1
|
Stansfield C, Parsons KJ. Developmental bias as a cause and consequence of adaptive radiation and divergence. Front Cell Dev Biol 2024; 12:1453566. [PMID: 39479512 PMCID: PMC11521891 DOI: 10.3389/fcell.2024.1453566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Efforts to reconcile development and evolution have demonstrated that development is biased, with phenotypic variation being more readily produced in certain directions. However, how this "developmental bias" can influence micro- and macroevolution is poorly understood. In this review, we demonstrate that defining features of adaptive radiations suggest a role for developmental bias in driving adaptive divergence. These features are i) common ancestry of developmental systems; ii) rapid evolution along evolutionary "lines of least resistance;" iii) the subsequent repeated and parallel evolution of ecotypes; and iv) evolutionary change "led" by biased phenotypic plasticity upon exposure to novel environments. Drawing on empirical and theoretical data, we highlight the reciprocal relationship between development and selection as a key driver of evolutionary change, with development biasing what variation is exposed to selection, and selection acting to mold these biases to align with the adaptive landscape. Our central thesis is that developmental biases are both the causes and consequences of adaptive radiation and divergence. We argue throughout that incorporating development and developmental bias into our thinking can help to explain the exaggerated rate and scale of evolutionary processes that characterize adaptive radiations, and that this can be best achieved by using an eco-evo-devo framework incorporating evolutionary biology, development, and ecology. Such a research program would demonstrate that development is not merely a force that imposes constraints on evolution, but rather directs and is directed by evolutionary forces. We round out this review by highlighting key gaps in our understanding and suggest further research programs that can help to resolve these issues.
Collapse
Affiliation(s)
- Corin Stansfield
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
2
|
McGlothlin JW, Kobiela ME, Wright HV, Kolbe JJ, Losos JB, III EDB. Conservation and Convergence of Genetic Architecture in the Adaptive Radiation of Anolis Lizards. Am Nat 2022; 200:E207-E220. [DOI: 10.1086/721091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Fasanelli MN, Milla Carmona PS, Soto IM, Tuero DT. Allometry, sexual selection and evolutionary lines of least resistance shaped the evolution of exaggerated sexual traits within the genus Tyrannus. J Evol Biol 2022; 35:669-679. [PMID: 35290678 DOI: 10.1111/jeb.14000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Abstract
Variational properties hold a fundamental role in shaping biological evolution, exerting control over the magnitude and direction of evolutionary change elicited by microevolutionary processes that sort variation, such as selection or drift. We studied the genus Tyrannus as a model for examining the conditions and drivers that facilitate the repeated evolution of exaggerated, secondary sexual traits in the face of significant functional limitations. In particular, we explore the role of allometry, sexual selection and their interaction, on the diversification of tail morphology in the genus, assessing whether and how they promoted or constrained phenotypic evolution. Non-deep-forked species tend to show reduced sexual dimorphism and moderate allometric variation in tail shape. The exaggerated and functionally constrained long feathers of deep-forked species, T. savana and T. forficatus, which show both marked sexual dimorphism and allometric tail shape variation, independently diverged from the rest of the genus following the same direction of main interspecific variation accrued during the evolution of non-deep-forked species. Moreover, the latter direction is also aligned with axes summarising sexual dimorphism and allometric variation on deep-forked species, a feature lacking in the rest of the species. Thus, exaggerated tail morphologies are interpreted as the result of amplified divergence through reorientation and co-option of allometric variation by sexual selection, repeatedly driving morphology along a historically favoured direction of cladogenetic evolution.
Collapse
Affiliation(s)
- Martín Nicolás Fasanelli
- Instituto de Ecología, Genética y Evolución de Buenos Aires - IEGEBA (CONICET-UBA), Departamento de Ecología, Genética y Evolución -DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Biología Integral de Sistemas Evolutivos, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo S Milla Carmona
- Laboratorio de Biología Integral de Sistemas Evolutivos, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Ecosistemas Marinos Fósiles, Instituto de Estudios Andinos - IDEAN (CONICET-UBA), Buenos Aires, Argentina
| | - Ignacio María Soto
- Instituto de Ecología, Genética y Evolución de Buenos Aires - IEGEBA (CONICET-UBA), Departamento de Ecología, Genética y Evolución -DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Biología Integral de Sistemas Evolutivos, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Tomás Tuero
- Instituto de Ecología, Genética y Evolución de Buenos Aires - IEGEBA (CONICET-UBA), Departamento de Ecología, Genética y Evolución -DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Rössner GE, Costeur L, Scheyer TM. Antiquity and fundamental processes of the antler cycle in Cervidae (Mammalia). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2020; 108:3. [PMID: 33326046 PMCID: PMC7744388 DOI: 10.1007/s00114-020-01713-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
The origins of the regenerative nature of antlers, being branched and deciduous apophyseal appendages of frontal bones of cervid artiodactyls, have long been associated with permanent evolutionary precursors. In this study, we provide novel insight into growth modes of evolutionary early antlers. We analysed a total of 34 early antlers affiliated to ten species, including the oldest known, dating from the early and middle Miocene (approx. 18 to 12 million years old) of Europe. Our findings provide empirical data from the fossil record to demonstrate that growth patterns and a regular cycle of necrosis, abscission and regeneration are consistent with data from modern antlers. The diverse histological analyses indicate that primary processes and mechanisms of the modern antler cycle were not gradually acquired during evolution, but were fundamental from the earliest record of antler evolution and, hence, explanations why deer shed antlers have to be rooted in basic histogenetic mechanisms. The previous interpretation that proximal circular protuberances, burrs, are the categorical traits for ephemerality is refuted.
