1
|
Patlar B, Fulham L, Civetta A. A predominant role of genotypic variation in both expression of sperm competition genes and paternity success in Drosophila melanogaster. Proc Biol Sci 2023; 290:20231715. [PMID: 37727083 PMCID: PMC10509582 DOI: 10.1098/rspb.2023.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Sperm competition is a crucial aspect of male reproductive success in many species, including Drosophila melanogaster, and seminal fluid proteins (Sfps) can influence sperm competitiveness. However, the combined effect of environmental and genotypic variation on sperm competition gene expression remains poorly understood. Here, we used Drosophila Genetic Reference Panel (DGRP) inbred lines and manipulated developmental population density (i.e. larval density) to test the effects of genotype, environment and genotype-by-environment interactions (GEI) on the expression of the known sperm competition genes Sex Peptide, Acp36DE and CG9997. High larval density resulted in reduced adult body size, but expression of sperm competition genes remained unaffected. Furthermore, we found no significant GEI but genotypic effects in the expression of SP and Acp36DE. Our results also revealed GEI for relative competitive paternity success (second male paternity; P2), with genes' expression positively correlated with P2. Given the effect of genotype on the expression of genes, we conducted a genome-wide association study (GWAS) and identified polymorphisms in putative cis-regulatory elements as predominant factors regulating the expression of SP and Acp36DE. The association of genotypic variation with sperm competition outcomes, and the resilience of sperm competition genes' expression against environmental challenges, demonstrates the importance of genome variation background in reproductive fitness.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Lauren Fulham
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| |
Collapse
|
2
|
Zeender V, Pfammatter S, Roschitzki B, Dorus S, Lüpold S. Genotype-by-environment interactions influence the composition of the Drosophila seminal proteome. Proc Biol Sci 2023; 290:20231313. [PMID: 37700651 PMCID: PMC10498039 DOI: 10.1098/rspb.2023.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Ejaculate proteins are key mediators of post-mating sexual selection and sexual conflict, as they can influence both male fertilization success and female reproductive physiology. However, the extent and sources of genetic variation and condition dependence of the ejaculate proteome are largely unknown. Such knowledge could reveal the targets and mechanisms of post-mating selection and inform about the relative costs and allocation of different ejaculate components, each with its own potential fitness consequences. Here, we used liquid chromatography coupled with tandem mass spectrometry to characterize the whole-ejaculate protein composition across 12 isogenic lines of Drosophila melanogaster that were reared on a high- or low-quality diet. We discovered new proteins in the transferred ejaculate and inferred their origin in the male reproductive system. We further found that the ejaculate composition was mainly determined by genotype identity and genotype-specific responses to larval diet, with no clear overall diet effect. Nutrient restriction increased proteolytic protein activity and shifted the balance between reproductive function and RNA metabolism. Our results open new avenues for exploring the intricate role of genotypes and their environment in shaping ejaculate composition, or for studying the functional dynamics and evolutionary potential of the ejaculate in its multivariate complexity.
Collapse
Affiliation(s)
- Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Sibylle Pfammatter
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Cramer ERA, Yilma ZB, Lifjeld JT. Selection on sperm size in response to promiscuity and variation in female sperm storage organs. J Evol Biol 2023; 36:131-143. [PMID: 36357998 PMCID: PMC10100110 DOI: 10.1111/jeb.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
Sperm cells are exceptionally morphologically diverse across taxa. However, morphology can be quite uniform within species, particularly for species where females copulate with many males per reproductive bout. Strong sexual selection in these promiscuous species is widely hypothesized to reduce intraspecific sperm variation. Conversely, we hypothesize that intraspecific sperm size variation may be maintained by high among-female variation in the size of sperm storage organs, assuming that paternity success improves when sperm are compatible in size with the sperm storage organ. We use individual-based simulations and an analytical model to evaluate how selection on sperm size depends on promiscuity level and variation in sperm storage organ size (hereafter, female preference variation). Simulations of high promiscuity (10 mates per female) showed stabilizing selection on sperm when female preference variation was low, and disruptive selection when female preference variation was high, consistent with the analytical model results. With low promiscuity (2-3 mates per female), selection on sperm was stabilizing for all levels of female preference variation in the simulations, contrasting with the analytical model. Promiscuity level, or mate sampling, thus has a strong impact on the selection resulting from female preferences. Furthermore, when promiscuity is low, disruptive selection on male traits will occur under much more limited circumstances (i.e. only with higher among-female variation) than many previous models suggest. Variation in female sperm storage organs likely has strong implications for intraspecific sperm variation in highly promiscuous species, but likely does not explain differences in intraspecific sperm variation for less promiscuous taxa.
Collapse
Affiliation(s)
- Emily R A Cramer
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Jan T Lifjeld
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
McDonough-Goldstein CE, Pitnick S, Dorus S. Drosophila female reproductive glands contribute to mating plug composition and the timing of sperm ejection. Proc Biol Sci 2022; 289:20212213. [PMID: 35105240 PMCID: PMC8808094 DOI: 10.1098/rspb.2021.2213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023] Open
Abstract
Reproductive traits that influence female remating and competitive fertilization rapidly evolve in response to sexual selection and sexual conflict. One such trait, observed across diverse animal taxa, is the formation of a structural plug inside the female reproductive tract (FRT), either during or shortly after mating. In Drosophila melanogaster, male seminal fluid forms a mating plug inside the female bursa, which has been demonstrated to influence sperm entry into storage and latency of female remating. Processing of the plug, including its eventual ejection from the female's reproductive tract, influences the competitive fertilization success of her mates and is mediated by female × male genotypic interactions. However, female contributions to plug formation and processing have received limited attention. Using developmental mutants that lack glandular FRT tissues, we reveal that these tissues are essential for mating plug ejection. We further use proteomics to demonstrate that female glandular proteins, and especially proteolytic enzymes, contribute to mating plug composition and have a widespread impact on plug formation and composition. Together, these phenotypic and molecular data identify female contributions to intersexual interactions that are a potential mechanism of post-copulatory sexual selection.
