1
|
Inoue A. Nutrient vessel dysfunction can contribute to mucoid degeneration of the posterior cruciate ligament coexisting with lipoma arborescens: A case study. Int J Surg Case Rep 2024; 117:109462. [PMID: 38479129 PMCID: PMC10945196 DOI: 10.1016/j.ijscr.2024.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION With the rapid improvement of magnetic resonance imaging (MRI), mucoid degeneration (MD) of the anterior cruciate ligament (MD-ACL) has become an established disease entity and mechanical factors, such as increased posterior tibial tilt and intercondylar notch impingement, have been proposed. However, symptomatic MD of the posterior cruciate ligament (MD-PCL) remains an orphan disease without any established etiology. PRESENTATION OF CASE A man in his 60s exhibited restricted range of motion with knee pain. MRI revealed PCL enlargement with high-signal intensity and tram-track appearance on T2-weighted sagittal images and lipoma arborescens (LA) in the suprapatellar pouch. On gadolinium-enhanced MRI, the distal PCL was not contrasted. Arthroscopy revealed an almost normal expanded appearance with partial loss of the envelope synovium. Debulking operation was performed. Pathological findings revealed intravascular thrombus formation in early lesions of MD, and intraligamentous vascular degeneration and severity of MD were proportional. DISCUSSION ACL is susceptible to mechanical external forces from surrounding tissues because of its anatomical features that induce protease expression, resulting in MD-ACL with denatured large aggregating proteoglycans deposition. Conversely, occlusion of nutrient vessels within the ligament was observed in this case of MD-PCL. Coexisting LA likely provoked an inflammatory response with hypercoagulability, resulting in thromboembolism of the envelope synovial nutrient vessel. CONCLUSION MD-CL is a disease entity comprising multiple pathologies. Although symptomatic MD-ACL is mainly caused by mechanical factors with a relatively high morbidity rate, nutrient vessel dysfunction can contribute to symptomatic MD-PCL with coexisting LA in middle-aged adults with an extremely low morbidity rate.
Collapse
Affiliation(s)
- Akira Inoue
- Kamiita Orthopedic Hospital, 7-1 Aza Kiminoki, Nishibunn, Kamiita-cho, Itano-gun, Tokushima 771-1330, Japan.
| |
Collapse
|
2
|
Darrieutort-Laffite C, Beach ZM, Weiss SN, Eekhoff JE, Soslowsky LJ. Knockdown of biglycan reveals an important role in maintenance of structural and mechanical properties during tendon aging. J Orthop Res 2023; 41:2287-2294. [PMID: 36822659 PMCID: PMC10444902 DOI: 10.1002/jor.25536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Biglycan, a small leucine-rich proteoglycan (SLRP), is involved in collagen fibrillogenesis and also acts as a signaling molecule. Although decorin has been considered as the primary SLRP in developing and maintaining tendon structure and mechanics, more recent work using inducible knockdown models suggests that biglycan is involved in tendon homeostasis. The purpose of the study was to determine the role of biglycan in tendon homeostasis to maintain mechanical and structural integrity in aged mice. Aged (485 days old) female Bgn+/+ control (wild type [WT], n = 16) and 16 bitransgenic conditional Bgnflox/flox mice (I-Bgn-/- , n = 16) with a tamoxifen-inducible Cre (driven by ROSA) were utilized. After biglycan knockdown, the transgenic model demonstrated effective knockdown of the target gene without any compensation from other SLRPs or type I collagen. Patellar tendon cellularity was not modified after biglycan knockdown. However, biglycan knockdown had an impact on collagen fibrillogenesis with a higher percentage of small diameter fibrils (25-45 nm) and a lower percentage of medium size fibrils (150-165 nm) in I-Bgn-/- tendons. Biglycan knockdown also induced a reduction in the midsubstance modulus and maximum stress compared to WT. Stress relaxation was reduced at 4% strain in I-Bgn-/- tendons but no changes were observed in dynamic modulus and tan delta. As in mature tendons (120 days old), this study showed significant effects of biglycan knockdown on mechanical and structural properties of aged tendons only 30 days after knockdown. These data suggest that biglycan has a major role in maintaining homeostasis in aged tendon.