Collapse
Affiliation(s)
- Gertrud E. Rössner
- Staatliche Naturwissenschaftliche Sammlungen Bayerns - Bayerische Staatssammlung für Paläontologie und Geologie, Richard Wagner Str. 10, 80333 München, Germany
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany
| | - Loïc Costeur
- Naturhistorisches Museum Basel, Augustinergasse 2, 4001 Basel, Switzerland
| | - Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, 8006 Zürich, Switzerland
| |
Collapse
|
5
|
Population Divergence along a Genetic Line of Least Resistance in the Tree Species Eucalyptus globulus. Genes (Basel) 2020; 11:genes11091095. [PMID: 32962131 PMCID: PMC7565133 DOI: 10.3390/genes11091095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
The evolutionary response to selection depends on the distribution of genetic variation in traits under selection within populations, as defined by the additive genetic variance-covariance matrix (G). The structure and evolutionary stability of G will thus influence the course of phenotypic evolution. However, there are few studies assessing the stability of G and its relationship with population divergence within foundation tree species. We compared the G-matrices of Mainland and Island population groups of the forest tree Eucalyptus globulus, and determined the extent to which population divergence aligned with within-population genetic (co)variation. Four key wood property traits exhibiting signals of divergent selection were studied—wood density, extractive content, and lignin content and composition. The comparison of G-matrices of the mainland and island populations indicated that the G-eigenstructure was relatively well preserved at an intra-specific level. Population divergence tended to occur along a major direction of genetic variation in G. The observed conservatism of G, the moderate evolutionary timescale, and close relationship between genetic architecture and population trajectories suggest that genetic constraints may have influenced the evolution and diversification of the E. globulus populations for the traits studied. However, alternative scenarios, including selection aligning genetic architecture and population divergence, are discussed.
Collapse
|
6
|
Comparative analysis of the multivariate genetic architecture of morphological traits in three species of Gomphocerine grasshoppers. Heredity (Edinb) 2019; 124:367-382. [PMID: 31649325 DOI: 10.1038/s41437-019-0276-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/08/2019] [Accepted: 09/18/2019] [Indexed: 11/08/2022] Open
Abstract
Evolutionary change is the change in trait values across generations, and usually occurs in multidimensional trait space rather than along isolated traits. Genetic covariation influences the magnitude and direction of evolutionary change and can be statistically summarized by the additive genetic (co)variance matrix, G. While G can affect the response to selection, it is exposed to evolutionary change by selection and genetic drift, but the magnitude and speed of these changes are poorly understood. We use comparative G matrix analyses to assess evolution of the shape and orientation of G over longer timescales in three species of Gomphocerine grasshoppers. We estimate 10 × 10 G matrices for five morphological traits expressed in both sexes. We find low-to-moderate heritabilities (average 0.36), mostly large cross-sex correlations (average 0.54) and moderate between-trait correlations (average 0.34). G matrices differ significantly among species with wing length contributing most to these differences. Wing length is the trait that is most divergent among species, suggesting it has been under selection during species divergence. The more distantly related species, Pseudochorthippus parallelus, was the most different in the shape of G. Projection of contemporary genetic variation into the divergence space D illustrates that the major axis of genetic variation in Gomphocerippus rufus is aligned with divergence from Chorthippus biguttulus, while the major axis of genetic variation in neither of the species is aligned with the divergence between Pseudochorthippus parallelus and the other two species. Our results demonstrate significant differences in G matrices with a phylogenetic signal in the differentiation.
Collapse
|
7
|
Varón-González C, Pallares LF, Debat V, Navarro N. Mouse Skull Mean Shape and Shape Robustness Rely on Different Genetic Architectures and Different Loci. Front Genet 2019; 10:64. [PMID: 30809244 PMCID: PMC6379267 DOI: 10.3389/fgene.2019.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
The genetic architecture of skull shape has been extensively studied in mice and the results suggest a highly polygenic and additive basis. In contrast few studies have explored the genetic basis of the skull variability. Canalization and developmental stability are the two components of phenotypic robustness. They have been proposed to be emergent properties of the genetic networks underlying the development of the trait itself, but this hypothesis has been rarely tested empirically. Here we use outbred mice to investigate the genetic architecture of canalization of the skull shape by implementing a genome-wide marginal epistatic test on 3D geometric morphometric data. The same data set had been used previously to explore the genetic architecture of the skull mean shape and its developmental stability. Here, we address two questions: (1) Are changes in mean shape and changes in shape variance associated with the same genomic regions? and (2) Do canalization and developmental stability rely on the same loci and genetic architecture and do they involve the same patterns of shape variation? We found that unlike skull mean shape, among-individual shape variance and fluctuating asymmetry (FA) show a total lack of additive effects. They are both associated with complex networks of epistatic interactions involving many genes (protein-coding and regulatory elements). Remarkably, none of the genomic loci affecting mean shape contribute these networks despite their enrichment for genes involved in craniofacial variation and diseases. We also found that the patterns of shape FA and individual variation are largely similar and rely on similar multilocus epistatic genetic networks, suggesting that the processes channeling variation within and among individuals are largely common. However, the loci involved in these two networks are completely different. This in turn underlines the difference in the origin of the variation at these two levels, and points at buffering processes that may be specific to each level.
Collapse
Affiliation(s)
- Ceferino Varón-González
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Luisa F. Pallares
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Vincent Debat
- Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, UA, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
- EPHE, PSL University, Dijon, France
| |
Collapse
|
8
|
McGlothlin JW, Kobiela ME, Wright HV, Mahler DL, Kolbe JJ, Losos JB, Brodie ED. Adaptive radiation along a deeply conserved genetic line of least resistance in Anolis lizards. Evol Lett 2018; 2:310-322. [PMID: 30283684 PMCID: PMC6121822 DOI: 10.1002/evl3.72] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
On microevolutionary timescales, adaptive evolution depends upon both natural selection and the underlying genetic architecture of traits under selection, which may constrain evolutionary outcomes. Whether such genetic constraints shape phenotypic diversity over macroevolutionary timescales is more controversial, however. One key prediction is that genetic constraints should bias the early stages of species divergence along “genetic lines of least resistance” defined by the genetic (co)variance matrix, G. This bias is expected to erode over time as species means and G matrices diverge, allowing phenotypes to evolve away from the major axis of variation. We tested for evidence of this signal in West Indian Anolis lizards, an iconic example of adaptive radiation. We found that the major axis of morphological evolution was well aligned with a major axis of genetic variance shared by all species despite separation times of 20–40 million years, suggesting that divergence occurred along a conserved genetic line of least resistance. Further, this signal persisted even as G itself evolved, apparently because the largest evolutionary changes in G were themselves aligned with the line of genetic least resistance. Our results demonstrate that the signature of genetic constraint may persist over much longer timescales than previously appreciated, even in the presence of evolving genetic architecture. This pattern may have arisen either because pervasive constraints have biased the course of adaptive evolution or because the G matrix itself has been shaped by selection to conform to the adaptive landscape.