Collapse
Affiliation(s)
| | - Scott Pitnick
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY 13244, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Birkhead TR, Montgomerie R. Three decades of sperm competition in birds. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200208. [PMID: 33070724 DOI: 10.1098/rstb.2020.0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the three decades, since Birkhead and Møller published Sperm competition in birds (1992, Academic Press) more than 1000 papers have been published on this topic, about half of these being empirical studies focused on extrapair paternity. Both technological innovations and theory have moved the field forward by facilitating the study of both the mechanisms underlying sperm competition in both sexes, and the ensuing behavioural and morphological adaptations. The proliferation of studies has been driven partly by the diversity of both behaviours and morphologies in birds that have been influenced by sperm competition, but also by the richness of the theory developed by Geoff Parker over the past 50 years. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Tim R Birkhead
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
6
|
Lüpold S, Reil JB, Manier MK, Zeender V, Belote JM, Pitnick S. How female × male and male × male interactions influence competitive fertilization in Drosophila melanogaster. Evol Lett 2020; 4:416-429. [PMID: 33014418 PMCID: PMC7523561 DOI: 10.1002/evl3.193] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023] Open
Abstract
How males and females contribute to joint reproductive success has been a long‐standing question in sexual selection. Under postcopulatory sexual selection, paternity success is predicted to derive from complex interactions among females engaging in cryptic female choice and males engaging in sperm competition. Such interactions have been identified as potential sources of genetic variation in sexually selected traits but are also expected to inhibit trait diversification. To date, studies of interactions between females and competing males have focused almost exclusively on genotypes and not phenotypic variation in sexually selected traits. Here, we characterize within‐ and between‐sex interactions in Drosophila melanogaster using isogenic lines with heritable variation in both male and female traits known to influence competitive fertilization. We confirmed, and expanded on, previously reported genotypic interactions within and between the sexes, and showed that several reproductive events, including sperm transfer, female sperm ejection, and sperm storage, were explained by two‐ and three‐way interactions among sex‐specific phenotypes. We also documented complex interactions between the lengths of competing males’ sperm and the female seminal receptacle, which are known to have experienced rapid female‐male co‐diversification. Our results highlight the nonindependence of sperm competition and cryptic female choice and demonstrate that complex interactions between the sexes do not limit the ability of multivariate systems to respond to directional sexual selection.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland.,Department of Biology Syracuse University Syracuse New York 13244
| | - Jonathan Bradley Reil
- Department of Entomology Cornell University Ithaca New York 14853.,Department of Plant and Environmental Protection Sciences University of Hawaii at Mānoa Honolulu Hawaii 96822
| | - Mollie K Manier
- Department of Biology Syracuse University Syracuse New York 13244.,Department of Biological Sciences George Washington University Washington DC 20052
| | - Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland
| | - John M Belote
- Department of Biology Syracuse University Syracuse New York 13244
| | - Scott Pitnick
- Department of Biology Syracuse University Syracuse New York 13244
| |
Collapse
|
7
|
Civetta A, Ranz JM. Genetic Factors Influencing Sperm Competition. Front Genet 2019; 10:820. [PMID: 31572439 PMCID: PMC6753916 DOI: 10.3389/fgene.2019.00820] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male–male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| |
Collapse
|
8
|
Pizzari T, McDonald GC. Sexual selection in socially-structured, polyandrous populations: Some insights from the fowl. ADVANCES IN THE STUDY OF BEHAVIOR 2019. [DOI: 10.1016/bs.asb.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Lymbery RA, Kennington WJ, Evans JP. Multivariate Sexual Selection on Ejaculate Traits under Sperm Competition. Am Nat 2018; 192:94-104. [DOI: 10.1086/697447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Lüpold S, Pitnick S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 2018; 155:R229-R243. [DOI: 10.1530/rep-17-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Sperm morphological variation has attracted considerable interest and generated a wealth of predominantly descriptive studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is far from complete. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm.
Collapse
|
11
|
Firman RC. Postmating sexual conflict and female control over fertilization during gamete interaction. Ann N Y Acad Sci 2018. [DOI: 10.1111/nyas.13635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology University of Western Australia Western Australia Australia
| |
Collapse
|
12
|
Springate L, Frasier TR. Gamete compatibility genes in mammals: candidates, applications and a potential path forward. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170577. [PMID: 28878999 PMCID: PMC5579115 DOI: 10.1098/rsos.170577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/31/2017] [Indexed: 06/01/2023]
Abstract
Fertilization represents a critical stage in biology, where successful alleles of a previous generation are shuffled into new arrangements and subjected to the forces of selection in the next generation. Although much research has been conducted on how variation in morphological and behavioural traits lead to variation in fertilization patterns, surprisingly little is known about fertilization at a molecular level, and specifically about how genes expressed on the sperm and egg themselves influence fertilization patterns. In mammals, several genes have been identified whose products are expressed on either the sperm or the egg, and which influence the fertilization process, but the specific mechanisms are not yet known. Additionally, in 2014 an interacting pair of proteins was identified: 'Izumo' on the sperm, and 'Juno' on the egg. With the identification of these genes comes the first opportunity to understand the molecular aspects of fertilization in mammals, and to identify how the genetic characteristics of these genes influence fertilization patterns. Here, we review recent progress in our understanding of fertilization and gamete compatibility in mammals, which should provide a helpful guide to researchers interested in untangling the molecular mechanisms of fertilization and the resulting impacts on population biology and evolutionary processes.
Collapse
|
13
|
Postmating Female Control: 20 Years of Cryptic Female Choice. Trends Ecol Evol 2017; 32:368-382. [PMID: 28318651 PMCID: PMC5511330 DOI: 10.1016/j.tree.2017.02.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Abstract
Cryptic female choice (CFC) represents postmating intersexual selection arising from female-driven mechanisms at or after mating that bias sperm use and impact male paternity share. Although biologists began to study CFC relatively late, largely spurred by Eberhard's book published 20 years ago, the field has grown rapidly since then. Here, we review empirical progress to show that numerous female processes offer potential for CFC, from mating through to fertilization, although seldom has CFC been clearly demonstrated. We then evaluate functional implications, and argue that, under some conditions, CFC might have repercussions for female fitness, sexual conflict, and intersexual coevolution, with ramifications for related evolutionary phenomena, such as speciation. We conclude by identifying directions for future research in this rapidly growing field.
Collapse
|
14
|
Whittingham LA, Dunn PO. Experimental evidence that brighter males sire more extra-pair young in tree swallows. Mol Ecol 2016; 25:3706-15. [PMID: 27105297 DOI: 10.1111/mec.13665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/28/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022]
Abstract
Across taxa, extra-pair mating is widespread among socially monogamous species, but few studies have identified male ornamental traits associated with extra-pair mating success, and even fewer studies have experimentally manipulated male traits to determine whether they are related directly to paternity. As a consequence, there is little experimental evidence to support the widespread hypothesis that females choose more ornamented males as extra-pair mates. Here, we conducted an experimental study of the relationship between male plumage colour and fertilization success in tree swallows (Tachycineta bicolor), which have one of the highest levels of extra-pair mating in birds. In this study, we experimentally dulled the bright blue plumage on the back of males (with nontoxic ink markers) early in the breeding season prior to most mating. Compared with control males, dulled males sired fewer extra-pair young, and, as a result, fewer young overall. Among untreated males, brighter blue males also sired more extra-pair young, and in paired comparisons, extra-pair sires had brighter blue plumage than the within-pair male they cuckolded. These results, together with previous work on tree swallows, suggest that extra-pair mating behaviour is driven by benefits to both males and females.
