1
|
Keeney DB, Cobb SA, Jadin RC, Orlofske SA. Atypical life cycle does not lead to inbreeding or selfing in parasites despite clonemate accumulation in intermediate hosts. Mol Ecol 2022; 32:1777-1790. [PMID: 36579456 DOI: 10.1111/mec.16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Many parasites utilize asexual and sexual reproduction and multiple hosts to complete their life cycles. How these taxa avoid inbreeding is an essential question for understanding parasite evolution and ecology. Aquatic trematodes that require multiple host species may benefit from diverse genetic parasite assemblages accumulating within second intermediate hosts prior to sexual reproduction in definitive hosts. However, Cotylurus species are able to utilize the same snail species as first and second intermediate hosts, potentially resulting in the accumulation of genetically identical clones (clonemates) prior to sexual reproduction. In this study, we developed and analysed novel microsatellite loci to determine if clones are accumulating within snail hosts prior to ingestion by bird hosts and the effects this could have on parasite inbreeding. Contrary to previous studies of aquatic trematodes, significantly large numbers of clonemates were present within snails, but full-sibs were not. Genetic structure was present over a relatively small geographical scale despite the use of vagile definitive hosts. Phylogenetic analysis identified the Cotylurus sp. clones as belonging to a single species. Despite the presence of clones within snails, mating between clones/selfing was not common and heterozygosity is maintained within individuals. Potential issues with clones mating may be mitigated by the presence of snails with numerous clones, the consumption of many snails by bird hosts and parasite clone recognition/avoidance. Use of the same host species for multiple life stages may have advantages when parasites are able to avoid inbreeding and the required hosts are common.
Collapse
Affiliation(s)
- Devon B Keeney
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, New York, USA
| | - Sarah A Cobb
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, New York, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert C Jadin
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA.,Department of Biology, Museum of Natural History, University of Wisconsin - Stevens Point, Stevens Point, Wisconsin, USA
| | - Sarah A Orlofske
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA.,Department of Biology, Museum of Natural History, University of Wisconsin - Stevens Point, Stevens Point, Wisconsin, USA
| |
Collapse
|
2
|
Benovics M, Gettová L, Šimková A. De novo developed microsatellite markers in gill parasites of the genus Dactylogyrus (Monogenea): Revealing the phylogeographic pattern of population structure in the generalist parasite Dactylogyrus vistulae. Ecol Evol 2021; 11:16585-16599. [PMID: 34938459 PMCID: PMC8668815 DOI: 10.1002/ece3.8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Approaches using microsatellite markers are considered the gold standard for modern population genetic studies. However, although they have found application in research into various platyhelminth taxa, they remained substantially underutilized in the study of monogeneans. In the present study, a newly developed set of 24 microsatellite markers was used to investigate the genetic diversity of the generalist monogenean species Dactylogyrus vistulae. The analyzed parasite specimens were collected from 13 cyprinoid species from 11 sites in the Apennine and Balkan peninsulas. A total of 159 specimens were genotyped at each of the loci and the number of alleles per locus ranged from 2 to 16, with a mean number of 6.958 alleles per locus. Exceptionally high genetic diversity was observed among D. vistulae individuals in the southern Balkans (mean N A per locus = 3.917), suggesting that generalist D. vistulae expanded from the south to the north in the Balkans and later into central Europe. The initial clustering analysis divided all investigated specimens into three major clusters; however, the results of the subsequent analyses revealed the existence of various subpopulations, suggesting that the population structure of D. vistulae is associated with the diversification of their cyprinoid hosts. In addition, the partition of the parasite population was observed in regions of the sympatric occurrence of two host species, indicating that these hosts may represent a barrier for gene flow, even for generalist parasite species.