Collapse
Affiliation(s)
- Joel W McGlothlin
- Department of Biological Sciences Virginia Tech Blacksburg Virginia 24061
| | - Megan E Kobiela
- Department of Ecology Evolution, and Behavior, University of Minnesota St. Paul Minnesota 55108
| | - Helen V Wright
- Computing Community Consortium Computing Research Association Washington District of Columbia 20036
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S 3B2 Canada
| | - Jason J Kolbe
- Department of Biological Sciences University of Rhode Island Kingston Rhode Island 02881
| | - Jonathan B Losos
- Department of Biology Washington University Saint Louis Missouri 63130
| | - Edmund D Brodie
- Department of Biology and Mountain Lake Biological Station University of Virginia Charlottesville Virginia 22904
| |
Collapse
|
9
|
Lucas LK, Nice CC, Gompert Z. Genetic constraints on wing pattern variation in
Lycaeides
butterflies: A case study on mapping complex, multifaceted traits in structured populations. Mol Ecol Resour 2018. [DOI: 10.1111/1755-0998.12777] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Chris C. Nice
- Department of Biology Texas State University San Marcos TX USA
| | - Zachariah Gompert
- Department of Biology Utah State University Logan UT USA
- Ecology Center Utah State University Logan UT USA
| |
Collapse
|
10
|
Walter GM, Aguirre JD, Blows MW, Ortiz-Barrientos D. Evolution of Genetic Variance during Adaptive Radiation. Am Nat 2018; 191:E108-E128. [PMID: 29570402 DOI: 10.1086/696123] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.
Collapse
|
11
|
Teague C, Youngblood JP, Ragan K, Angilletta MJ, VandenBrooks JM. A positive genetic correlation between hypoxia tolerance and heat tolerance supports a controversial theory of heat stress. Biol Lett 2017; 13:rsbl.2017.0309. [PMID: 29118239 DOI: 10.1098/rsbl.2017.0309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/18/2017] [Indexed: 11/12/2022] Open
Abstract
We used quantitative genetics to test a controversial theory of heat stress, in which animals overheat when the demand for oxygen exceeds the supply. This theory, referred to as oxygen- and capacity-limited thermal tolerance, predicts a positive genetic correlation between hypoxia tolerance and heat tolerance. We demonstrate the first genetic correlation of this kind in a model organism, Drosophila melanogaster Genotypes more likely to fly under hypoxic stress (12% O2) were also more likely to fly under heat stress (39°C). This finding prompts new questions about mechanisms and limits of adaptation to heat stress.
Collapse
Affiliation(s)
- Collin Teague
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Kinley Ragan
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
12
|
Chebib J, Guillaume F. What affects the predictability of evolutionary constraints using a G-matrix? The relative effects of modular pleiotropy and mutational correlation. Evolution 2017; 71:2298-2312. [PMID: 28755417 DOI: 10.1111/evo.13320] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023]
Abstract
Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype-phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix (G-matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G-matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G-matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G-matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy.
Collapse
Affiliation(s)
- Jobran Chebib
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
13
|
Siren J, Ovaskainen O, Merilä J. Structure and stability of genetic variance-covariance matrices: A Bayesian sparse factor analysis of transcriptional variation in the three-spined stickleback. Mol Ecol 2017; 26:5099-5113. [PMID: 28746754 DOI: 10.1111/mec.14265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/06/2017] [Indexed: 11/30/2022]
Abstract
The genetic variance-covariance matrix (G) is a quantity of central importance in evolutionary biology due to its influence on the rate and direction of multivariate evolution. However, the predictive power of empirically estimated G-matrices is limited for two reasons. First, phenotypes are high-dimensional, whereas traditional statistical methods are tuned to estimate and analyse low-dimensional matrices. Second, the stability of G to environmental effects and over time remains poorly understood. Using Bayesian sparse factor analysis (BSFG) designed to estimate high-dimensional G-matrices, we analysed levels variation and covariation in 10,527 expressed genes in a large (n = 563) half-sib breeding design of three-spined sticklebacks subject to two temperature treatments. We found significant differences in the structure of G between the treatments: heritabilities and evolvabilities were higher in the warm than in the low-temperature treatment, suggesting more and faster opportunity to evolve in warm (stressful) conditions. Furthermore, comparison of G and its phenotypic equivalent P revealed the latter is a poor substitute of the former. Most strikingly, the results suggest that the expected impact of G on evolvability-as well as the similarity among G-matrices-may depend strongly on the number of traits included into analyses. In our results, the inclusion of only few traits in the analyses leads to underestimation in the differences between the G-matrices and their predicted impacts on evolution. While the results highlight the challenges involved in estimating G, they also illustrate that by enabling the estimation of large G-matrices, the BSFG method can improve predicted evolutionary responses to selection.
Collapse
Affiliation(s)
- J Siren
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - O Ovaskainen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Helsinki, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - J Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Punzalan D, Rowe L. Concordance between stabilizing sexual selection, intraspecific variation, and interspecific divergence in Phymata. Ecol Evol 2016; 6:7997-8009. [PMID: 27878072 PMCID: PMC5108252 DOI: 10.1002/ece3.2537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/03/2016] [Accepted: 09/15/2016] [Indexed: 11/22/2022] Open
Abstract
Empirical studies show that lineages typically exhibit long periods of evolutionary stasis and that relative levels of within-species trait covariance often correlate with the extent of between-species trait divergence. These observations have been interpreted by some as evidence of genetic constraints persisting for long periods of time. However, an alternative explanation is that both intra- and interspecific variation are shaped by the features of the adaptive landscape (e.g., stabilizing selection). Employing a genus of insects that are diverse with respect to a suite of secondary sex traits, we related data describing nonlinear phenotypic (sexual) selection to intraspecific trait covariances and macroevolutionary divergence. We found support for two key predictions (1) that intraspecific trait covariation would be aligned with stabilizing selection and (2) that there would be restricted macroevolutionary divergence in the direction of stabilizing selection. The observed alignment of all three matrices offers a point of caution in interpreting standing variability as metrics of evolutionary constraint. Our results also illustrate the power of sexual selection for determining variation observed at both short and long timescales and account for the apparently slow evolution of some secondary sex characters in this lineage.