Collapse
Affiliation(s)
- Christelle Darrieutort-Laffite
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Service de Rhumatologie, CHU Nantes, 1 place Alexis Ricordeau, 44000 Nantes, France
| | - Zakary M. Beach
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie N. Weiss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy E. Eekhoff
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J. Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Korcari A, Nichols AEC, Buckley MR, Loiselle AE. Scleraxis-lineage cells are required for tendon homeostasis and their depletion induces an accelerated extracellular matrix aging phenotype. eLife 2023; 12:e84194. [PMID: 36656751 PMCID: PMC9908079 DOI: 10.7554/elife.84194] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Aged tendons have disrupted homeostasis, increased injury risk, and impaired healing capacity. Understanding mechanisms of homeostatic disruption is crucial for developing therapeutics to retain tendon health through the lifespan. Here, we developed a novel model of accelerated tendon extracellular matrix (ECM) aging via depletion of Scleraxis-lineage cells in young mice (Scx-DTR). Scx-DTR recapitulates many aspects of tendon aging including comparable declines in cellularity, alterations in ECM structure, organization, and composition. Single-cell RNA sequencing demonstrated a conserved decline in tenocytes associated with ECM biosynthesis in aged and Scx-DTR tendons, identifying the requirement for Scleraxis-lineage cells during homeostasis. However, the remaining cells in aged and Scx-DTR tendons demonstrate functional divergence. Aged tenocytes become pro-inflammatory and lose proteostasis. In contrast, tenocytes from Scx-DTR tendons demonstrate enhanced remodeling capacity. Collectively, this study defines Scx-DTR as a novel model of accelerated tendon ECM aging and identifies novel biological intervention points to maintain tendon function through the lifespan.
Collapse
Affiliation(s)
- Antonion Korcari
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Anne EC Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
| | - Mark R Buckley
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| |
Collapse
|
4
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Zappia J, Joiret M, Sanchez C, Lambert C, Geris L, Muller M, Henrotin Y. From Translation to Protein Degradation as Mechanisms for Regulating Biological Functions: A Review on the SLRP Family in Skeletal Tissues. Biomolecules 2020; 10:E80. [PMID: 31947880 PMCID: PMC7023458 DOI: 10.3390/biom10010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix can trigger cellular responses through its composition and structure. Major extracellular matrix components are the proteoglycans, which are composed of a core protein associated with glycosaminoglycans, among which the small leucine-rich proteoglycans (SLRPs) are the largest family. This review highlights how the codon usage pattern can be used to modulate cellular response and discusses the biological impact of post-translational events on SLRPs, including the substitution of glycosaminoglycan moieties, glycosylation, and degradation. These modifications are listed, and their impacts on the biological activities and structural properties of SLRPs are described. We narrowed the topic to skeletal tissues undergoing dynamic remodeling.
Collapse
Affiliation(s)
- Jérémie Zappia
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Marc Joiret
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Liesbet Geris
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Avenue de l’Hôpital, B-4000 Liège, Belgium;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
- Physical therapy and Rehabilitation department, Princess Paola Hospital, Vivalia, B-6900 Marche-en-Famenne, Belgium
- Artialis SA, GIGA Tower, Level 3, CHU Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
6
|
Lee KJ, Comerford EJ, Simpson DM, Clegg PD, Canty-Laird EG. Identification and Characterization of Canine Ligament Progenitor Cells and Their Extracellular Matrix Niche. J Proteome Res 2019; 18:1328-1339. [DOI: 10.1021/acs.jproteome.8b00933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Katie J Lee
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| | - Eithne J Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- School of Veterinary Science, Leahurst Campus, University of Liverpool, Chester High Road, Neston, CH64 7TE, United Kingdom
| | - Deborah M Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- School of Veterinary Science, Leahurst Campus, University of Liverpool, Chester High Road, Neston, CH64 7TE, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool L7 8TX, United Kingdom
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool L7 8TX, United Kingdom
| |
Collapse
|
7
|
Fuller E, Little CB, Melrose J. Interleukin-1α induces focal degradation of biglycan and tissue degeneration in an in-vitro ovine meniscal model. Exp Mol Pathol 2016; 101:214-220. [PMID: 27615609 DOI: 10.1016/j.yexmp.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
We have developed an ovine meniscal explant model where the focal degradative events leading to characteristic fragmentation patterns of biglycan in human OA of the knee and hip, and evident in animal models of knee OA and IVD degeneration are reproduced in culture. Lateral and medial menisci were dissected into outer, mid and inner zones and established in explant culture±IL-1 (10ng/ml). The biglycan species present in conditioned media samples and in GuHCl extracts of tissues were examined by Western blotting using two C-terminal antibodies PR-85 and EF-Bgn. Clear differences were evident in the biglycan species in each meniscal tissue zone with the medial outer meniscus having lower biglycan levels and major fragments of 20, 28, 33 and 36, 39kDa. Similar fragmentation was detected in articular cartilage samples, 42-45kDa core protein species were also detected. Biglycan fragmentation was not as extensive in the IL-1 stimulated meniscal cultures with 36, 39, 42 and 45kDa biglycan species evident. Thus the medial meniscus outer zone displayed the highest levels of biglycan processing in this model and correlated with a major zone of meniscal remodelling in OA in man. Significantly, enzymatic digests of meniscal tissues with MMP-13, ADAMTS-4 and ADAMTS-5 have also generated similar biglycan species in-vitro. Zymography confirmed that the medial outer zone was the region of maximal MMP activity. This model represents a convenient system to recapitulate matrix remodelling events driven by IL-1 in pathological cartilages and in animal models of joint degeneration.