Collapse
Affiliation(s)
- Michal Benovics
- Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Gettová
- Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
3
|
Kasl EL, Font WF, Criscione CD. Resolving evolutionary changes in parasite life cycle complexity: Molecular phylogeny of the trematode genus Alloglossidium indicates more than one origin of precociousness. Mol Phylogenet Evol 2018; 126:371-381. [DOI: 10.1016/j.ympev.2018.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
4
|
Greeff JM, Reid K, Gagjee JR, Clift SJ, de Waal PJ. Population genetic structure of the parasitic nematode Spirocerca lupi in South Africa. Vet Parasitol 2018; 258:64-69. [DOI: 10.1016/j.vetpar.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
|
5
|
Rougeron V, De Meeûs T, Bañuls AL. Reproduction in Leishmania: A focus on genetic exchange. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 50:128-132. [PMID: 27769896 DOI: 10.1016/j.meegid.2016.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 11/26/2022]
Abstract
One key process of the life cycle of pathogens is their mode of reproduction. Indeed, this fundamental biological process conditions the multiplication and the transmission of genes and thus the propagation of diseases in the environment. Reproductive strategies of protozoan parasites have been a subject of debate for many years, principally due to the difficulty in making direct observations of sexual reproduction (i.e. genetic recombination). Traditionally, these parasites were considered as characterized by a preeminent clonal structure. Nevertheless, with the development of elaborate culture experiments, population genetics and evolutionary and population genomics, several studies suggested that most of these pathogens were also characterized by constitutive genetic recombination events. In this opinion, we focused on Leishmania parasites, pathogens responsible of leishmaniases, a major public health issue. We first discuss the evolutionary advantages of a mixed mating reproductive strategy, then we review the evidence of genetic exchange, and finally we detail available tools to detect naturally occurring genetic recombination in Leishmania parasites and more generally in protozoan parasites.
Collapse
Affiliation(s)
- V Rougeron
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290-IRD 224-Université de Montpellier, Montpellier, France.
| | - T De Meeûs
- Institut de Recherche pour le Développement (IRD), UMR 177 INTERTRYP IRD-CIRAD, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - A-L Bañuls
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290-IRD 224-Université de Montpellier, Montpellier, France
| |
Collapse
|
6
|
Castillo G, Valverde PL, Cruz LL, Hernández-Cumplido J, Andraca-Gómez G, Fornoni J, Sandoval-Castellanos E, Olmedo-Vicente E, Flores-Ortiz CM, Núñez-Farfán J. Adaptive divergence in resistance to herbivores in Datura stramonium. PeerJ 2015; 3:e1411. [PMID: 26644970 PMCID: PMC4671194 DOI: 10.7717/peerj.1411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
Defensive traits exhibited by plants vary widely across populations. Heritable phenotypic differentiation is likely to be produced by genetic drift and spatially restricted gene flow between populations. However, spatially variable selection exerted by herbivores may also give rise to differences among populations. To explore to what extent these factors promote the among-population differentiation of plant resistance of 13 populations of Datura stramonium, we compared the degree of phenotypic differentiation (P ST) of leaf resistance traits (trichome density, atropine and scopolamine concentration) against neutral genetic differentiation (F ST) at microsatellite loci. Results showed that phenotypic differentiation in defensive traits among-population is not consistent with divergence promoted by genetic drift and restricted gene flow alone. Phenotypic differentiation in scopolamine concentration was significantly higher than F ST across the range of trait heritability values. In contrast, genetic differentiation in trichome density was different from F ST only when heritability was very low. On the other hand, differentiation in atropine concentration differed from the neutral expectation when heritability was less than or equal to 0.3. In addition, we did not find a significant correlation between pair-wise neutral genetic distances and distances of phenotypic resistance traits. Our findings reinforce previous evidence that divergent natural selection exerted by herbivores has promoted the among-population phenotypic differentiation of defensive traits in D. stramonium.