Collapse
Affiliation(s)
- David Punzalan
- Department of Natural HistoryRoyal Ontario MuseumTorontoONCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Locke Rowe
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
15
|
Ivey CT, Dudley LS, Hove AA, Emms SK, Mazer SJ. Outcrossing and photosynthetic rates vary independently within two Clarkia species: implications for the joint evolution of drought escape physiology and mating system. ANNALS OF BOTANY 2016; 118:897-905. [PMID: 27443300 PMCID: PMC5055815 DOI: 10.1093/aob/mcw134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 05/11/2023]
Abstract
Background and Aims Mating systems of plants are diverse and evolutionarily labile. Abiotic environmental factors, such as seasonal drought, may impose selection on physiological traits that could lead to transitions in mating system if physiological traits are genetically correlated with traits that influence mating system. Within Clarkia, self-fertilizing taxa have higher photosynthetic rates, earlier flowering phenology, faster individual floral development and more compressed flowering periods than their outcrossing sister taxa, potentially reducing the selfing taxa's exposure to drought. In theory, this contrast in trait combinations between sister taxa could have arisen via correlated evolution due to pleiotropy or genetic linkage. Alternatively, each trait may evolve independently as part of a life history that is adaptive in seasonally dry environments. Methods To evaluate these hypotheses, we examined relationships between photosynthetic rates (adjusted for plant height and leaf node position) and outcrossing rates (estimated by allozyme variation in progeny arrays) during two consecutive years in multiple wild populations of two mixed-mating Clarkia taxa, each of which is sister to a derived selfing taxon. If the negative association between photosynthetic rate and outcrossing previously observed between sister taxa reflects correlated evolution due to a strong negative genetic correlation between these traits, then a similarly negative relationship would be observed within populations of each taxon. By contrast, if the combination of elevated photosynthetic rates and reduced outcrossing evolved independently within taxa, we predicted no consistent relationship between photosynthetic rate and outcrossing rate. Key Results We found no significant difference in outcrossing rates within populations between groups of plants with high versus low photosynthetic rates. Conclusions Overall, these results provide support for the hypothesis that the joint divergence in photosynthetic rate and mating system observed between Clarkia sister taxa is the result of independent evolutionary transitions.
Collapse
Affiliation(s)
- Christopher T. Ivey
- California State University, Chico, CA 95929-0515, USA
- *For correspondence. E-mail
| | - Leah S. Dudley
- University of Wisconsin, Stout, Menomonie, WI 54751, USA
| | - Alisa A. Hove
- Warren Wilson College, Asheville, NC 28815-6217, USA
| | | | | |
Collapse
|
16
|
Multivariate Phenotypic Evolution: Divergent Acoustic Signals and Sexual Selection in Gryllus Field Crickets. Evol Biol 2016. [DOI: 10.1007/s11692-016-9388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Muñoz-Muñoz F, Carreira VP, Martínez-Abadías N, Ortiz V, González-José R, Soto IM. Drosophila wing modularity revisited through a quantitative genetic approach. Evolution 2016; 70:1530-41. [PMID: 27272402 DOI: 10.1111/evo.12975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/14/2016] [Indexed: 02/03/2023]
Abstract
To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo-distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance-generating developmental processes occur and/or the magnitude of variation that they produce favor proximo-distal, rather than anterior-posterior, modularity in the Drosophila wing.
Collapse
Affiliation(s)
- Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Avinguda de l'Eix Central, Edifici C, E-08193 Bellaterra (Cerdanyola del Vallès), Spain.
| | - Valeria Paula Carreira
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET) DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Guiraldes 2160, Buenos Aires, Argentina
| | - Neus Martínez-Abadías
- CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Victoria Ortiz
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET) DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Guiraldes 2160, Buenos Aires, Argentina
| | - Rolando González-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Argentina
| | - Ignacio M Soto
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET) DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Guiraldes 2160, Buenos Aires, Argentina
| |
Collapse
|
18
|
Bolstad GH, Hansen TF, Pélabon C, Falahati-Anbaran M, Pérez-Barrales R, Armbruster WS. Genetic constraints predict evolutionary divergence in Dalechampia blossoms. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130255. [PMID: 25002700 PMCID: PMC4084540 DOI: 10.1098/rstb.2013.0255] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.
Collapse
Affiliation(s)
- Geir H Bolstad
- Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Thomas F Hansen
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway
| | - Christophe Pélabon
- Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Mohsen Falahati-Anbaran
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway School of Biology and Center of Excellence in Phylogeny of Living Organisms, University of Tehran, 14155-6455 Tehran, Iran
| | | | - W Scott Armbruster
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK Institute of Arctic Biology, University of Alaska, Fairbanks AK 99775, USA
| |
Collapse
|
19
|
Swanson EM, Snell-Rood EC. A Molecular Signaling Approach to Linking Intraspecific Variation and Macro-evolutionary Patterns. Integr Comp Biol 2014; 54:805-21. [DOI: 10.1093/icb/icu057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Shape variation in the Skull Within and Between Wild Populations of the Raccoon Dog (Nyctereutes procyonoides) in Japan. MAMMAL STUDY 2014. [DOI: 10.3106/041.039.0206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
The divergence between ecotypes in a Littorina saxatilis hybrid zone is aligned with natural selection, not with intra-ecotype variation. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9695-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
|
23
|
Prôa M, O'Higgins P, Monteiro LR. Type I error rates for testing genetic drift with phenotypic covariance matrices: a simulation study. Evolution 2012; 67:185-95. [PMID: 23289571 DOI: 10.1111/j.1558-5646.2012.01746.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies of evolutionary divergence using quantitative genetic methods are centered on the additive genetic variance-covariance matrix (G) of correlated traits. However, estimating G properly requires large samples and complicated experimental designs. Multivariate tests for neutral evolution commonly replace average G by the pooled phenotypic within-group variance-covariance matrix (W) for evolutionary inferences, but this approach has been criticized due to the lack of exact proportionality between genetic and phenotypic matrices. In this study, we examined the consequence, in terms of type I error rates, of replacing average G by W in a test of neutral evolution that measures the regression slope between among-population variances and within-population eigenvalues (the Ackermann and Cheverud [AC] test) using a simulation approach to generate random observations under genetic drift. Our results indicate that the type I error rates for the genetic drift test are acceptable when using W instead of average G when the matrix correlation between the ancestral G and P is higher than 0.6, the average character heritability is above 0.7, and the matrices share principal components. For less-similar G and P matrices, the type I error rates would still be acceptable if the ratio between the number of generations since divergence and the effective population size (t/N(e)) is smaller than 0.01 (large populations that diverged recently). When G is not known in real data, a simulation approach to estimate expected slopes for the AC test under genetic drift is discussed.