Collapse
Affiliation(s)
- Emily Fuller
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia; School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
8
|
Cook JL, Rio E, Purdam CR, Docking SI. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research? Br J Sports Med 2016; 50:1187-91. [PMID: 27127294 PMCID: PMC5118437 DOI: 10.1136/bjsports-2015-095422] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 11/25/2022]
Abstract
The pathogenesis of tendinopathy and the primary biological change in the tendon that precipitates pathology have generated several pathoaetiological models in the literature. The continuum model of tendon pathology, proposed in 2009, synthesised clinical and laboratory-based research to guide treatment choices for the clinical presentations of tendinopathy. While the continuum has been cited extensively in the literature, its clinical utility has yet to be fully elucidated. The continuum model proposed a model for staging tendinopathy based on the changes and distribution of disorganisation within the tendon. However, classifying tendinopathy based on structure in what is primarily a pain condition has been challenged. The interplay between structure, pain and function is not yet fully understood, which has partly contributed to the complex clinical picture of tendinopathy. Here we revisit and assess the merit of the continuum model in the context of new evidence. We (1) summarise new evidence in tendinopathy research in the context of the continuum, (2) discuss tendon pain and the relevance of a model based on structure and (3) describe relevant clinical elements (pain, function and structure) to begin to build a better understanding of the condition. Our goal is that the continuum model may help guide targeted treatments and improved patient outcomes.
Collapse
Affiliation(s)
- J L Cook
- School of Allied Health, La Trobe University, Bundoora, Australia Australian Centre for Research into Injury in Sport and its Prevention, Federation University
| | - E Rio
- School of Allied Health, La Trobe University, Bundoora, Australia Australian Centre for Research into Injury in Sport and its Prevention, Federation University
| | - C R Purdam
- Australian Centre for Research into Injury in Sport and its Prevention, Federation University Department of Physical Therapies, Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
| | - S I Docking
- School of Allied Health, La Trobe University, Bundoora, Australia Australian Centre for Research into Injury in Sport and its Prevention, Federation University
| |
Collapse
|
9
|
Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration. Stem Cells Int 2015; 2016:3919030. [PMID: 26839559 PMCID: PMC4709784 DOI: 10.1155/2016/3919030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/20/2015] [Indexed: 12/23/2022] Open
Abstract
Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.
