transcription of this gene. During zinc deficiency, ZIP4 protein levels are increased and this protein is localized on the apical membranes. Administration of an oral gavage of zinc caused ZIP4 internalization and degradation in enterocytes and visceral endoderm cells. Similarly, ZIP4 is induced by zinc deficiency in cultured mouse Hepa cells and is rapidly degraded in response to added zinc. Zip5 mRNA abundance does not change in response to zinc, but the translation of this mRNA was found to be zinc-responsive. During zinc deficiency, Zip5 mRNA remains associated with polysomes, while the protein is internalized and degraded in enterocytes, acinar cells and endoderm cells. After zinc-gavage, ZIP5 is rapidly resynthesized and targeted to the basolateral membranes of these cell types.
Collapse
Affiliation(s)
- Benjamin P Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160-7421, USA.
| | | | | | | |
Collapse
|
30
|
Upstream open reading frames regulate the expression of the nuclear Wnt13 isoforms. Biochem Biophys Res Commun 2007; 366:1081-8. [PMID: 18155664 DOI: 10.1016/j.bbrc.2007.12.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/14/2007] [Indexed: 12/18/2022]
Abstract
Wnt proteins control cell survival and cell fate during development. Although Wnt expression is tightly regulated in a spatio-temporal manner, the mechanisms involved both at the transcriptional and translational levels are poorly defined. We have identified a downstream translation initiation codon, AUG(+74), in Wnt13B and Wnt13C mRNAs responsible for the expression of Wnt13 nuclear forms. In this report, we demonstrate that the expression of the nuclear Wnt13C form is translationally regulated in response to stress and apoptosis. Though the 5'-leaders of both Wnt13C and Wnt13B mRNAs have an inhibitory effect on translation, they did not display an internal ribosome entry site activity as demonstrated by dicistronic reporter assays. However, mutations or deletions of the upstream AUG(-99) and AUG(+1) initiation codons abrogate these translation inhibitory effects, demonstrating that Wnt13C expression is controlled by upstream open reading frames. Since long 5'-untranslated region with short upstream open reading frames characterize other Wnt transcripts, our present data on the translational control of Wnt13 expression open the way to further studies on the translation control of Wnt expression as a modulator of their subcellular localization and activity.
Collapse
|
31
|
Yamaguchi T, Arai H, Katayama N, Ishikawa T, Kikumoto K, Atomi Y. Age-Related Increase of Insoluble, Phosphorylated Small Heat Shock Proteins in Human Skeletal Muscle. J Gerontol A Biol Sci Med Sci 2007; 62:481-9. [PMID: 17522351 DOI: 10.1093/gerona/62.5.481] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Among mammalian heat shock proteins (Hsps), small Hsps (sHsps) are constitutively expressed in skeletal muscles. We investigated age-related changes of phosphorylation and cellular distribution of representative sHsps (Hsp27 and alphaB-crystallin) in human vastus lateralis muscle under resting conditions. We also examined upstream kinases which may be responsible for phosphorylation of sHsps, namely p38 mitogen-activated protein kinase (MAPK), MAPK-activated protein kinase-2, and extracellular signal-regulated kinase-1/2. The study groups consisted of nine young (15-38 years old) and nine aged (51-79 years old) patients who underwent orthopedic surgery. sHsps protein levels were higher in the insoluble fraction of aged muscles. The phosphorylated states of sHsps were enhanced in both the soluble and insoluble fraction of aged patients. The phosphorylated form of each upstream kinase was elevated in aged patients. Ubiquitinated proteins accumulated in the insoluble fractions of aged muscles. Aging mechanisms may affect the activation process of MAPKs, and the phosphorylation and accumulation of sHsps.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Life Sciences, The Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Lakkaraju AKK, Luyet PP, Parone P, Falguières T, Strub K. Inefficient targeting to the endoplasmic reticulum by the signal recognition particle elicits selective defects in post-ER membrane trafficking. Exp Cell Res 2006; 313:834-47. [PMID: 17239854 DOI: 10.1016/j.yexcr.2006.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 11/29/2022]
Abstract
The signal recognition particle (SRP) is required for protein translocation into the endoplasmic reticulum (ER). With RNA interference we reduced its level about ten-fold in mammalian cells to study its cellular functions. Such low levels proved insufficient for efficient ER-targeting, since the accumulation of several proteins in the secretory pathway was specifically diminished. Although the cells looked unaffected, they displayed noticeable and selective defects in post-ER membrane trafficking. Specifically, the anterograde transport of VSV-G and the retrograde transport of the Shiga toxin B-subunit were stalled at the level of the Golgi whereas the endocytosed transferrin receptor failed to recycle to the plasma membrane. Endocytic membrane trafficking from the plasma membrane to lysosomes or Golgi was undisturbed and major morphological changes in the ER and the Golgi were undetectable at low resolution. Selective membrane trafficking defects were specifically suppressed under conditions when low levels of SRP became sufficient for efficient ER-targeting and are therefore a direct consequence of the lower targeting capacity of cells with reduced SRP levels. Selective post-ER membrane trafficking defects occur at SRP levels sufficient for survival suggesting that changes in SRP levels and their effects on post-ER membrane trafficking might serve as a mechanism to alter temporarily the localization of selected proteins.