Collapse
Affiliation(s)
- Miguel Prôa
- Centre for Anatomical and Human Sciences, The Hull York Medical School, The University of York, Heslington, York, YO10 5DD, United Kingdom.
| | | | | |
Collapse
|
24
|
Draghi JA, Whitlock MC. PHENOTYPIC PLASTICITY FACILITATES MUTATIONAL VARIANCE, GENETIC VARIANCE, AND EVOLVABILITY ALONG THE MAJOR AXIS OF ENVIRONMENTAL VARIATION. Evolution 2012; 66:2891-902. [DOI: 10.1111/j.1558-5646.2012.01649.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Abstract
Because of its importance in directing evolutionary trajectories, there has been considerable interest in comparing variation among genetic variance-covariance (G) matrices. Numerous statistical approaches have been suggested but no general analysis of the relationship among these methods has previously been published. In this study, we used data from a half-sib experiment and simulations to explore the results of applying eight tests (T method, modified Mantel test, Bartlett's test, Flury hierarchy, jackknife-manova, jackknife-eigenvalue test, random skewers, selection skewers). Whereas a randomization approach produced acceptable estimates, those from a bootstrap were typically unacceptable and we recommend randomization as the preferred method. All methods except the jackknife-eigenvalue test gave similar results although a fine-scale analysis suggested that the former group can be subdivided into two or possibly three groups, hierarchical tests, skewers and the rest (jackknife-manova, modified Mantel, T method, probably Bartlett's). An advantage of the jackknife methods is that they permit tests of association with other factors, such as in this case, temperature and sex. We recommend applying all the tests described in this article, with the exception of the T method, and provide R functions for this purpose.
Collapse
Affiliation(s)
- D A Roff
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
26
|
Conner JK, Karoly K, Stewart C, Koelling VA, Sahli HF, Shaw FH. Rapid Independent Trait Evolution despite a Strong Pleiotropic Genetic Correlation. Am Nat 2011; 178:429-41. [DOI: 10.1086/661907] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Kimmel CB, Cresko WA, Phillips PC, Ullmann B, Currey M, von Hippel F, Kristjánsson BK, Gelmond O, McGuigan K. Independent axes of genetic variation and parallel evolutionary divergence of opercle bone shape in threespine stickleback. Evolution 2011; 66:419-34. [PMID: 22276538 DOI: 10.1111/j.1558-5646.2011.01441.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Evolution of similar phenotypes in independent populations is often taken as evidence of adaptation to the same fitness optimum. However, the genetic architecture of traits might cause evolution to proceed more often toward particular phenotypes, and less often toward others, independently of the adaptive value of the traits. Freshwater populations of Alaskan threespine stickleback have repeatedly evolved the same distinctive opercle shape after divergence from an oceanic ancestor. Here we demonstrate that this pattern of parallel evolution is widespread, distinguishing oceanic and freshwater populations across the Pacific Coast of North America and Iceland. We test whether this parallel evolution reflects genetic bias by estimating the additive genetic variance-covariance matrix (G) of opercle shape in an Alaskan oceanic (putative ancestral) population. We find significant additive genetic variance for opercle shape and that G has the potential to be biasing, because of the existence of regions of phenotypic space with low additive genetic variation. However, evolution did not occur along major eigenvectors of G, rather it occurred repeatedly in the same directions of high evolvability. We conclude that the parallel opercle evolution is most likely due to selection during adaptation to freshwater habitats, rather than due to biasing effects of opercle genetic architecture.
Collapse
Affiliation(s)
- Charles B Kimmel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kolbe JJ, Revell LJ, Szekely B, Brodie ED, Losos JB. CONVERGENT EVOLUTION OF PHENOTYPIC INTEGRATION AND ITS ALIGNMENT WITH MORPHOLOGICAL DIVERSIFICATION IN CARIBBEAN ANOLIS ECOMORPHS. Evolution 2011; 65:3608-24. [PMID: 22133229 DOI: 10.1111/j.1558-5646.2011.01416.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason J Kolbe
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cambridge, Massachusetts 02138, USA.
| | | | | | | | | |
Collapse
|
29
|
Gray DA. Speciation, Divergence, and the Origin of Gryllus rubens: Behavior, Morphology, and Molecules. INSECTS 2011; 2:195-209. [PMID: 26467622 PMCID: PMC4553458 DOI: 10.3390/insects2020195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/16/2022]
Abstract
The last 25 years or so has seen a huge resurgence of interest in speciation research. This has coincided with the development and widespread use of new tools in molecular genetics, especially DNA sequencing, to inform ecological and evolutionary questions. Here I review about a decade of work on the sister species of field crickets Gryllus texensis and G. rubens. This work has included analysis of morphology, behavior, and the mitochondrial DNA molecule. The molecular work in particular has dramatically re-shaped my interpretation of the speciational history of these taxa, suggesting that rather than ‘sister’ species we should consider these taxa as ‘mother-daughter’ species with G. rubens derived from within a subset of ancestral G. texensis.
Collapse
Affiliation(s)
- David A Gray
- Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA.
| |
Collapse
|
30
|
Klingenberg CP, Debat V, Roff DA. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure. Evolution 2010; 64:2935-51. [PMID: 20482613 DOI: 10.1111/j.1558-5646.2010.01030.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of developmental and genetic integration for evolution is contentious. One hypothesis states that integration acts as a constraint on evolution, whereas an alternative is that developmental and genetic systems evolve to match the functional modularity of organisms. This study examined a morphological structure, the cricket wing, where developmental and functional modules are discordant, making it possible to distinguish the two alternatives. Wing shape was characterized with geometric morphometrics, quantitative genetic information was extracted using a full-sibling breeding design, and patterns of developmental integration were inferred from fluctuating asymmetry of wing shape. The patterns of genetic, phenotypic, and developmental integration were clearly similar, but not identical. Heritabilities for different shape variables varied widely, but no shape variables were devoid of genetic variation. Simulated selection for specific shape changes produced predicted responses with marked deflections due to the genetic covariance structure. Three hypotheses of modularity according to the wing structures involved in sound production were inconsistent with the genetic, phenotypic, or developmental covariance structure. Instead, there appears to be strong integration throughout the wing. The hypothesis that genetic and developmental integration evolve to match functional modularity can therefore be rejected for this example.