Collapse
Affiliation(s)
- Guillermo Castillo
- Department of Evolutionary Ecology, Institute for Ecology UNAM, Mexico Distrito Federal, Mexico
| | - Pedro L. Valverde
- Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Mexico Distrito Federal, Mexico
| | - Laura L. Cruz
- Department of Evolutionary Ecology, Institute for Ecology UNAM, Mexico Distrito Federal, Mexico
| | | | - Guadalupe Andraca-Gómez
- Department of Evolutionary Ecology, Institute for Ecology UNAM, Mexico Distrito Federal, Mexico
| | - Juan Fornoni
- Department of Evolutionary Ecology, Institute for Ecology UNAM, Mexico Distrito Federal, Mexico
| | | | - Erika Olmedo-Vicente
- Department of Evolutionary Ecology, Institute for Ecology UNAM, Mexico Distrito Federal, Mexico
| | | | - Juan Núñez-Farfán
- Department of Evolutionary Ecology, Institute for Ecology UNAM, Mexico Distrito Federal, Mexico
| |
Collapse
|
7
|
Kasl EL, McAllister CT, Robison HW, Connior MB, Font WF, Criscione CD. Evolutionary consequence of a change in life cycle complexity: A link between precocious development and evolution toward female-biased sex allocation in a hermaphroditic parasite. Evolution 2015; 69:3156-70. [PMID: 26508113 DOI: 10.1111/evo.12805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/02/2015] [Accepted: 10/10/2015] [Indexed: 11/29/2022]
Abstract
The evolutionary consequences of changes in the complex life cycles of parasites are not limited to the traits that directly affect transmission. For instance, mating systems that are altered due to precocious sexual maturation in what is typically regarded as an intermediate host may impact opportunities for outcrossing. In turn, reproductive traits may evolve to optimize sex allocation. Here, we test the hypothesis that sex allocation evolved toward a more female-biased function in populations of the hermaphroditic digenean trematode Alloglossidium progeneticum that can precociously reproduce in their second hosts. In these precocious populations, parasites are forced to self-fertilize as they remain encysted in their second hosts. In contrast, parasites in obligate three-host populations have more opportunities to outcross in their third host. We found strong support that in populations with precocious development, allocation to male resources was greatly reduced. We also identified a potential phenotypically plastic response in a body size sex allocation relationship that may be driven by the competition for mates. These results emphasize how changes in life cycle patterns that alter mating systems can impact the evolution of reproductive traits in parasites.
Collapse
Affiliation(s)
- Emily L Kasl
- Department of Biology, Texas A&M University, College Station, Texas.
| | - Chris T McAllister
- Science and Mathematics Division, Eastern Oklahoma State College, Idabel, Oklahoma
| | - Henry W Robison
- Department of Biology, Southern Arkansas University, Magnolia, Arkansas
| | - Matthew B Connior
- Life Sciences, Northwest Arkansas Community College, Bentonville, Arkansas
| | - William F Font
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana
| | | |
Collapse
|
8
|
Messenger LA, Garcia L, Vanhove M, Huaranca C, Bustamante M, Torrico M, Torrico F, Miles MA, Llewellyn MS. Ecological host fitting of Trypanosoma cruzi TcI in Bolivia: mosaic population structure, hybridization and a role for humans in Andean parasite dispersal. Mol Ecol 2015; 24:2406-22. [PMID: 25847086 PMCID: PMC4737126 DOI: 10.1111/mec.13186] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 01/04/2023]
Abstract
An improved understanding of how a parasite species exploits its genetic repertoire to colonize novel hosts and environmental niches is crucial to establish the epidemiological risk associated with emergent pathogenic genotypes. Trypanosoma cruzi, a genetically heterogeneous, multi-host zoonosis, provides an ideal system to examine the sylvatic diversification of parasitic protozoa. In Bolivia, T. cruzi I, the oldest and most widespread genetic lineage, is pervasive across a range of ecological clines. High-resolution nuclear (26 loci) and mitochondrial (10 loci) genotyping of 199 contemporaneous sylvatic TcI clones was undertaken to provide insights into the biogeographical basis of T. cruzi evolution. Three distinct sylvatic parasite transmission cycles were identified: one highland population among terrestrial rodent and triatomine species, composed of genetically homogenous strains (Ar = 2.95; PA/L = 0.61; DAS = 0.151), and two highly diverse, parasite assemblages circulating among predominantly arboreal mammals and vectors in the lowlands (Ar = 3.40 and 3.93; PA/L = 1.12 and 0.60; DAS = 0.425 and 0.311, respectively). Very limited gene flow between neighbouring terrestrial highland and arboreal lowland areas (distance ~220 km; FST = 0.42 and 0.35) but strong connectivity between ecologically similar but geographically disparate terrestrial highland ecotopes (distance >465 km; FST = 0.016-0.084) strongly supports ecological host fitting as the predominant mechanism of parasite diversification. Dissimilar heterozygosity estimates (excess in highlands, deficit in lowlands) and mitochondrial introgression among lowland strains may indicate fundamental differences in mating strategies between populations. Finally, accelerated parasite dissemination between densely populated, highland areas, compared to uninhabited lowland foci, likely reflects passive, long-range anthroponotic dispersal. The impact of humans on the risk of epizootic Chagas disease transmission in Bolivia is discussed.