Collapse
Affiliation(s)
- Linda A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| |
Collapse
|
15
|
Lymbery RA, Kennington WJ, Evans JP. Fluorescent sperm offer a method for tracking the real-time success of ejaculates when they compete to fertilise eggs. Sci Rep 2016; 6:22689. [PMID: 26941059 PMCID: PMC4778040 DOI: 10.1038/srep22689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 12/25/2022] Open
Abstract
Despite intensive research effort, many uncertainties remain in the field of gamete-level sexual selection, particularly in understanding how sperm from different males interact when competing for fertilisations. Here, we demonstrate the utility of broadcast spawning marine invertebrates for unravelling these mysteries, highlighting their mode of reproduction and, in some species, unusual patterns of mitochondrial inheritance. We present a method utilising both properties in the blue mussel, Mytilus galloprovincialis. In mytilids and many other bivalves, both sperm and egg mitochondria are inherited. We exploit this, using the vital mitochondrial dye MitoTracker, to track the success of sperm from individual males when they compete with those from rivals to fertilise eggs. We confirm that dying mitochondria has no adverse effects on in vitro measures of sperm motility (reflecting mitochondrial energetics) or sperm competitive fertilisation success. Therefore, we propose the technique as a powerful and logistically tractable tool for sperm competition studies. Importantly, our method allows the competitive fertilisation success of sperm from any male to be measured directly and disentangled from confounding effects of post-fertilisation embryo survival. Moreover, the mitochondrial dye has broader applications in taxa without paternal mitochondrial inheritance, for example by tracking the dynamics of competing ejaculates prior to fertilisation.
Collapse
Affiliation(s)
- Rowan A Lymbery
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| |
Collapse
|
16
|
Abstract
Sperm competition, in which the ejaculates of multiple males compete to fertilize a female's ova, results in strong selection on sperm traits. Although sperm size and swimming velocity are known to independently affect fertilization success in certain species, exploring the relationship between sperm length, swimming velocity and fertilization success still remains a challenge. Here, we use the zebra finch (Taeniopygia guttata), where sperm size influences sperm swimming velocity, to determine the effect of sperm total length on fertilization success. Sperm competition experiments, in which pairs of males whose sperm differed only in length and swimming speed, revealed that males producing long sperm were more successful in terms of (i) the number of sperm reaching the ova and (ii) fertilizing those ova. Our results reveal that although sperm length is the main factor determining the outcome of sperm competition, complex interactions between male and female reproductive traits may also be important. The mechanisms underlying these interactions are poorly understood, but we suggest that differences in sperm storage and utilization by females may contribute to the outcome of sperm competition.
Collapse
|
17
|
Reinhart M, Carney T, Clark AG, Fiumera AC. Characterizing male-female interactions using natural genetic variation in Drosophila melanogaster. J Hered 2014; 106:67-79. [PMID: 25425680 DOI: 10.1093/jhered/esu076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drosophila melanogaster females commonly mate with multiple males establishing the opportunity for pre- and postcopulatory sexual selection. Traits impacting sexual selection can be affected by a complex interplay of the genotypes of the competing males, the genotype of the female, and compatibilities between the males and females. We scored males from 96 2nd and 94 3rd chromosome substitution lines for traits affecting reproductive success when mated with females from 3 different genetic backgrounds. The traits included male-induced female refractoriness, male remating ability, the proportion of offspring sired under competitive conditions and male-induced female fecundity. We observed significant effects of male line, female genetic background, and strong male by female interactions. Some males appeared to be "generalists" and performed consistently across the different females; other males appeared to be "specialists" and performed very well with a particular female and poorly with others. "Specialist" males did not, however, prefer to court those females with whom they had the highest reproductive fitness. Using 143 polymorphisms in male reproductive genes, we mapped several genes that had consistent effects across the different females including a derived, high fitness allele in Acp26Aa that may be the target of adaptive evolution. We also identified a polymorphism upstream of PebII that may interact with the female genetic background to affect male-induced refractoriness to remating. These results suggest that natural variation in PebII might contribute to the observed male-female interactions.
Collapse
Affiliation(s)
- Michael Reinhart
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Tara Carney
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Andrew G Clark
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Anthony C Fiumera
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark).
| |
Collapse
|
18
|
Collet JM, Blows MW. Female mate choice predicts paternity success in the absence of additive genetic variance for other female paternity bias mechanisms in Drosophila serrata. J Evol Biol 2014; 27:2568-72. [PMID: 25290296 DOI: 10.1111/jeb.12511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/28/2014] [Accepted: 09/08/2014] [Indexed: 11/29/2022]
Abstract
After choosing a first mate, polyandrous females have access to a range of opportunities to bias paternity, such as repeating matings with the preferred male, facilitating fertilization from the best sperm or differentially investing in offspring according to their sire. Female ability to bias paternity after a first mating has been demonstrated in a few species, but unambiguous evidence remains limited by the access to complex behaviours, sperm storage organs and fertilization processes within females. Even when found at the phenotypic level, the potential evolution of any mechanism allowing females to bias paternity other than mate choice remains little explored. Using a large population of pedigreed females, we developed a simple test to determine whether there is additive genetic variation in female ability to bias paternity after a first, chosen, mating. We applied this method in the highly polyandrous Drosophila serrata, giving females the opportunity to successively mate with two males ad libitum. We found that despite high levels of polyandry (females mated more than once per day), the first mate choice was a significant predictor of male total reproductive success. Importantly, there was no detectable genetic variance in female ability to bias paternity beyond mate choice. Therefore, whether or not females can bias paternity before or after copulation, their role on the evolution of sexual male traits is likely to be limited to their first mate choice in D. serrata.