Collapse
Affiliation(s)
- Christian Peter Klingenberg
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| | | | | |
Collapse
|
31
|
|
32
|
Berner D, Stutz WE, Bolnick DI. FORAGING TRAIT (CO)VARIANCES IN STICKLEBACK EVOLVE DETERMINISTICALLY AND DO NOT PREDICT TRAJECTORIES OF ADAPTIVE DIVERSIFICATION. Evolution 2010; 64:2265-77. [DOI: 10.1111/j.1558-5646.2010.00982.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Abstract
Many evolutionary processes can lead to a change in the correlation between continuous characters over time or on different branches of a phylogenetic tree. Shifts in genetic or functional constraint, in the selective regime, or in some combination thereof can influence both the evolution of continuous traits and their relation to each other. These changes can often be mapped on a phylogenetic tree to examine their influence on multivariate phenotypic diversification. We propose a new likelihood method to fit multiple evolutionary rate matrices (also called evolutionary variance-covariance matrices) to species data for two or more continuous characters and a phylogeny. The evolutionary rate matrix is a matrix containing the evolutionary rates for individual characters on its diagonal, and the covariances between characters (of which the evolutionary correlations are a function) elsewhere. To illustrate our approach, we apply the method to an empirical dataset consisting of two features of feeding morphology sampled from 28 centrarchid fish species, as well as to data generated via phylogenetic numerical simulations. We find that the method has appropriate type I error, power, and parameter estimation. The approach presented herein is the first to allow for the explicit testing of how and when the evolutionary covariances between characters have changed in the history of a group.
Collapse
Affiliation(s)
- Liam J Revell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
34
|
BERNER D, ADAMS DC, GRANDCHAMP AC, HENDRY AP. Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. J Evol Biol 2008; 21:1653-65. [DOI: 10.1111/j.1420-9101.2008.01583.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Angert AL, Bradshaw Jr HD, Schemske DW. USING EXPERIMENTAL EVOLUTION TO INVESTIGATE GEOGRAPHIC RANGE LIMITS IN MONKEYFLOWERS. Evolution 2008; 62:2660-75. [DOI: 10.1111/j.1558-5646.2008.00471.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Weisbecker V, Nilsson M. Integration, heterochrony, and adaptation in pedal digits of syndactylous marsupials. BMC Evol Biol 2008; 8:160. [PMID: 18501017 PMCID: PMC2430710 DOI: 10.1186/1471-2148-8-160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 05/25/2008] [Indexed: 11/23/2022] Open
Abstract
Background Marsupial syndactyly is a curious morphology of the foot found in all species of diprotodontian and peramelemorph marsupials. It is traditionally defined as a condition in which digits II and III of the foot are bound by skin and are reduced. Past treatments of marsupial syndactyly have not considered the implications of this unique morphology for broader issues of digit development and evolution, and the ongoing debate regarding its phylogenetic meaning lacks a broad empirical basis. This study undertakes the first interdisciplinary characterisation of syndactyly, using variance/covariance matrix comparisons of morphometric measurements, locomotor indices, ossification sequences, and re-assessment of the largely anecdotal data on the phylogenetic distribution of tarsal/metatarsal articulations and "incipient syndactyly". Results Syndactylous digits have virtually identical variance/covariance matrices and display heterochronic ossification timing with respect to digits IV/V. However, this does not impact on overall locomotor adaptation patterns in the syndactylous foot as determined by analysis of locomotor predictor ratios. Reports of incipient syndactyly in some marsupial clades could not be confirmed; contrary to previous claims, syndactyly does not appear to impact on tarsal bone arrangement. Conclusion The results suggest that marsupial syndactyly originates from a constraint that is rooted in early digit ontogeny and results in evolution of the syndactylous digits as a highly integrated unit. Although convergent evolution appears likely, syndactyly in Diprotodontia and Peramelemorpha may occur through homologous developmental processes. We argue that the term "syndactyly" is a misnomer because the marsupial condition only superficially resembles its name-giving human soft-tissue syndactyly.
Collapse
Affiliation(s)
- Vera Weisbecker
- School of Biological, Earth and Environmental Sciences, University of New South Wales, UNSW/Sydney, NSW 2052, Australia.
| | | |
Collapse
|
37
|
Doroszuk A, Wojewodzic MW, Gort G, Kammenga JE. Rapid divergence of genetic variance-covariance matrix within a natural population. Am Nat 2008; 171:291-304. [PMID: 18271724 DOI: 10.1086/527478] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The matrix of genetic variances and covariances (G matrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that the G matrix be stable. Yet the timescale and conditions promoting G matrix stability in natural populations remain unclear. We studied stability of the G matrix in a 20-year evolution field experiment, where a population of the cosmopolitan parthenogenetic soil nematode Acrobeloides nanus was subjected to drift and divergent selection (benign and stress environments). Selection regime did not influence the level of absolute genetic constraints: under both regimes, two genetic dimensions for three life-history traits were identified. A substantial response to selection in principal components structure and in general matrix pattern was indicated by three statistical methods. G structure was also influenced by drift, with higher divergence under benign conditions. These results show that the G matrix might evolve rapidly in natural populations. The observed high dynamics of G structure probably represents the general feature of asexual species and limits the predictive power of G in phenotypic evolution analyses.
Collapse
Affiliation(s)
- Agnieszka Doroszuk
- Laboratory of Nematology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Hohenlohe PA, Arnold SJ. MIPoD: a hypothesis-testing framework for microevolutionary inference from patterns of divergence. Am Nat 2008; 171:366-85. [PMID: 18194086 PMCID: PMC2432089 DOI: 10.1086/527498] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite the many triumphs of comparative biology during the past few decades, the field has remained strangely divorced from evolutionary genetics. In particular, comparative methods have failed to incorporate multivariate process models of microevolution that include genetic constraint in the form of the G matrix. Here we explore the insights that might be gained by such an analysis. A neutral model of evolution by genetic drift that depends on effective population size and the G matrix predicts a probability distribution for divergence of population trait means on a phylogeny. Use of a maximum likelihood (ML) framework then allows us to compare independent direct estimates of G with the ML estimates based on the observed pattern of trait divergence among taxa. We assess the departure from neutrality, and thus the role of different types of selection and other forces, in a stepwise hypothesis-testing procedure based on parameters for the size, shape, and orientation of G. We illustrate our approach with a test case of data on vertebral number evolution in garter snakes.