Collapse
Affiliation(s)
- Louisa A. Messenger
- Department of Pathogen Molecular BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Lineth Garcia
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Mathieu Vanhove
- Department of Infectious Disease EpidemiologyImperial College LondonLondonUK
| | - Carlos Huaranca
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Marinely Bustamante
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Marycruz Torrico
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Faustino Torrico
- Institute of Biomedical ResearchUniversidad Mayor de San SimónCochabambaBolivia
| | - Michael A. Miles
- Department of Pathogen Molecular BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Martin S. Llewellyn
- Department of Pathogen Molecular BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
9
|
Benesh DP, Weinreich F, Kalbe M, Milinski M. LIFETIME INBREEDING DEPRESSION, PURGING, AND MATING SYSTEM EVOLUTION IN A SIMULTANEOUS HERMAPHRODITE TAPEWORM. Evolution 2014; 68:1762-74. [DOI: 10.1111/evo.12388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/10/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel P. Benesh
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Plön Germany
| | - Friederike Weinreich
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Plön Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Plön Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Plön Germany
| |
Collapse
|
10
|
Copulation order, density cues and variance in fertilization success in a cestode. Parasitology 2014; 141:934-9. [PMID: 24560286 DOI: 10.1017/s0031182014000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Simultaneous hermaphrodites maximize their fitness by optimizing their investment into male or female functions. Allocation of resources to male function (tissues, traits, and/or behaviours increasing paternity) is predicted to increase as density, and the associated level of sperm competition, increases. We tested whether the simultaneous hermaphroditic cestode Schistocephalus solidus uses cues of potential partner densities in its fish intermediate host to improve its male reproductive success in the final host. We had two worms, one originating from a multiple infection in the fish intermediate host and one from a single infection, sequentially compete to fertilize the eggs of a third worm. The fertilization rates of the two competitors nearly always differed from the 50-50 null expectation, sometimes considerably, implying there was a 'winner' in each experimental competition. However, we did not find a significant effect of density in the fish host (single vs multiple) or mating order on paternity. Additional work will be needed to identify the traits and environmental conditions that explain the high variance in male reproductive success observed in this experiment.
Collapse
|
11
|
Valdivia IM, Criscione CD, Cárdenas L, Durán CP, Oliva ME. Does a facultative precocious life cycle predispose the marine trematode Proctoeces cf. lintoni to inbreeding and genetic differentiation among host species? Int J Parasitol 2014; 44:183-8. [PMID: 24447491 DOI: 10.1016/j.ijpara.2013.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 10/25/2022]
Abstract
Intraspecific variability in parasite life cycle complexity (number of hosts and species of hosts in the life cycle) may have an impact how parasite genetic variation is partitioned among individual parasites, host individuals or host species within a given area. Among digenean trematodes, a three-host life cycle is common. However, a few species are precocious and may reach sexual maturity in what is typically regarded as the second intermediate host. The objective of this study was to determine whether a precocious life cycle predisposes digeneans to possible inbreeding or genetic subdivision among host species. As a study system, we used the digenean Proctoeces cf. lintoni whose metacercariae precociously mature (facultative) without a cyst wall in the gonads of multiple sympatric species of keyhole limpets (Fissurella spp.), typically regarded as the second intermediate hosts. Genotyped parasites were collected from four species of limpets and the clingfish Sicyases sanguineus, the third and final host where sexual maturity occurs. We found very high microsatellite diversity, Hardy-Weinberg equilibrium over all genotyped individuals, and little to no genetic structuring among parasites collected from the different host species. The fact that metacercariae do not encyst in the keyhole limpets, coupled with the high mixing potential of an aquatic environment, likely promote panmixia in local populations of P. cf. lintoni.