Collapse
Affiliation(s)
- J M Collet
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | | |
Collapse
|
19
|
Buser CC, Ward PI, Bussière LF. Adaptive maternal plasticity in response to perceptions of larval competition. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claudia C. Buser
- The School of Biological Sciences University of Auckland Auckland New Zealand
| | - Paul I. Ward
- Institute of Evolutionary Biology and Environmental Studies University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Luc F. Bussière
- Institute of Evolutionary Biology and Environmental Studies University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
- Institute of Biological and Environmental Sciences University of Stirling Stirling FK9 4LA Scotland
| |
Collapse
|
20
|
Gumułka M, Rozenboim I. Mating activity of domestic geese ganders (Anser anser f. domesticus) during breeding period in relation to age, testosterone and thyroid hormones. Anim Reprod Sci 2013; 142:183-90. [PMID: 24176285 DOI: 10.1016/j.anireprosci.2013.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/16/2022]
Abstract
In breeding geese, natural mating applies. The objective of this study was to determine seasonal- and age-related changes in the sexual activity of ganders. Moreover, T, T4 and T3 plasma levels were evaluated. The study was conducted on 2/3-year-old males (n=15) and 1- or 2/3-year-old females (1♂:4♀). Sexual activity of ganders was characterized through the frequency of: courtship, attempts at and successful copulations and total mating activity (MA). Reproductive results manifested by egg production and fertility were recorded. Laying percentage (January-June) was 37.1 and 28.6% for 1-, and 2/3-year-old geese, respectively. MA was noted before the sexual maturity of females and the T level peak. MA was highest at the onset and during peak production (March) for ganders kept with 1-, and 2/3-year-old geese, respectively. From April to May a decrease in fertility with a reduction of the frequency of copulations was observed. At this time low levels of T were noted. The effect of goose age on the MA was shown, with higher frequency of copulations for ganders kept with 1-year-old geese. We suggest that in the successful seasonal mating in geese, social factors such as the presence of females and female age play an important role. The reduction in fertility during the spring period may be associated with decreases in the efficiency of successive mating sequences. The higher frequency of copulations without affecting fertility, for ganders kept with young geese, may be because of differences in sperm transfer or storage/transport efficiency.
Collapse
Affiliation(s)
- Małgorzata Gumułka
- Department of Poultry, Fur Animal Breeding and Animal Hygiene, Agricultural University of Krakow, Krakow, Poland.
| | | |
Collapse
|
21
|
Løvlie H, Gillingham MAF, Worley K, Pizzari T, Richardson DS. Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males. Proc Biol Sci 2013; 280:20131296. [PMID: 24004935 PMCID: PMC3768299 DOI: 10.1098/rspb.2013.1296] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cryptic female choice may enable polyandrous females to avoid inbreeding or bias offspring variability at key loci after mating. However, the role of these genetic benefits in cryptic female choice remains poorly understood. Female red junglefowl, Gallus gallus, bias sperm use in favour of unrelated males. Here, we experimentally investigate whether this bias is driven by relatedness per se, or by similarity at the major histocompatibility complex (MHC), genes central to vertebrate acquired immunity, where polymorphism is critical to an individual's ability to combat pathogens. Through experimentally controlled natural matings, we confirm that selection against related males' sperm occurs within the female reproductive tract but demonstrate that this is more accurately predicted by MHC similarity: controlling for relatedness per se, more sperm reached the eggs when partners were MHC-dissimilar. Importantly, this effect appeared largely owing to similarity at a single MHC locus (class I minor). Further, the effect of MHC similarity was lost following artificial insemination, suggesting that male phenotypic cues might be required for females to select sperm differentially. These results indicate that postmating mechanisms that reduce inbreeding may do so as a consequence of more specific strategies of cryptic female choice promoting MHC diversity in offspring.
Collapse
Affiliation(s)
- Hanne Løvlie
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, UK.
| | | | | | | | | |
Collapse
|
22
|
Frasier TR, Gillett RM, Hamilton PK, Brown MW, Kraus SD, White BN. Postcopulatory selection for dissimilar gametes maintains heterozygosity in the endangered North Atlantic right whale. Ecol Evol 2013; 3:3483-94. [PMID: 24223284 PMCID: PMC3797493 DOI: 10.1002/ece3.738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/09/2022] Open
Abstract
Although small populations are expected to lose genetic diversity through genetic drift and inbreeding, a number of mechanisms exist that could minimize this genetic decline. Examples include mate choice for unrelated mates and fertilization patterns biased toward genetically dissimilar gametes. Both processes have been widely documented, but the long-term implications have received little attention. Here, we combined over 25 years of field data with high-resolution genetic data to assess the long-term impacts of biased fertilization patterns in the endangered North Atlantic right whale. Offspring have higher levels of microsatellite heterozygosity than expected from this gene pool (effect size = 0.326, P < 0.011). This pattern is not due to precopulatory mate choice for genetically dissimilar mates (P < 0.600), but instead results from postcopulatory selection for gametes that are genetically dissimilar (effect size = 0.37, P < 0.003). The long-term implication is that heterozygosity has slowly increased in calves born throughout the study period, as opposed to the slight decline that was expected. Therefore, this mechanism represents a natural means through which small populations can mitigate the loss of genetic diversity over time.