Collapse
|
10
|
Torricelli P, Veronesi F, Pagani S, Maffulli N, Masiero S, Frizziero A, Fini M. In vitro tenocyte metabolism in aging and oestrogen deficiency. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2125-36. [PMID: 23274854 PMCID: PMC3825001 DOI: 10.1007/s11357-012-9500-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/05/2012] [Indexed: 05/06/2023]
Abstract
Little is known about tendons and tenocyte biological behaviour during aging and, especially, oestrogen deficiency. The aim of this study was to evaluate in vitro the proliferation and metabolism of tenocytes isolated from the Achilles tendons of ovariectomised (OVX), middle-aged (OLD) and young (YOUNG) rats. An in vitro model of micro-wound healing was also used to assess age and oestrogen deficiency differences in tendon healing. In standard culture condition, OLD and OVX tenocytes showed a significantly lower proliferation rate, collagen I, aggrecan and elastin than YOUNG ones. In OVX group, fibronectin and elastin significantly decreased in comparison to YOUNG and OLD groups, respectively, whereas vascular endothelial growth factor and metalloproteinases-13 increased than those of both YOUNG and OLD groups. In the micro-wound healing model, tenocytes from both OVX and OLD showed a significantly lower healing rate, proliferation rate, collagen I and nitrix oxide in comparison to YOUNG. OVX elastin value was significantly lower than YOUNG one and OVX healing rate and cell migration speed, proliferation rate and fibronectin results were lower, whereas collagen III and metalloproteinase-13 higher in comparison to both YOUNG and OLD groups. These results highlighted how aging and, more significantly, oestrogen deficiency negatively affect tendon metabolism and healing. Our work improves the body of knowledge on the effects of senescence and oestrogen deficiency on tenocyte behaviour and allows further studies to find solution for the prevention of tendon injuries in aging and menopause.
Collapse
Affiliation(s)
- P Torricelli
- Preclinical and Surgical Studies Laboratory, Codivilla Putti Research Institute, Rizzoli Orthopaedic Institute, via di Barbiano, 1/10, 40136, Bologna, Italy,
| | | | | | | | | | | | | |
Collapse
|
11
|
Franchi M, Torricelli P, Giavaresi G, Fini M. Role of moderate exercising on Achilles tendon collagen crimping patterns and proteoglycans. Connect Tissue Res 2013; 54:267-74. [PMID: 23758268 DOI: 10.3109/03008207.2013.807808] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, the morphological and morphometric changes in the collagen crimping pattern of Achilles tendon and metabolism/expression of tenocytes explanted from tendons of running (RUN) and sedentary (SED) rats were investigated to assess the effects of 12 weeks moderate running exercise. The number, the top angle width and the base length of each crimp in three different regions (proximal, central and distal) of RUN and SED tendons were measured with a polarized light microscope. The most significant morphometric differences in the crimps were detectable in the central region of the RUN tendons. In this region, crimps were fewer, larger and more flattened than those of other regions as a consequence of a functional adaptation of extracellular matrix to running, in order to increase tendon stiffness and force transmission efficiency. Conversely, the top angle width of the crimps reduced in proximal and distal regions of the RUN tendons, suggesting that these crimps might act as more reactive mechanical springs, able to store and improve the release of the stored strain energy in most loaded regions. Tenocytes explanted from Achilles tendons of both RUN and SED groups were cultured. Running influenced tenocytes which showed a significant increase in collagen type-I synthesis and proteoglycans production, suggesting enhancement of the loading transmission efficiency and facilitate inter-fibril and inter-fiber sliding.
Collapse
Affiliation(s)
- Marco Franchi
- Department for Life Quality Studies, Faculty of Exercise and Sport Sciences, University of Bologna , Bologna , Italy
| | | | | | | |
Collapse
|
12
|
Samiric T, Handley CJ, Cook J, Parkinson J. GENE EXPRESSION OF MATRIX-DEGRADING ENZYMES IN PATELLAR TENDINOPATHY. Br J Sports Med 2013. [DOI: 10.1136/bjsports-2013-092459.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L, Kumar A, Pathmanathan L, Beason DP, Iozzo RV, Birk DE, Soslowsky LJ. Decorin expression is important for age-related changes in tendon structure and mechanical properties. Matrix Biol 2012. [PMID: 23178232 DOI: 10.1016/j.matbio.2012.11.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aging population is at an increased risk of tendon injury and tendinopathy. Elucidating the molecular basis of tendon aging is crucial to understanding the age-related changes in structure and function in this vulnerable tissue. In this study, the structural and functional features of tendon aging are investigated. In addition, the roles of decorin and biglycan in the aging process were analyzed using transgenic mice at both mature and aged time points. Our hypothesis is that the increase in tendon injuries in the aging population is the result of altered structural properties that reduce the biomechanical function of the tendon and consequently increase susceptibility to injury. Decorin and biglycan are important regulators of tendon structure and therefore, we further hypothesized that decreased function in aged tendons is partly the result of altered decorin and biglycan expression. Biomechanical analyses of mature (day 150) and aged (day 570) patellar tendons revealed deteriorating viscoelastic properties with age. Histology and polarized light microscopy demonstrated decreased cellularity, alterations in tenocyte shape, and reduced collagen fiber alignment in the aged tendons. Ultrastructural analysis of fibril diameter distributions indicated an altered distribution in aged tendons with an increase of large diameter fibrils. Aged wild type tendons maintained expression of decorin which was associated with the structural and functional changes seen in aged tendons. Aged patellar tendons exhibited altered and generally inferior properties across multiple assays. However, decorin-null tendons exhibited significantly decreased effects of aging compared to the other genotypes. The amelioration of the functional deficits seen in the absence of decorin in aged tendons was associated with altered tendon fibril structure. Fibril diameter distributions in the decorin-null aged tendons were comparable to those observed in the mature wild type tendon with the absence of the subpopulation containing large diameter fibrils. Collectively, our findings provide evidence for age-dependent alterations in tendon architecture and functional activity, and further show that lack of stromal decorin attenuates these changes.