Collapse
Affiliation(s)
- I M Valdivia
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Isla Teja, Valdivia, Chile; Programa de Doctorado en Ciencias Aplicadas, Mención en Sistemas Marinos Costeros, Universidad de Antofagasta, Antofagasta, Chile.
| | - C D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | - L Cárdenas
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Isla Teja, Valdivia, Chile
| | - C P Durán
- Instituto de Ciencias Naturales "Alexander Von Humboldt", Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Av. Angamos 601, P.O. Box 170, Antofagasta, Chile
| | - M E Oliva
- Instituto de Ciencias Naturales "Alexander Von Humboldt", Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Av. Angamos 601, P.O. Box 170, Antofagasta, Chile
| |
Collapse
|
12
|
Louhi KR, Karvonen A, Rellstab C, Louhi R, Jokela J. Prevalence of infection as a predictor of multiple genotype infection frequency in parasites with multiple-host life cycle. J Anim Ecol 2012; 82:191-200. [DOI: 10.1111/j.1365-2656.2012.02028.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/12/2012] [Indexed: 12/28/2022]
Affiliation(s)
- Katja-Riikka Louhi
- Department of Biological and Environmental Science; University of Jyväskylä; PO Box 35 FIN-40014 Jyväskylä Finland
- Department of Biological and Environmental Sciences; University of Helsinki; PO Box 65 FIN-00014 Helsinki Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science; University of Jyväskylä; PO Box 35 FIN-40014 Jyväskylä Finland
| | - Christian Rellstab
- Department of Biological and Environmental Science; University of Jyväskylä; PO Box 35 FIN-40014 Jyväskylä Finland
| | - Risto Louhi
- State Treasury/Insurance; Sörnäisten rantatie 13, PO Box 10 FIN-00054 Helsinki Finland
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology and ETH Zürich, Institution of Intergrative Biology (IBZ); Überlandstrasse 133, PO Box 611 CH-8600 Dübendorf Switzerland
| |
Collapse
|
13
|
RAMÍREZ JUANDAVID, GUHL FELIPE, MESSENGER LOUISAA, LEWIS MICHAELD, MONTILLA MARLENY, CUCUNUBA ZULMA, MILES MICHAELA, LLEWELLYN MARTINS. Contemporary cryptic sexuality inTrypanosoma cruzi. Mol Ecol 2012; 21:4216-26. [DOI: 10.1111/j.1365-294x.2012.05699.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
High within-host genetic variation of the nematode Spirocerca lupi in a high-density urban dog population. Vet Parasitol 2012; 187:259-66. [DOI: 10.1016/j.vetpar.2011.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/02/2011] [Accepted: 12/13/2011] [Indexed: 11/22/2022]
|
15
|
Testing local-scale panmixia provides insights into the cryptic ecology, evolution, and epidemiology of metazoan animal parasites. Parasitology 2012; 139:981-97. [PMID: 22475053 DOI: 10.1017/s0031182012000455] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
When every individual has an equal chance of mating with other individuals, the population is classified as panmictic. Amongst metazoan parasites of animals, local-scale panmixia can be disrupted due to not only non-random mating, but also non-random transmission among individual hosts of a single host population or non-random transmission among sympatric host species. Population genetics theory and analyses can be used to test the null hypothesis of panmixia and thus, allow one to draw inferences about parasite population dynamics that are difficult to observe directly. We provide an outline that addresses 3 tiered questions when testing parasite panmixia on local scales: is there greater than 1 parasite population/species, is there genetic subdivision amongst infrapopulations within a host population, and is there asexual reproduction or a non-random mating system? In this review, we highlight the evolutionary significance of non-panmixia on local scales and the genetic patterns that have been used to identify the different factors that may cause or explain deviations from panmixia on a local scale. We also discuss how tests of local-scale panmixia can provide a means to infer parasite population dynamics and epidemiology of medically relevant parasites.