Collapse
Affiliation(s)
- Asvin K K Lakkaraju
- Department of Cell Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Tang Y, Eng C. p53 Down-Regulates Phosphatase and Tensin Homologue Deleted on Chromosome 10 Protein Stability Partially through Caspase-Mediated Degradation in Cells with Proteasome Dysfunction. Cancer Res 2006; 66:6139-48. [PMID: 16778187 DOI: 10.1158/0008-5472.can-06-0772] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There has been intense investigation regarding the interaction between the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and p53 tumor suppressors. p53 has been shown to up-regulate PTEN expression as a transcriptional activator. However, clinical observations by immunohistochemistry studies indicate that significant increases in p53 protein levels coexist with reduced or absent expression of PTEN protein in a variety of neoplasias. In this study, we propose a mechanism that begins to explain how p53 can both up-regulate and down-regulate PTEN. We have found that PTEN protein is down-regulated under proteasome dysfunction induced by proteasome inhibitor MG132 in both human lymphoblast cells and MCF7 cells. The reduction of PTEN is coincident with elevated p53 protein levels and the association between PTEN and p53 but independent of its phosphatase activities. Quantitative reverse transcription-PCR indicates that proteasome inhibition does not reduce PTEN message levels but affects PTEN protein stability. The p53 inhibitor, pifithrin-alpha, is able to attenuate the effect of proteasome inhibition. Using ectopic expression studies in p53-null mouse embryonic fibroblasts and p53/PTEN-null PC3 cells, we show that PTEN is more stable in p53-null cells compared with p53-expressing cells. Inhibition of caspases, the downstream targets of p53, particularly caspase-3, can partially restore the stability of PTEN. This study provides the first evidence that p53 is able to down-regulate PTEN protein stability in stressed cells. Our study sheds some light on the mechanisms that regulate PTEN protein stability, which is important to fully elucidate to comprehend the broad neoplastic manifestations of Cowden syndrome/Bannayan-Riley-Ruvalcaba and sporadic cancers.
Collapse
Affiliation(s)
- Yufang Tang
- Genomic Medicine Institute, Cleveland Clinic Foundation, OH 44195, USA
| | | |
Collapse
|
34
|
Willett M, Flint SA, Morley SJ, Pain VM. Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts. Exp Cell Res 2006; 312:2942-53. [PMID: 16822502 DOI: 10.1016/j.yexcr.2006.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/22/2006] [Accepted: 05/30/2006] [Indexed: 11/16/2022]
Abstract
Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin.
Collapse
Affiliation(s)
- Mark Willett
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | |
Collapse
|
35
|
Abstract
Recruitment of the 40S ribosome to the 5' end of a eukaryotic mRNA requires assembly of translation initiation factors eIF4E, the cap-binding protein, together with eIF4A and eIF4G into a complex termed eIF4F. While the translational repressor 4E-BP1 regulates binding of eIF4E to eIF4G, the forces required to construct an eIF4F complex remain unidentified. Here, we establish that the herpes simplex virus-1 (HSV-1) ICP6 polypeptide associates with eIF4G to promote eIF4F complex assembly. Strikingly, release of eIF4E from the 4E-BP1 repressor is insufficient to drive complex formation, suggesting that ICP6 is an eIF4F-assembly chaperone. This is the first example of a translation initiation factor-associated protein that promotes active complex assembly and defines a new, controllable step in the initiation of translation. Homology of the N-terminal, eIF4G-binding segment of ICP6 with cellular chaperones suggest that factors capable of interacting with eIF4G and promoting eIF4F complex assembly may play important roles in a variety of processes where translation complexes need to be remodeled or assembled on populations of newly synthesized or derepressed mRNAs, including development, differentiation, and the response to a broad spectrum of environmental cues.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology and New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
36
|
Abstract
Many cellular signaling molecules exist in different conformations corresponding to active and inactive states. Transition between these states is regulated by reversible modifications, such as phosphorylation, or by binding of nucleotide triphosphates, their regulated hydrolysis to diphosphates, and their exchange against fresh triphosphates. Specificity and efficiency of cellular signaling is further maintained by regulated subcellular localization of signaling molecules as well as regulated protein-protein interaction. Hence, it is not surprising that molecular chaperones--proteins that are able to specifically interact with distinct conformations of other proteins--could per se interfere with cellular signaling. Hence, it is not surprising that chaperones have co-evolved as integral components of signaling networks where they can function in the maturation as well as in regulating the transition between active and inactive state of signaling molecules, such as receptors, transcriptional regulators and protein kinases. Furthermore, new classes of specific chaperones are emerging and their role in histone-mediated chromatin remodeling and RNA folding are under investigation.
Collapse
Affiliation(s)
- M Gaestel
- Institute of Biochemistry, Medical School Hannover, Germany.
| |
Collapse
|
37
|
Gao S, Han Z, Kihara M, Adashi E, Latham KE. Protease inhibitor MG132 in cloning: no end to the nightmare. Trends Biotechnol 2005; 23:66-8. [PMID: 15661341 DOI: 10.1016/j.tibtech.2004.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|