Collapse
Affiliation(s)
- T R Frasier
- Department of Biology and Forensic Sciences Program, Saint Mary's University 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | | | | | | | | | | |
Collapse
|
23
|
ULLER TOBIAS, SCHWARTZ TONIA, KOGLIN TROY, OLSSON MATS. Sperm Storage and Sperm Competition Across Ovarian Cycles in the Dragon Lizard,Ctenophorus fordi. ACTA ACUST UNITED AC 2013; 319:404-8. [DOI: 10.1002/jez.1803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/21/2013] [Accepted: 04/24/2013] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - TROY KOGLIN
- School of Biological Sciences; University of Wollongong; Wollongong; NSW; Australia
| | | |
Collapse
|
24
|
Ala-Honkola O, Hosken DJ, Manier MK, Lüpold S, Droge-Young EM, Berben KS, Collins WF, Belote JM, Pitnick S. Inbreeding reveals mode of past selection on male reproductive characters in Drosophila melanogaster. Ecol Evol 2013; 3:2089-102. [PMID: 23919154 PMCID: PMC3728949 DOI: 10.1002/ece3.625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/22/2023] Open
Abstract
Directional dominance is a prerequisite of inbreeding depression. Directionality arises when selection drives alleles that increase fitness to fixation and eliminates dominant deleterious alleles, while deleterious recessives are hidden from it and maintained at low frequencies. Traits under directional selection (i.e., fitness traits) are expected to show directional dominance and therefore an increased susceptibility to inbreeding depression. In contrast, traits under stabilizing selection or weakly linked to fitness are predicted to exhibit little-to-no inbreeding depression. Here, we quantify the extent of inbreeding depression in a range of male reproductive characters and then infer the mode of past selection on them. The use of transgenic populations of Drosophila melanogaster with red or green fluorescent-tagged sperm heads permitted in vivo discrimination of sperm from competing males and quantification of characteristics of ejaculate composition, performance, and fate. We found that male attractiveness (mating latency) and competitive fertilization success (P2) both show some inbreeding depression, suggesting they may have been under directional selection, whereas sperm length showed no inbreeding depression suggesting a history of stabilizing selection. However, despite having measured several sperm quality and quantity traits, our data did not allow us to discern the mechanism underlying the lowered competitive fertilization success of inbred (f = 0.50) males.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biology, Syracuse University Syracuse, New York ; Department of Biological and Environmental Science, University of Jyväskylä PO Box 35, 40014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang R, Clark AG, Fiumera AC. Natural genetic variation in male reproductive genes contributes to nontransitivity of sperm competitive ability inDrosophila melanogaster. Mol Ecol 2012; 22:1400-15. [DOI: 10.1111/mec.12113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Rui Zhang
- Department of Biological Sciences; SUNY-Binghamton; Binghamton; NY; 13902; USA
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics; Cornell University; Ithaca; NY; 13853; USA
| | - Anthony C. Fiumera
- Department of Biological Sciences; SUNY-Binghamton; Binghamton; NY; 13902; USA
| |
Collapse
|
26
|
Bird KL, Aldridge CL, Carpenter JE, Paszkowski CA, Boyce MS, Coltman DW. The secret sex lives of sage-grouse: multiple paternity and intraspecific nest parasitism revealed through genetic analysis. Behav Ecol 2012. [DOI: 10.1093/beheco/ars132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Juul J, Sneppen K, Mathiesen J. Clonal selection prevents tragedy of the commons when neighbors compete in a rock-paper-scissors game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061924. [PMID: 23005144 DOI: 10.1103/physreve.85.061924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Indexed: 06/01/2023]
Abstract
The rock-paper-scissors game is a model example of the ongoing cyclic turnover typical of many ecosystems, ranging from the terrestrial and aquatic to the microbial. Here we explore the evolution of a rock-paper-scissors system where three species compete for space. The species are allowed to mutate and change the speed by which they invade one another. In the case when all species have similar mutation rates, we observe a perpetual arms race where no single species prevails. When only two species mutate, their aggressions increase indefinitely until the ecosystem collapses and only the nonmutating species survives. Finally we show that when only one species mutates, group selection removes individual predators with the fastest growth rates, causing the growth rate of the species to stabilize. We explain this group selection quantitatively.
Collapse
Affiliation(s)
- Jeppe Juul
- University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
28
|
Dean R, Nakagawa S, Pizzari T. The Risk and Intensity of Sperm Ejection in Female Birds. Am Nat 2011; 178:343-54. [DOI: 10.1086/661244] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
|
30
|
Firman RC, Simmons LW. Experimental evolution of sperm competitiveness in a mammal. BMC Evol Biol 2011; 11:19. [PMID: 21251249 PMCID: PMC3031236 DOI: 10.1186/1471-2148-11-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 01/20/2011] [Indexed: 11/17/2022] Open
Abstract
Background When females mate with multiple partners, sperm from rival males compete to fertilise the ova. Studies of experimental evolution have proven the selective action of sperm competition on male reproductive traits. However, while reproductive traits may evolve in response to sperm competition, this does not necessarily provide evidence that sperm competitive ability responds to selection. Indeed, a study of Drosophila failed to observe divergence in sperm competitive ability of males in lines selected for enhanced sperm offence and defence. Results Adopting the naturally polygamous house mouse (Mus domesticus) as our vertebrate model, we performed an experimental evolution study and observed genetic divergence in sperm quality; males from the polygamous selection lines produced ejaculates with increased sperm numbers and greater sperm motility compared to males from the monogamous lines. Here, after 12 generations of experimental evolution, we conducted competitive matings between males from lineages evolving under sperm competition and males from lineages subject to relaxed selection. We reduced variation in paternity arising from embryo mortality by genotyping embryos in utero at 14 days gestation. Our microsatellite data revealed a significant paternity bias toward males that evolved under the selective regime of sperm competition. Conclusion We provide evidence that the sperm competitiveness phenotype can respond to selection, and show that improved sperm quality translates to greater competitive fertilisation success in house mice.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology (M092), University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia.
| | | |
Collapse
|
31
|
Gasparini C, Pilastro A. Cryptic female preference for genetically unrelated males is mediated by ovarian fluid in the guppy. Proc Biol Sci 2011; 278:2495-501. [PMID: 21227973 DOI: 10.1098/rspb.2010.2369] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As inbreeding is costly, it has been suggested that polyandry may evolve as a means to reduce the negative fitness consequences of mating with genetically related males. While several studies provide support for this hypothesis, evidence of pure post-copulatory mechanisms capable of biasing paternity towards genetically unrelated males is still lacking; yet these are necessary to support inbreeding avoidance models of polyandry evolution. Here we showed, by artificially inseminating a group of female guppies with an equal number of sperm from related (full-sib) and unrelated males, that sperm competition success of the former was 10 per cent lower, on average, than that of the unrelated male. The paternity bias towards unrelated males was not due to differential embryo survival, as the size of the brood produced by control females, which were artificially inseminated with the sperm of a single male, was not influenced by their relatedness with the male. Finally, we collected ovarian fluid (OF) from virgin females. Using computer-assisted sperm analysis, we found that sperm velocity, a predictor of sperm competition success in the guppy, was significantly lower when measured in a solution containing the OF from a sister as compared with that from an unrelated female. Our results suggest that sperm-OF interaction mediates sperm competition bias towards unrelated mates and highlight the role of post-copulatory mechanisms in reducing the cost of mating with relatives in polyandrous females.