Collapse
|
16
|
Ascariasis in people and pigs: New inferences from DNA analysis of worm populations. INFECTION GENETICS AND EVOLUTION 2012; 12:227-35. [DOI: 10.1016/j.meegid.2012.01.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/12/2012] [Accepted: 01/14/2012] [Indexed: 11/18/2022]
|
17
|
Vilas R, Vázquez-Prieto S, Paniagua E. Contrasting patterns of population genetic structure of Fasciola hepatica from cattle and sheep: implications for the evolution of anthelmintic resistance. INFECTION GENETICS AND EVOLUTION 2011; 12:45-52. [PMID: 22036705 DOI: 10.1016/j.meegid.2011.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/06/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Twelve polymorphic genetic markers, eight allozymic loci and four microsatellites, were used to characterize 20 infrapopulations of Fasciola hepatica (all flukes from 10 individual cattle and 10 sheep) from 11 farms in Northwest Spain. Results suggest different patterns of population genetic structure depending on the host species. Individuals identified as clones were much more frequent in sheep. The common presence of clones and its nonrandom occurrence among individual hosts suggests clumped transmission of liver flukes in sheep. After reducing significant repeated multilocus genotypes to one unique copy within infrapopulations, results show relatively high levels of gene diversity within infrapopulations from cattle and sheep (0.411 and 0.360 on average, respectively). However, parasites of sheep appear to show significantly more structured variation at the infrapopulation level (Standardized F(ST)=0.087 and 0.170 for parasites of cattle and sheep, respectively). Compared to the parasites from cattle, results suggest that populations from sheep show lower levels of gene flow, higher degree of aggregate transmission, higher probability of mating within clones, and lower parasitic load. These differences have implications for the evolution of anthelmintic resistance because they affect the effective population size and the degree of inbreeding. The development and rapid spread of resistance seems likely in the parasites of cattle because populations from the study area are characterized by high gene flow. However, results also suggest that the efficient selection of a new recessive advantageous mutation would be favored in parasites of sheep due to a greater potential for inbreeding.
Collapse
Affiliation(s)
- Román Vilas
- Departamento de Xenética, Universidade de Santiago de Compostela, Facultade de Veterinaria, Campus de Lugo, 27002 Lugo, Spain.
| | | | | |
Collapse
|
18
|
Very low microsatellite polymorphism and large heterozygote deficits suggest founder effects and cryptic structure in the parasite Perkinsus olseni. INFECTION GENETICS AND EVOLUTION 2011; 11:904-11. [DOI: 10.1016/j.meegid.2011.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/07/2011] [Accepted: 02/22/2011] [Indexed: 11/18/2022]
|
19
|
Criscione CD, Vilas R, Paniagua E, Blouin MS. More than meets the eye: detecting cryptic microgeographic population structure in a parasite with a complex life cycle. Mol Ecol 2011; 20:2510-24. [PMID: 21535278 DOI: 10.1111/j.1365-294x.2011.05113.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonrandom recruitment of parasites among hosts can lead to genetic differentiation among hosts and mating dynamics that promote inbreeding. It has been hypothesized that strictly aquatic parasites with intermediate hosts will behave as panmictic populations among hosts because ample opportunity exists for random mixing of unrelated individuals during transmission to the definitive host. A previous allozyme study on the marine trematode Lecithochirium fusiforme did not support this hypothesis; in that, there was genetic differentiation among, and significant heterozygote deficiencies within, definitive hosts. We revisit this system and use microsatellites to obtain multilocus genotypes. Our goal was to determine whether cryptic subgroups and/or the presence of clones could account for the apparent deviation from 'panmixia'. We find strong evidence for cryptic subdivision (three genetic clusters) that causes the Wahlund effect and differentiation among definitive hosts. After accounting for these cryptic groups, we see panmictic genetic structure among definitive hosts that is consistent with the 'high mixing in aquatic habitats' hypothesis. We see evidence for cotransmission of clones in all three clusters, but this level of clonal structure did not have a major impact in causing deviations from Hardy-Weinberg equilibrium, and only affected genetic differentiation among hosts in one cluster. A cursory examination of the data may have led to incorrect conclusions about nonrandom transmission. However, it is obvious in this system that there is more than meets the eye in relation to the actual make-up of parasite populations. In general, the methods we employ will be useful for elucidating hidden patterns in other organisms where cryptic structure may be common (e.g. those with limited morphology or complex life histories).
Collapse
Affiliation(s)
- Charles D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
20
|
Extraordinary Trypanosoma cruzi diversity within single mammalian reservoir hosts implies a mechanism of diversifying selection. Int J Parasitol 2011; 41:609-14. [PMID: 21232539 PMCID: PMC3084450 DOI: 10.1016/j.ijpara.2010.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/21/2022]
Abstract
Trypanosoma cruzi is an evolutionarily ancient parasitic protozoan endemic to the Americas. Multiple genetic and phenotypic markers indicate that this parasite is highly diverse, with several divergent and discrete major genotypes reported. Infection multiclonality has been observed among numerous metazoan and unicellular endoparasitic species. However, few studies report the complexity of mixed infections within an individual host in any detail or consider their ecological and biological implications. Here we report extraordinary genetic diversity within single reservoir hosts of T. cruzi I using nine polymorphic microsatellite markers across 211 clones from eight mammals from three different sylvatic foci in South America. Forty-nine distinct multilocus genotypes were defined, with as many as 10 isolated from the same host. We discuss our data in the light of previous population genetic studies of this and related parasitic protozoa and contrast high levels of diversity within each host with the precarious nature of T. cruzi contaminative vectorial transmission. Finally, we propose that non-neutral processes could easily account for the diversity we observe and suggest a functional link with survival in the host.