Collapse
Affiliation(s)
- Paul A Hohenlohe
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
39
|
EROUKHMANOFF F, SVENSSON EI. Phenotypic integration and conserved covariance structure in calopterygid damselflies. J Evol Biol 2008; 21:514-26. [DOI: 10.1111/j.1420-9101.2007.01488.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Affiliation(s)
- Rafael L Rodríguez
- Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Theoretical quantitative genetics provides a framework for reconstructing past selection and predicting future patterns of phenotypic differentiation. However, the usefulness of the equations of quantitative genetics for evolutionary inference relies on the evolutionary stability of the additive genetic variance-covariance matrix (G matrix). A fruitful new approach for exploring the evolutionary dynamics of G involves the use of individual-based computer simulations. Previous studies have focused on the evolution of the eigenstructure of G. An alternative approach employed in this paper uses the multivariate response-to-selection equation to evaluate the stability of G. In this approach, I measure similarity by the correlation between response-to-selection vectors due to random selection gradients. I analyze the dynamics of G under several conditions of correlational mutation and selection. As found in a previous study, the eigenstructure of G is stabilized by correlational mutation and selection. However, over broad conditions, instability of G did not result in a decreased consistency of the response to selection. I also analyze the stability of G when the correlation coefficients of correlational mutation and selection and the effective population size change through time. To my knowledge, no prior study has used computer simulations to investigate the stability of G when correlational mutation and selection fluctuate. Under these conditions, the eigenstructure of G is unstable under some simulation conditions. Different results are obtained if G matrix stability is assessed by eigenanalysis or by the response to random selection gradients. In this case, the response to selection is most consistent when certain aspects of the eigenstructure of G are least stable and vice versa.
Collapse
Affiliation(s)
- Liam J Revell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
42
|
Revell LJ. TESTING THE GENETIC CONSTRAINT HYPOTHESIS IN A PHYLOGENETIC CONTEXT: A SIMULATION STUDY. Evolution 2007; 61:2720-7. [DOI: 10.1111/j.1558-5646.2007.00216.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Abstract
In 1996, Schluter showed that the direction of morphological divergence of closely related species is biased toward the line of least genetic resistance, represented by g(max), the leading eigenvector of the matrix of genetic variance-covariance (the G-matrix). G is used to predict the direction of evolutionary change in natural populations. However, this usage requires that G is sufficiently constant over time to have enough predictive significance. Here, we explore the alternative explanation that G can evolve due to gene flow to conform to the direction of divergence between incipient species. We use computer simulations in a mainland-island migration model with stabilizing selection on two quantitative traits. We show that a high level of gene flow from a mainland population is required to significantly affect the orientation of the G-matrix in an island population. The changes caused by the introgression of the mainland alleles into the island population affect all aspects of the shape of G (size, eccentricity, and orientation) and lead to the alignment of g(max) with the line of divergence between the two populations' phenotypic optima. Those changes decrease with increased correlation in mutational effects and with a correlated selection. Our results suggest that high migration rates, such as those often seen at the intraspecific level, will substantially affect the shape and orientation of G, whereas low migration (e.g., at the interspecific level) is unlikely to substantially affect the evolution of G.
Collapse
Affiliation(s)
- Frédéric Guillaume
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
44
|
Bégin M, Schoen DJ. Transposable elements, mutational correlations, and population divergence in Caenorhabditis elegans. Evolution 2007; 61:1062-70. [PMID: 17492961 DOI: 10.1111/j.1558-5646.2007.00097.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transposable element activity is thought to be responsible for a large portion of all mutations, but its influence on the evolution of populations has not been well studied. Using mutation accumulation experiments with the nematode Caenorhabditis elegans, we investigated the impact of transposable element activity on the production of mutational variances and covariances. The experiments involved the use of two mutator strains (RNAi-deficient mutants) that are characterized by high levels of germline transposition, as well as the Bristol N2 strain, which lacks germline transposition. We found that transposition led to an increase in mutational heritabilities, as well as to the intensification of correlation patterns observed in the absence of transposition. No mutational trade-offs were detected and mutations generally had a deleterious effect on components of fitness. We also tested whether the pattern of mutational covariation could be used to predict observed patterns of population divergence in this species. Using 15 natural populations, we found that population divergence of C. elegans in multivariate phenotypic space occurred in directions only partially concordant with mutation, and thus other evolutionary factors, such as natural selection and genetic drift, must be acting to produce divergence within this species. Our results suggest that mutations induced by mobile elements in C. elegans are similar to other spontaneous mutations with respect to their contribution to the microevolution of quantitative traits.
Collapse
Affiliation(s)
- Mattieu Bégin
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montréal, Québec, H3A 1B1, Canada
| | | |
Collapse
|
45
|
Berner D, Blanckenhorn WU. Grasshopper ontogeny in relation to time constraints: adaptive divergence and stasis. J Anim Ecol 2007; 75:130-9. [PMID: 16903050 DOI: 10.1111/j.1365-2656.2005.01028.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Life history theory generally predicts a trade-off between shortjuvenile development and large adult size, assuming invariant growth rates within species. This pivotal assumption has been explicitly tested in few organisms. 2. We studied ontogeny in 13 populations of Omocestus viridulus grasshoppers under common garden conditions. High-altitude populations, facing short growing seasons and thus seasonal time constraints, were found to grow at a similar rate to low altitude conspecifics. 3. Instead, high-altitude grasshoppers evolved faster development, and the correlated change in body size led to an altitudinal size cline mediating a trade-off with female fecundity. 4. An additional juvenile stage occurred in low- but not high-altitude females. This difference is probably due to the evolution of lowered critical size thresholds in high-altitude grasshoppers to accelerate development. 5. We found a strikingly lower growth rate in males than females that we interpret as the outcome of concurrent selection for protandry and small male size. 6. Within populations, large individuals developed faster than small individuals, suggesting within-population genetic variation in growth rates. 7. We provide evidence that different time constraints (seasonal, protandry selection) can lead to different evolutionary responses in intrinsic growth, and that correlations among ontogenetic traits within populations cannot generally be used to predict life history adaptation among populations. Moreover, our study illustrates that comparisons of ontogenetic patterns can shed light on the developmental basis underlying phenotypic evolution.