Collapse
|
32
|
Garcia-Gonzalez F, Evans JP. Fertilization success and the estimation of genetic variance in sperm competitiveness. Evolution 2010; 65:746-56. [PMID: 20880262 DOI: 10.1111/j.1558-5646.2010.01127.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A key question in sexual selection is whether the ability of males to fertilize eggs under sperm competition exhibits heritable genetic variation. Addressing this question poses a significant problem, however, because a male's ability to win fertilizations ultimately depends on the competitive ability of rival males. Attempts to partition genetic variance in sperm competitiveness, as estimated from measures of fertilization success, must therefore account for stochastic effects due to the random sampling of rival sperm competitors. In this contribution, we suggest a practical solution to this problem. We advocate the use of simple cross-classified breeding designs for partitioning sources of genetic variance in sperm competitiveness and fertilization success and show how these designs can be used to avoid stochastic effects due to the random sampling of rival sperm competitors. We illustrate the utility of these approaches by simulating various scenarios for estimating genetic parameters in sperm competitiveness, and show that the probability of detecting additive genetic variance in this trait is restored when stochastic effects due to the random sampling of rival sperm competitors are controlled. Our findings have important implications for the study of the evolutionary maintenance of polyandry.
Collapse
Affiliation(s)
- Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | | |
Collapse
|
33
|
|
34
|
Dowling DK, Nystrand M, Simmons LW. Maternal effects, but no good or compatible genes for sperm competitiveness in Australian crickets. Evolution 2009; 64:1257-66. [PMID: 20002162 DOI: 10.1111/j.1558-5646.2009.00912.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Explanations for the evolution of polyandry often center on the idea that females garner genetic benefits for their offspring by mating multiply. Furthermore, postcopulatory processes are thought to be fundamental to enabling polyandrous females to screen for genetic quality. Much attention has focused on the potential for polyandrous females to accrue such benefits via a sexy- or good-sperm mechanism, whereby additive variation exists among males in sperm competitiveness. Likewise, attention has focused on an alternative model, in which offspring quality (in this context, the sperm competitiveness of sons) hinges on an interaction between parental haplotypes (genetic compatibility). Sperm competitiveness that is contingent on parental compatibility will exhibit nonadditive genetic variation. We tested these models in the Australian cricket, Teleogryllus oceanicus, using a design that allowed us to partition additive, nonadditive genetic, and parental variance for sperm competitiveness. We found an absence of additive and nonadditive genetic variance in this species, challenging the direct relevance of either model to the evolution of sperm competitiveness in particular, and polyandry in general. Instead, we found maternal effects that were possibly sex-linked or cytoplasmically linked. We also found effects of focal male age on sperm competitiveness, with small increments in age conferring more competitive sperm.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, 3800, Victoria, Australia.
| | | | | |
Collapse
|
35
|
Dziminski MA, Roberts JD, Beveridge M, Simmons LW. Sperm competitiveness in frogs: slow and steady wins the race. Proc Biol Sci 2009; 276:3955-61. [PMID: 19710059 PMCID: PMC2825793 DOI: 10.1098/rspb.2009.1334] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/05/2009] [Indexed: 01/23/2023] Open
Abstract
When sperm compete to fertilize available ova, selection is expected to favour ejaculate traits that contribute to a male's fertilization success. While there is much evidence to show that selection favours increased numbers of sperm, only a handful of empirical studies have examined how variation in sperm form and function contributes to competitive fertilization success. Here, we examine selection acting on sperm form and function in the externally fertilizing myobatrachid frog, Crinia georgiana. Using in vitro fertilization techniques and controlling for variation in the number of sperm contributed by males in competitive situations, we show that males with a greater proportion of motile sperm, and motile sperm with slower swimming velocities, have an advantage when competing for fertilizations. Sperm morphology and the degree of genetic similarity between putative sires and the female had no influence on competitive fertilization success. These unusual patterns of selection might explain why frog sperm typically exhibit relatively slow swimming speeds and sustained longevity.
Collapse
Affiliation(s)
| | | | | | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
36
|
García-González F. Male genetic quality and the inequality between paternity success and fertilization success: consequences for studies of sperm competition and the evolution of polyandry. Evolution 2008; 62:1653-1665. [PMID: 18315573 DOI: 10.1111/j.1558-5646.2008.00362.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Studies of postcopulatory sexual selection typically estimate a male's fertilization success from his paternity success (P2) calculated at hatching or birth. However, P2 may be affected by differential embryo viability, thereby confounding estimations of true fertilization success (F2). This study examines the effects of variation in the ability of males to influence embryo viability upon the inequality between P2 and F2. It also investigates the consequences of this inequality for testing the hypothesis that polyandrous females accrue viability benefits for their offspring through facilitation of sperm competition (good-sperm model). Simulations of competitive mating trials show that although relative measures of male reproductive success tend to underestimate the strength of underlying good-sperm processes, good-sperm processes can be seriously overestimated using P2 values if males influence the viability of the embryos they sire. This study cautions the interpretation of P2 values as a proxy for fertilization success or sperm competitiveness in studies of postcopulatory sexual selection, and highlights that the good-sperm hypothesis needs empirical support from studies able to identify and separate unequivocally the males' ability to win fertilizations from their ability to influence the development of embryos.
Collapse
Affiliation(s)
- Francisco García-González
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Nedlands, WA 6009, Australia.
| |
Collapse
|
37
|
Berlin S, Qu L, Ellegren H. Adaptive evolution of gamete-recognition proteins in birds. J Mol Evol 2008; 67:488-96. [PMID: 18850060 DOI: 10.1007/s00239-008-9165-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/20/2008] [Accepted: 09/03/2008] [Indexed: 12/13/2022]
Abstract
Gamete-recognition proteins have been shown to evolve by positive selection in diverse organism groups, such as marine invertebrates and mammals, although underlying evolutionary mechanisms driving this rapid divergence are poorly understood. However, several hypotheses have been put forward to explain the observed pattern, including different forms of sexual conflict and sperm competition. Because female gametes require more energy to produce than male gametes, female organisms suffer more when fertilisation goes wrong. One process that results in a failed mammalian fertilisation is polyspermy, when >1 sperm fertilises the egg. However in birds, there is no such sexual conflict because multiple sperm typically bind and fuse with the egg. If sexual conflict driven by polyspermy avoidance is important for the evolution of gamete-recognition proteins in vertebrates, we expect to find positive selection in the genes to be less pronounced in birds. We therefore sequenced six genes (ZP1, ZP2, ZP4, ZPAX, CD9, and Acrosin) encoding gamete-recognition proteins in several bird species to test for positive selection. For comparison, we also analysed ortologous sequences in a set of mammalian species. We found no major differences in the occurrence of adaptive evolution and the strength of selection between bird and mammal orthologs. From this we conclude that polyspermy avoidance does not act as the main underlying evolutionary force shaping the rate of evolution in these genes. We discuss other possible processes that could explain positive selection of gamete-recognition proteins in birds and mammals, such as hybridisation avoidance, cryptic female choice, and postcopulatory sperm competition.