Collapse
|
21
|
Zhou C, Yuan K, Tang X, Hu N, Peng W. Molecular genetic evidence for polyandry in Ascaris suum. Parasitol Res 2010; 108:703-8. [DOI: 10.1007/s00436-010-2116-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/05/2010] [Indexed: 11/29/2022]
|
22
|
Steinauer ML, Blouin MS, Criscione CD. Applying evolutionary genetics to schistosome epidemiology. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2010; 10:433-43. [PMID: 20176142 PMCID: PMC2861999 DOI: 10.1016/j.meegid.2010.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/09/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
We review how molecular markers and evolutionary analysis have been applied to the study of schistosome parasites, important pathogens that infect over 200 million people worldwide. Topics reviewed include phylogenetics and biogeography, hybridization, infection within snails, mating systems, and genetic structure. Some interesting generalizations include that schistosome species hybridize frequently and have switched definitive hosts repeatedly in evolutionary time. We show that molecular markers can be used to infer epidemiologically relevant processes such as spatial variation in transmission, or to reveal complex patterns of mate choice. Analysis of genetic structure data shows that transmission foci can be structured by watershed boundaries, habitat types, and host species. We also discuss sampling and analytical problems that arise when using larvae to estimate genetic parameters of adult schistosome populations. Finally, we review pitfalls in methodologies such as genotyping very small individuals, statistical methods for identifying clonemates or for identifying sibling groups, and estimating allele frequencies from pooled egg samples.
Collapse
Affiliation(s)
- Michelle L Steinauer
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR 97331, United States.
| | | | | |
Collapse
|
23
|
Criscione CD, Anderson JD, Sudimack D, Subedi J, Upadhayay RP, Jha B, Williams KD, Williams-Blangero S, Anderson TJC. Landscape genetics reveals focal transmission of a human macroparasite. PLoS Negl Trop Dis 2010; 4:e665. [PMID: 20421919 PMCID: PMC2857643 DOI: 10.1371/journal.pntd.0000665] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/10/2010] [Indexed: 01/06/2023] Open
Abstract
Macroparasite infections (e.g., helminths) remain a major human health concern. However, assessing transmission dynamics is problematic because the direct observation of macroparasite dispersal among hosts is not possible. We used a novel landscape genetics approach to examine transmission of the human roundworm Ascaris lumbricoides in a small human population in Jiri, Nepal. Unexpectedly, we found significant genetic structuring of parasites, indicating the presence of multiple transmission foci within a small sampling area (∼14 km2). We analyzed several epidemiological variables, and found that transmission is spatially autocorrelated around households and that transmission foci are stable over time despite extensive human movement. These results would not have been obtainable via a traditional epidemiological study based on worm counts alone. Our data refute the assumption that a single host population corresponds to a single parasite transmission unit, an assumption implicit in many classic models of macroparasite transmission. Newer models have shown that the metapopulation-like pattern observed in our data can adversely affect targeted control strategies aimed at community-wide impacts. Furthermore, the observed metapopulation structure and local mating patterns generate an excess of homozygotes that can accelerate the spread of recessive traits such as drug resistance. Our study illustrates how molecular analyses complement traditional epidemiological information in providing a better understanding of parasite transmission. Similar landscape genetic approaches in other macroparasite systems will be warranted if an accurate depiction of the transmission process is to be used to inform effective control strategies. Currently, knowledge of transmission patterns of human helminth parasites is based on traditional epidemiological data such as the number of parasites within hosts. Genetic markers can greatly facilitate our understanding of the transmission process because they provide an indirect means to infer dispersal. Here, we apply novel landscape genetics methods to examine the transmission dynamics of the world's most common human macroparasite, Ascaris lumbricoides. Specifically, we tested for both the presence of multiple transmission foci in a single human village in Nepal and the epidemiological factors associated with such infection foci. On this very local scale, we were surprised to find multiple transmission foci that were centered on households and that reinfections were occurring from the same foci. Thus, our study illustrates the utility of population genetics analyses in epidemiology. Furthermore, our study challenges current dogma by revealing fragmentation of transmission rather than homogeneous parasite mixing within a single human community. Thus, the results have important implications for drug resistance evolution and parasite control.