Collapse
Affiliation(s)
- Andrew A Dunkman
- The McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Expression and distribution of aggrecanases in human larynx: ADAMTS-5/aggrecanase-2 is the main aggrecanase in laryngeal carcinoma. Biochimie 2012; 95:725-34. [PMID: 23131589 DOI: 10.1016/j.biochi.2012.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/27/2012] [Indexed: 11/21/2022]
Abstract
Members of the ADAMTS family of proteases degrade proteoglycans and thereby have the potential to alter tissue architecture and regulate cellular functions. Aggrecanases are the main enzymes responsible for aggrecan degradation, due to their specific cleavage pattern. In this study, the expression status, the macromolecular organization and localization of ADAMTS-1, ADAMTS-4/aggrecanase-1 and ADAMTS-5/aggrecanase-2 in human normal larynx and laryngeal squamous cell carcinoma (LSCC) were investigated. On mRNA level, the results showed that ADAMTS-4 was the highest expressed enzyme in normal larynx, whereas ADAMTS-5 was the main aggrecanase in LSCC presenting a stage-related increase up to stage III (8-fold higher expression compared to normal), and thereafter decreased in stage IV. Accordingly, immunohistochemical analysis showed that ADAMTS-5, but not ADAMTS-4, was highly expressed by carcinoma cells. Sequential extraction revealed an altered distribution and organization of multiple molecular forms (latent, activated and fragmented forms) of the enzymes within the cancerous and their corresponding macroscopically normal laryngeal tissues, compared to the normal ones. Importantly, these analyses indicated that critical macromolecular changes occurred from the earliest LSCC stages not only in malignant parts of the tissue but also in areas that were not in proximity to carcinoma cells and appeared otherwise normal. Overall, the results of the present study show that ADAMTS-5/aggrecanase-2 is the main aggrecanase present in laryngeal carcinoma suggesting a critical role for the enzyme in aggrecan degradation and laryngeal tissue destruction during tumor progression.
Collapse
|
15
|
Tendon structure changes after maximal exercise in the Thoroughbred horse: use of ultrasound tissue characterisation to detect in vivo tendon response. Vet J 2012; 194:338-42. [PMID: 22658820 DOI: 10.1016/j.tvjl.2012.04.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 11/22/2022]
Abstract
Investigations into the response of the superficial digital flexor tendon (SDFT) of the Thoroughbred horse to mechanical stimuli have been limited to in vitro cell culture studies focused primarily on gene expression of critical matrix proteins. It is uncertain how well in vitro outcomes translate to the tendon of the horse during exercise. The current study examined changes in tendon structure in response to maximal exercise using ultrasound tissue characterisation (UTC) to scan the SDFT prior to and after competitive racing. UTC uses contiguous transverse ultrasound images to assess the dynamics of the echopattern, which has a close relationship with changes in the 3-D ultra-structure of the tendon. Using UTC, it was possible to detect subtle changes in the dynamics of the echopattern, with a reduction in pixels that represent aligned and integer collagen tendon bundles on days 1 and 2 post-race when compared to pre-race (P<0.05). The echopattern of these tendons returned to baseline on day 3. This change in echopattern was not seen in control horses. It was concluded that short-term changes in the SDFT following maximal exercise could be detected using UTC.