Collapse
Affiliation(s)
- Sofia Berlin
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36, Uppsala, Sweden
| | | | | |
Collapse
|
38
|
Evans JP, Brooks RC, Zajitschek SRK, Griffith SC. Does genetic relatedness of mates influence competitive fertilization success in guppies? Evolution 2008; 62:2929-35. [PMID: 18752613 DOI: 10.1111/j.1558-5646.2008.00496.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A growing number of studies highlight the nontransitive properties of ejaculates when they are in competition to fertilize a female's eggs. Increasingly, these studies suggest that postcopulatory processes act as a filter against sperm from closely related males or those with similar genotypes, limiting the deleterious effects of inbreeding on offspring fitness. We investigated the potential for such postcopulatory mechanisms of inbreeding avoidance in the guppy (Poecilia reticulata), a promiscuous livebearing fish. We used artificial insemination as a method of delivering to a female the combined ejaculates from a first cousin (relatedness coefficient r = 0.125) and an unrelated male. This method of sperm delivery controls behavioral processes of pre- and postcopulatory female choice, which can bias paternity toward unrelated males. Our genetic analysis revealed no effect of parental relatedness on paternity outcomes. The observed mean paternity share for related males (0.47) and associated variance did not differ significantly from an expected binomial distribution that assumes no biased use of sperm with respect to relatedness (0.5). Although our data provide no evidence for postcopulatory mechanisms of inbreeding avoidance, the ability of female guppies to influence ejaculate transfer and retention offers an alternative and easily testable mechanism of inbreeding avoidance in this species.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, WA, 6009, Australia
| | | | | | | |
Collapse
|
39
|
Civetta A, Rosing KR, Fisher JH. Differences in sperm competition and sperm competition avoidance in Drosophila melanogaster. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2007.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Bjork A, Starmer WT, Higginson DM, Rhodes CJ, Pitnick S. Complex interactions with females and rival males limit the evolution of sperm offence and defence. Proc Biol Sci 2008; 274:1779-88. [PMID: 17507332 PMCID: PMC2493577 DOI: 10.1098/rspb.2007.0293] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Postcopulatory sexual selection favours males which are strong offensive and defensive sperm competitors. As a means of identifying component traits comprising each strategy, we used an experimental evolution approach. Separate populations of Drosophila melanogaster were selected for enhanced sperm offence and defence. Despite using a large outbred population and evidence of substantive genetic variation for each strategy, neither trait responded to selection in the two replicates of this experiment. Recent work with fixed chromosome lines of D. melanogaster suggests that complex genotypic interactions between females and competing males contribute to the maintenance of this variation. To determine whether such interactions could explain our lack of response to selection on sperm offence and defence, we quantified sperm precedence across multiple sperm competition bouts using an outbred D. melanogaster population exhibiting continuous genetic variation. Both offensive and defensive sperm competitive abilities were found to be significantly repeatable only across matings involving ejaculates of the same pair of males competing within the same female. These repeatabilities decreased when the rival male stayed the same but the female changed, and they disappeared when both the rival male and the female changed. Our results are discussed with a focus on the complex nature of sperm precedence and the maintenance of genetic variation in ejaculate characteristics.
Collapse
Affiliation(s)
- Adam Bjork
- Department of Biology, Syracuse University, 108 College Place, Syracuse, NY 13244-1270, USA.
| | | | | | | | | |
Collapse
|
41
|
Jehle R, Sztatecsny M, Wolf JBW, Whitlock A, Hödl W, Burke T. Genetic dissimilarity predicts paternity in the smooth newt (Lissotriton vulgaris). Biol Lett 2007; 3:526-8. [PMID: 17638673 PMCID: PMC2391198 DOI: 10.1098/rsbl.2007.0311] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Under sperm competition, paternity is apportioned by polyandrous females according to the order of matings and the genetic quality of the inseminating males. In order to distinguish between these two effects, we sequentially paired 12 female smooth newts (Lissotriton vulgaris) with each of two males and, where possible, repeated the same procedure in reverse order of the identical males after assumed sperm depletion. For a total of 578 offspring, amplified fragment length polymorphisms genetic markers revealed multiple paternities in all matings, without significant first- or second-male sperm precedence. The paternity share of individual males was transitive across the two trials with male order switch, and successful males had a significantly higher genetic dissimilarity to the female than expected by chance. We argue that patterns of paternity in natural newt populations are determined through a combination of good genes and relatedness.
Collapse
Affiliation(s)
- Robert Jehle
- Department of Evolutionary Biology, University of Bielefeld, Morgenbreede 45, Bielefeld 33615, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Evans JP, Simmons LW. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good- and sexy-sperm? Genetica 2007; 134:5-19. [PMID: 17619174 DOI: 10.1007/s10709-007-9162-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/05/2007] [Indexed: 11/28/2022]
Abstract
The good-sperm and sexy-sperm (GS-SS) hypotheses predict that female multiple mating (polyandry) can fuel sexual selection for heritable male traits that promote success in sperm competition. A major prediction generated by these models, therefore, is that polyandry will benefit females indirectly via their sons' enhanced fertilization success. Furthermore, like classic 'good genes' and 'sexy son' models for the evolution of female preferences, GS-SS processes predict a genetic correlation between genes for female mating frequency (analogous to the female preference) and those for traits influencing fertilization success (the sexually selected traits). We examine the premise for these predictions by exploring the genetic basis of traits thought to influence fertilization success and female mating frequency. We also highlight recent debates that stress the possible genetic constraints to evolution of traits influencing fertilization success via GS-SS processes, including sex-linked inheritance, nonadditive effects, interacting parental genotypes, and trade-offs between integrated ejaculate components. Despite these possible constraints, the available data suggest that male traits involved in sperm competition typically exhibit substantial additive genetic variance and rapid evolutionary responses to selection. Nevertheless, the limited data on the genetic variation in female mating frequency implicate strong genetic maternal effects, including X-linkage, which is inconsistent with GS-SS processes. Although the relative paucity of studies on the genetic basis of polyandry does not allow us to draw firm conclusions about the evolutionary origins of this trait, the emerging pattern of sex linkage in genes for polyandry is more consistent with an evolutionary history of antagonistic selection over mating frequency. We advocate further development of GS-SS theory to take account of the complex evolutionary dynamics imposed by sexual conflict over mating frequency.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology M092, The University of Western Australia, Nedlands, WA, Australia.
| | | |
Collapse
|
43
|
Birkhead TR, Brillard JP. Reproductive isolation in birds: postcopulatory prezygotic barriers. Trends Ecol Evol 2007; 22:266-72. [PMID: 17306413 DOI: 10.1016/j.tree.2007.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/25/2007] [Accepted: 02/02/2007] [Indexed: 11/20/2022]
Abstract
Reproductive isolation is an important part of the speciation process. Recent studies of birds have highlighted not only the significance of postcopulatory postzygotic barriers, but also the almost complete absence of information about postcopulatory prezygotic barriers. Here, we draw attention to studies that provide an opportunity to test whether prezygotic barriers to heterospecific sperm exist in birds. We show that, compared with other taxa, such barriers in birds are relatively inefficient, possibly because, similar to postcopulatory postzygotic barriers, they take a long time to evolve. These data also raise questions about the mechanisms of sperm-female and sperm-egg recognition in birds. Future research will serve the dual purpose of providing more detail of the mechanisms of both heterospecific and conspecific prezygotic processes.