Collapse
Affiliation(s)
- Daniel Berner
- Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Reckenholzstr. 191, CH-8046 Zürich, Switzerland.
| | | |
Collapse
|
46
|
Hunt G. EVOLUTIONARY DIVERGENCE IN DIRECTIONS OF HIGH PHENOTYPIC VARIANCE IN THE OSTRACODE GENUS POSEIDONAMICUS. Evolution 2007; 61:1560-76. [PMID: 17598740 DOI: 10.1111/j.1558-5646.2007.00129.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trait variation and covariation are understood to influence the response of populations to natural selection on generational time scales, but their role, if any, in shaping long-term macroevolutionary divergence is still unclear. The present study uses the rich fossil record of the ostracode genus Poseidonamicus to reconstruct in great detail the evolutionary history of a set of landmark-based morphometric characters. This reconstruction included two kinds of evolutionary inferences: ancestor-descendant transitions among populations repeatedly sampled at the same location and divergence between lineages measured as independent contrasts on a phylogeny. This reconstructed history was then used to test if evolutionary changes were concentrated in directions (traits or combinations of traits) with high phenotypic variance. Two different statistics of association between evolution and variation tested the null hypothesis that evolutionary changes occur in random directions with respect to trait variability. The first of these measured the similarity between the directions of evolutionary change and the axis of maximum variance, and the second measured the degree to which evolutionary changes were concentrated in directions of high phenotypic variation. Randomization tests indicated that both kinds of evolutionary inferences (ancestor-descendant and phylogenetic contrasts) occurred preferentially in directions of high phenotypic variance (and close to the axis of maximal variation), suggesting that within-population variation can structure long-term divergence. This effect decayed after a few million years, but at least for one metric, never disappeared completely. These results are consistent with Schluter's genetic constraints model in which evolutionary trajectories on adaptive landscapes are deflected by variation within and covariation among traits.
Collapse
Affiliation(s)
- Gene Hunt
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. Box 37012, Washington, DC, 20013-7012, USA.
| |
Collapse
|
47
|
Abstract
Quantitative genetics is at or is fast approaching its centennial. In this perspective I consider five current issues pertinent to the application of quantitative genetics to evolutionary theory. First, I discuss the utility of a quantitative genetic perspective in describing genetic variation at two very different levels of resolution, (1) in natural, free-ranging populations and (2) to describe variation at the level of DNA transcription. Whereas quantitative genetics can serve as a very useful descriptor of genetic variation, its greater usefulness is in predicting evolutionary change, particularly when used in the first instance (wild populations). Second, I review the contributions of Quantitative trait loci (QLT) analysis in determining the number of loci and distribution of their genetic effects, the possible importance of identifying specific genes, and the ability of the multivariate breeder's equation to predict the results of bivariate selection experiments. QLT analyses appear to indicate that genetic effects are skewed, that at least 20 loci are generally involved, with an unknown number of alleles, and that a few loci have major effects. However, epistatic effects are common, which means that such loci might not have population-wide major effects: this question waits upon (QTL) analyses conducted on more than a few inbred lines. Third, I examine the importance of research into the action of specific genes on traits. Although great progress has been made in identifying specific genes contributing to trait variation, the high level of gene interactions underlying quantitative traits makes it unlikely that in the near future we will have mechanistic models for such traits, or that these would have greater predictive power than quantitative genetic models. In the fourth section I present evidence that the results of bivariate selection experiments when selection is antagonistic to the genetic covariance are frequently not well predicted by the multivariate breeder's equation. Bivariate experiments that combine both selection and functional analyses are urgently needed. Finally, I discuss the importance of gaining more insight, both theoretical and empirical, on the evolution of the G and P matrices.
Collapse
Affiliation(s)
- Derek A Roff
- Department of Biology, University of California, Riverside, California 92521, USA.
| |
Collapse
|
48
|
Cheverud JM, Marroig G. Research Article Comparing covariance matrices: random skewers method compared to the common principal components model. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000300027] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Abstract
Quantitative genetics provides a powerful framework for studying phenotypic evolution and the evolution of adaptive genetic variation. Central to the approach is G, the matrix of additive genetic variances and covariances. G summarizes the genetic basis of the traits and can be used to predict the phenotypic response to multivariate selection or to drift. Recent analytical and computational advances have improved both the power and the accessibility of the necessary multivariate statistics. It is now possible to study the relationships between G and other evolutionary parameters, such as those describing the mutational input, the shape and orientation of the adaptive landscape, and the phenotypic divergence among populations. At the same time, we are moving towards a greater understanding of how the genetic variation summarized by G evolves. Computer simulations of the evolution of G, innovations in matrix comparison methods, and rapid development of powerful molecular genetic tools have all opened the way for dissecting the interaction between allelic variation and evolutionary process. Here I discuss some current uses of G, problems with the application of these approaches, and identify avenues for future research.
Collapse
Affiliation(s)
- Katrina McGuigan
- Center for Ecology and Evolutionary Biology, 5289 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
50
|
Nosil P, Crespi BJ, Sandoval CP, Kirkpatrick M. Migration and the Genetic Covariance between Habitat Preference and Performance. Am Nat 2006; 167:E66-78. [PMID: 16673338 DOI: 10.1086/499383] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 10/17/2005] [Indexed: 11/03/2022]
Abstract
Studies of the genetic covariance between habitat preference and performance have reported conflicting outcomes ranging from no covariance to strong covariance. The causes of this variability remain unclear. Here we show that variation in the magnitude of genetic covariance can result from variability in migration regimes. Using data from walking stick insects and a mathematical model, we find that genetic covariance within populations between host plant preference and a trait affecting performance on different hosts (cryptic color pattern) varies in magnitude predictably among populations according to migration regimes. Specifically, genetic covariance within populations is high in heterogeneous habitats where migration between populations locally adapted to different host plants generates nonrandom associations (i.e., linkage disequilibrium) between alleles at color pattern and host preference loci. Conversely, genetic covariance is low in homogeneous habitats where a single host exists and migration between hosts does not occur. Our results show that habitat structure and patterns of migration can strongly affect the evolution and variability of genetic covariance within populations.
Collapse
Affiliation(s)
- P Nosil
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | | | | | | |
Collapse
|