Collapse
|
16
|
A comparative evaluation of the small leucine-rich proteoglycans of pathological human intervertebral discs. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2012; 21 Suppl 2:S154-9. [PMID: 22358337 DOI: 10.1007/s00586-012-2179-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/12/2012] [Accepted: 01/28/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Proteoglycans are important to the functioning of the intervertebral disc. In addition to aggrecan there are the small leucine-rich proteoglycans (SLRPs). These are less common but in other locations their functions include collagen organisation, sequestering growth factors and stimulating inflammation. We have performed a comparative analysis of the SLRP core protein species present in intervertebral discs with various pathologies. METHODS Eighteen intervertebral discs from patients with scoliosis (n = 7, 19-53 years), degenerative disc disease (n = 6, 35-51 years) and herniations (n = 5, 33-58 years) were used in this study. Proteoglycans were dissociatively extracted from disc tissues and the SLRPs (biglycan, decorin, fibromodulin, keratocan and lumican) assessed by Western blotting following deglycosylation with chondroitinase ABC and keratanase. RESULTS Intact SLRP core proteins and a number of core protein fragments were identified in most of the discs examined. Biglycan and fibromodulin were the most extensively fragmented. Keratocan generally occurred as two bands, one representing the intact core protein, the other a smaller fragment. The intact core protein of lumican was detected in all samples with fragmentation evident in only one of the older scoliotic discs. Decorin was less obvious in the disc samples and showed little fragmentation. CONCLUSION In this cohort of pathological intervertebral discs, fragmentation of certain SLRP core proteins was common, indicating that some SLRPs are extensively processed during the pathological process. Identification of specific SLRP fragments which correlate with disc pathology may not only help understand their aetiopathogeneses, but also provide biomarkers which can be used to monitor disease progression or to identify particular disc disorders.
Collapse
|
17
|
Parkinson J, Samiric T, Ilic MZ, Cook J, Feller JA, Handley CJ. Change in proteoglycan metabolism is a characteristic of human patellar tendinopathy. ACTA ACUST UNITED AC 2010; 62:3028-35. [DOI: 10.1002/art.27587] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol 2010; 6:262-8. [PMID: 20308995 DOI: 10.1038/nrrheum.2010.43] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tendons are designed to withstand considerable loads. Mechanical loading of tendon tissue results in upregulation of collagen expression and increased synthesis of collagen protein, the extent of which is probably regulated by the strain experienced by the resident fibroblasts (tenocytes). This increase in collagen formation peaks around 24 h after exercise and remains elevated for about 3 days. The degradation of collagen proteins also rises after exercise, but seems to peak earlier than the synthesis. Despite the ability of tendons to adapt to loading, repetitive use often results in injuries, such as tendinopathy, which is characterized by pain during activity, localized tenderness upon palpation, swelling and impaired performance. Tendon histological changes include reduced numbers and rounding of fibroblasts, increased content of proteoglycans, glycosaminoglycans and water, hypervascularization and disorganized collagen fibrils. At the molecular level, the levels of messenger RNA for type I and III collagens, proteoglycans, angiogenic factors, stress and regenerative proteins and proteolytic enzymes are increased. Tendon microrupture and material fatigue have been suggested as possible injury mechanisms, thus implying that one or more 'weak links' are present in the structure. Understanding how tendon tissue adapts to mechanical loading will help to unravel the pathogenesis of tendinopathy.