Collapse
Affiliation(s)
- Tim R Birkhead
- Department of Animal & Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK.
| | | |
Collapse
|
44
|
Griffith SC. The evolution of infidelity in socially monogamous passerines: neglected components of direct and indirect selection. Am Nat 2007; 169:274-81; discussion 282-3. [PMID: 17211810 DOI: 10.1086/510601] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 08/08/2006] [Indexed: 11/03/2022]
Abstract
A recent study by Goran Arnqvist and Mark Kirkpatrick in the American Naturalist (165:S26-S37) suggested that female polyandry in birds is not driven by females because quantitative genetic approximations of selection demonstrated that indirect selection for female infidelity is weaker than natural selection against it. Instead, it was argued that extrapair copulations are the result of antagonistic selection on male behavior driving female coercion. While the approach and framework of the study were very good, the conclusions of the study were premature because a number of potential adaptive components of polyandry were unaccounted for, and several critical assumptions are unsupported by the current empirical data. Our understanding of extrapair paternity in birds, and perhaps polyandry in general, will be improved by a better empirical understanding of the direct benefits of fertility assurance and postcopulatory cryptic female choice and the relationship between polyandry and male investment. In addition, we need to develop a greater awareness of the limitations of trying to study behavior by proxy in the molecular laboratory. Together, these challenges and the framework recently presented should improve our understanding of the true function of extrapair paternity in birds.
Collapse
Affiliation(s)
- Simon C Griffith
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
45
|
Kempenaers B. Mate Choice and Genetic Quality: A Review of the Heterozygosity Theory. ADVANCES IN THE STUDY OF BEHAVIOR 2007. [DOI: 10.1016/s0065-3454(07)37005-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
46
|
Vonhof MJ, Barber D, Fenton MB, Strobeck C. A tale of two siblings: multiple paternity in big brown bats (Eptesicus fuscus) demonstrated using microsatellite markers. Mol Ecol 2005; 15:241-7. [PMID: 16367843 DOI: 10.1111/j.1365-294x.2005.02801.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many bat species, the opportunity for sperm competition or other mechanisms of post-copulatory paternity biasing is thought to be great, due to the long delay between copulation and fertilization, demonstrated sperm storage capabilities, and observed promiscuity. We present the results of the first study to assess whether litters of big brown bats (Eptesicus fuscus) containing dizygotic twins share the same father. We sampled 26 mother-offspring triads from three colonies in Indiana and Illinois, as well as 299 additional adults (237 females and 62 males) from these colonies and six other maternity colonies in the same area in 1997-1998. All individuals were genotyped at nine highly variable autosomal microsatellite loci and one X-linked locus. We assessed multiple paternity using autosomal and X-linked locus exclusions, and using maximum-likelihood methods. All methods confirmed multiple paternity within litters, and the maximum-likelihood analyses indicated that almost half of the sampled litters were composed of maternal half-siblings rather than full-siblings. Our results highlight the potential importance of post-copulatory mechanisms of paternity determination in the mating system of big brown bats, and have important implications for gene flow and population structuring in this species.
Collapse
Affiliation(s)
- M J Vonhof
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410, USA.
| | | | | | | |
Collapse
|
47
|
Bilcik B, Estevez I, Russek-Cohen E. Reproductive success of broiler breeders in natural mating systems: the effect of male-male competition, sperm quality, and morphological characteristics. Poult Sci 2005; 84:1453-62. [PMID: 16206568 DOI: 10.1093/ps/84.9.1453] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In natural mating systems in which broiler breeder males compete for females, reproductive behavior plays an important role in male fertility, along with sperm competition and morphological and physiological characteristics. We investigated the effect of male-male competition compared with a noncompetitive situation on fertility, sperm quality, and morphological traits. Six groups of 3 males and 12 females were housed in mixed-sex pens. Their frequency of mating was recorded, and progeny of each male was determined through DNA fingerprinting. Males with the highest and the lowest mating frequencies were later placed into groups of 1 male and 4 females, their behavior was recorded, and their fertility was calculated. We collected data on semen quality (semen volume, sperm concentration, and mobility) and morphometrical characters. Finally, females were artificially inseminated with sperm from highest frequency, lowest frequency, or a mix, paternity and fertility were estimated. Our results indicate that heavier males had higher frequency of matings without cloacal contact, and males with smaller combs had more mating attempts. We also detected that males with high sperm concentration had lower fertility. However, we found an overall lack of association between mating behavior, morphometrical traits, sperm quality, and fertility. This, together with the discrepancy of results in fertility when compared with artificial insemination conditions, suggest a multifactorial nature of the fertility of broiler breeder males in natural mating systems. In addition we observed a high male fertility when housed individually, suggesting that male fertility is a relative parameter that depends upon the reproductive quality of the other male competitors within the group.
Collapse
Affiliation(s)
- B Bilcik
- University of Maryland, Animal and Avian Sciences, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
48
|
House CM, Simmons LW. Relative influence of male and female genital morphology on paternity in the dung beetle Onthophagus taurus. Behav Ecol 2005. [DOI: 10.1093/beheco/ari066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Denk AG, Holzmann A, Peters A, Vermeirssen EL, Kempenaers B. Paternity in mallards: effects of sperm quality and female sperm selection for inbreeding avoidance. Behav Ecol 2005. [DOI: 10.1093/beheco/ari065] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Evans JP, Marshall DJ. MALE-BY-FEMALE INTERACTIONS INFLUENCE FERTILIZATION SUCCESS AND MEDIATE THE BENEFITS OF POLYANDRY IN THE SEA URCHIN HELIOCIDARIS ERYTHROGRAMMA. Evolution 2005. [DOI: 10.1554/04-386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|