Collapse
Affiliation(s)
- S Peter Magnusson
- Institute of Sports Medicine, Bispebjerg Hospital and Center for Healthy Aging, University of Copenhagen, Bispebjerg Bakke, Copenhagen NV, Denmark
| | | | | |
Collapse
|
19
|
|
20
|
Ilic MZ, Martinac B, Samiric T, Handley CJ. Effects of glucosamine on proteoglycan loss by tendon, ligament and joint capsule explant cultures. Osteoarthritis Cartilage 2008; 16:1501-8. [PMID: 18554935 DOI: 10.1016/j.joca.2008.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/27/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the effect of glucosamine on the loss of newly synthesized radiolabeled large and small proteoglycans by bovine tendon, ligament and joint capsule. DESIGN The kinetics of loss of (35)S-labeled large and small proteoglycans from explant cultures of tendon, ligament and joint capsule treated with 10mM glucosamine was investigated over a 10-day culture period. The kinetics of loss of (35)S-labeled small proteoglycans and the formation of free [(35)S]sulfate were determined for the last 10 days of a 15-day culture period. The proteoglycan core proteins were analyzed by gel electrophoresis followed by fluorography. The metabolism of tendon, ligament and joint capsule explants exposed to 10mM glucosamine was evaluated by incorporation of [(3)H]serine and [(35)S]sulfate into protein and glycosaminoglycans, respectively. RESULTS Glucosamine at 10mM stimulated the loss of small proteoglycans from ligament explant cultures. This was due to the increased loss of both macromolecular and free [(35)S]sulfate to the medium indicating that glucosamine affected the release of small proteoglycans as well as their intracellular degradation. The degradation pattern of small proteoglycans in ligament was not affected by glucosamine. In contrast, glucosamine did not have an effect on the loss of large or small proteoglycans from tendon and joint capsule or large proteoglycans from ligament explant cultures. The metabolism of cells in tendon, ligament and joint capsule was not impaired by the presence of 10mM glucosamine. CONCLUSIONS Glucosamine stimulated the loss of small proteoglycans from ligament but did not have an effect on small proteoglycan catabolism in joint capsule and tendon or large proteoglycan catabolism in ligament, tendon or synovial capsule. The consequences of glucosamine therapy at clinically relevant concentrations on proteoglycan catabolism in joint fibrous connective tissues need to be further assessed in an animal model.
Collapse
Affiliation(s)
- M Z Ilic
- School of Human Biosciences, La Trobe University, Victoria 3086, Australia.
| | | | | | | |
Collapse
|
21
|
Bhattacharyya S, Kotlo K, Shukla S, Danziger RS, Tobacman JK. Distinct effects of N-acetylgalactosamine-4-sulfatase and galactose-6-sulfatase expression on chondroitin sulfates. J Biol Chem 2008; 283:9523-30. [PMID: 18285341 DOI: 10.1074/jbc.m707967200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sulfatase enzymes, N-acetylgalactosamine-4-sulfatase (arylsulfatase B (ASB)) and galactose-6-sulfatase (GALNS) hydrolyze sulfate groups of CS. Deficiencies of ASB and GALNS are associated with the mucopolysaccharidoses. To determine if expression of ASB and GALNS impacts on glycosaminoglycans (GAGs) and proteoglycans beyond their association with the mucopolysaccharidoses, we modified the expression of ASB and GALNS by overexpression and by silencing with small interference RNA in MCF-7 cells. Content of total sulfated GAG (sGAG), chondroitin 4-sulfate (C4S), and total chondroitin sulfates (CSs) was measured following immunoprecipitation with C4S and CS antibodies and treatment with chondroitinase ABC. Following silencing of ASB or GALNS, total sGAG, C4S, and CS increased significantly. Following overexpression of ASB or GALNS, total sGAG, C4S, and CS declined significantly. Measurements following chondroitinase ABC treatment of the cell lysates demonstrated no change in the content of the other sGAG, including heparin, heparan sulfate, dermatan sulfate, and keratan sulfate. Following overexpression of ASB and immunoprecipitation with C4S antibody, virtually no sGAG was detectable. Total sGAG content increased to 23.39 (+/-1.06) microg/mg of protein from baseline of 12.47 (+/-0.68) microg/mg of protein following ASB silencing. mRNA expression of core proteins of the CS-containing proteoglycans, syndecan-1 and decorin, was significantly up-regulated following overexpression of ASB and GALNS. Soluble syndecan-1 protein increased following increases in ASB and GALNS and reduced following silencing, inversely to changes in CS. These findings demonstrate that modification of expression of the lysosomal sulfatases ASB and GALNS regulates the content of CSs.
Collapse
|
22
|
Abstract
Injuries to tendons are common in both human athletes as well as in animals, such as the horse, which are used for competitive purposes. Furthermore, such injuries are also increasing in prevalence in the ageing, sedentary population. Tendon diseases often respond poorly to treatment and require lengthy periods of rehabilitation. The tendon has a unique extracellular matrix, which has developed to withstand the mechanical demands of such tensile-load bearing structures. Following injury, any repair process is inadequate and results in tissue that is distinct from original tendon tissue. There is growing evidence for the key role of the tendon cell (tenocyte) in both the normal physiological homeostasis and regulation of the tendon matrix and the pathological derangements that occur in disease. In particular, the tenocyte is considered to have a major role in effecting the subclinical matrix degeneration that is thought to occur prior to clinical disease, as well as in the severe degradative events that occur in the tendon at the onset of clinical disease. Furthermore, the tenocyte is likely to have a central role in the production of the biologically inadequate fibrocartilaginous repair tissue that develops subsequent to tendinopathy. Understanding the biology of the tenocyte is central to the development of appropriate interventions and drug therapies that will either prevent the onset of disease, or lead to more rapid and appropriate repair of injured tendon. Central to this is a full understanding of the proteolytic response in the tendon in disease by such enzymes as metalloproteinases, as well as the control of the inappropriate fibrocartilaginous differentiation. Finally, it is important that we understand the role of both intrinsic and extrinsic cellular elements in the repair process in the tendon subsequent to injury.
Collapse
Affiliation(s)
- Peter D Clegg
- Department of Veterinary Clinical Science, University of Liverpool Veterinary Teaching Hospital, Leahurst, Neston, UK.
| | | | | |
Collapse
|
23
|
Rees SG, Waggett AD, Dent CM, Caterson B. Inhibition of aggrecan turnover in short-term explant cultures of bovine tendon. Matrix Biol 2007; 26:280-90. [PMID: 17300926 DOI: 10.1016/j.matbio.2007.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 01/08/2007] [Indexed: 11/29/2022]
Abstract
The large aggregating proteoglycan, aggrecan, better known for its physiological role in articular cartilage where it serves to facilitate resistance of compressive forces during joint articulation, is also present within the distinct functional regions of tendon (i.e., compressed/fibrocartilaginous and tensional). Previous studies demonstrate that an increased turnover of aggrecan occurs in tendon, which is mediated principally by the 'aggrecanases' and, as such, these proteinases may play an important role in the normal functioning of the tissue. In the present study, utilising bovine tendon explant culture systems, we demonstrated that aggrecanase-mediated tendon aggrecan turnover may be modulated by generic metalloproteinase inhibitors (i.e., the aggrecanase inhibitor, actinonin and the broad-spectrum MMP inhibitor, marimistat). As expected, no MMP-generated aggrecan catabolites were detected in the culture system, suggesting that tendon aggrecanases may be inhibited by marimistat. Furthermore, immunohistochemical analyses revealed that aggrecan metabolites are present in the endotenon, surrounding the collagen fibre bundles, suggesting that aggrecan may provide functions of water imbibement and resistance of reversible and repeated compressive loads manifest between the collagen fibres; these functions, in turn, may be associated with increased aggrecan turnover in this tissue. Thus, inhibition of tendon aggrecanases and consequently aggrecan turnover in this tissue, may be related to some of the deleterious effects observed in the tendons of patients undergoing drug therapy with broad-spectrum MMP inhibitors for cancer and arthritis.
Collapse
Affiliation(s)
- Sarah G Rees
- School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| | | | | | | |
Collapse
|
24
|
Samiric T, Ilic MZ, Handley CJ. Sulfated polysaccharides inhibit the catabolism and loss of both large and small proteoglycans in explant cultures of tendon. FEBS J 2006; 273:3479-88. [PMID: 16817908 DOI: 10.1111/j.1742-4658.2006.05348.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of two highly sulfated polysaccharides, calcium pentosan polysulfate and heparin, on the loss of newly synthesized proteoglycans from the matrix of explant cultures of bovine tendon. The tensional region of deep flexor tendon was incubated with [35S]sulfate for 6 h and then placed in culture for up to 15 days. The amount of radiolabel associated with proteoglycans lost to the medium and retained in the matrix was determined for each day in culture. It was shown that both sulfated polysaccharides at concentrations of 1000 microg x mL(-1) inhibited the loss of 35S-labeled large and small proteoglycans from the matrix and concomitant with this was a retention of chemical levels of proteoglycans in the explant cultures. In other explant cultures that were maintained in culture in the presence of both agents for more than 5 days after incubation with [35S]sulfate, inhibition of the intracellular catabolic pathway was evident, indicating that these highly sulfated polysaccharides also interfered with the intracellular uptake of small proteoglycans by tendon cells.
Collapse
Affiliation(s)
- Tom Samiric
- School of Human Biosciences, La Trobe University, Melbourne, Australia.
| | | | | |
Collapse
|
25
|
Abstract
Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or "overuse" is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries.
Collapse
Affiliation(s)
- G P Riley
- Soft Tissue Injury and Repair Group, Rheumatology Research Unit, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|