Collapse
Affiliation(s)
- Charles D Criscione
- Department of Biology, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
KEENEY DEVONB, KING TANIAM, ROWE DIANEL, POULIN ROBERT. Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode parasites. Mol Ecol 2009; 18:4591-603. [DOI: 10.1111/j.1365-294x.2009.04388.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Prugnolle F, De Meeus T. Apparent high recombination rates in clonal parasitic organisms due to inappropriate sampling design. Heredity (Edinb) 2009; 104:135-40. [PMID: 19812614 DOI: 10.1038/hdy.2009.128] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sampling design is of primary importance for empirical studies, in particular, population genetics. For parasitic organisms, a rather frequent way of sampling individuals from local populations is to collect and genotype only one randomly chosen parasite (or isolate) per host individual (or subpopulation), although each host (subpopulation) harbors a set of parasites belonging to the same species (that is, an infrapopulation). Here, we investigate, using simulations, the consequences of such sampling design regarding the estimates of linkage disequilibrium and departure from the Hardy-Weinberg expectations (H-WE) in clonal parasites with an acyclic life cycle. We show that collecting and genotyping only one individual pathogen per host individual (or per subpopulation) and pooling them to form one 'artificial' subpopulation may generate strongly misleading patterns of genetic variations that may lead to false conclusions regarding their reproduction mode. In particular, we show that when subpopulations (or infrapopulations) are genetically differentiated, (i) the level of linkage disequilibrium is significantly reduced and (ii) the departure from the H-WE is strongly modified, sometimes giving a forged picture of a strongly recombining organism despite high levels of clonal reproduction.
Collapse
Affiliation(s)
- F Prugnolle
- Laboratoire Génétique et Evolution des Maladies Infectieuses, UMR CNRS-IRD 2724, Montpellier, Cedex 5, France.
| | | |
Collapse
|
26
|
Steinauer ML. The sex lives of parasites: investigating the mating system and mechanisms of sexual selection of the human pathogen Schistosoma mansoni. Int J Parasitol 2009; 39:1157-63. [PMID: 19298820 PMCID: PMC2911351 DOI: 10.1016/j.ijpara.2009.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 01/28/2023]
Abstract
The mating systems of internal parasites are inherently difficult to investigate although they have important implications for the evolutionary biology of the species, disease epidemiology, and are important considerations for control measures. Using parentage analyses, three topics concerning the mating biology of Schistosoma mansoni were investigated: the number of mates per adult male and female, variance in reproductive success among individuals, and the potential role for sexual selection on male body size and also mate choice for genetically dissimilar individuals. Results indicated that schistosomes were mostly monogamous, and evidence of only one mate change occurred over a period of 5-6 weeks. One male was polygynous and contained two females in its gynecophoral canal although offspring were only detected for one of the females. Even though they were primarily monogamous and the sex ratio near even, reproductive success was highly variable, indicating a potential role for sexual selection. Male body size was positively related to reproductive success, consistent with sexual selection via male-male competition and female choice for large males. However, relatedness of pairs was not associated with their reproductive success. Finally, genetically identical individuals differed significantly in their reproductive output and identical males in their body size, indicating important partner and environmental effects on these traits.
Collapse
|
27
|
Impact of temporal changes and host factors on the genetic structure of a population of Opisthorchis viverrini sensu lato in Khon Kaen Province (Thailand). Parasitology 2009; 136:1057-63. [DOI: 10.1017/s0031182009006441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SUMMARYThe population genetics of 317 individual Opisthorchis viverrini from Khon Kaen Province Thailand, from 4 different years and 4 cyprinid fish species was examined using multilocus enzyme electrophoresis of enolase (Enol), phosphoglucomutase (Pgm) and triose phosphate isomerase (Tpi). Allele and genotype frequencies for Enol and Pgm were consistent irrespective of year or host species. No heterozygote deficiency was detected for Enol. Significant heterozygote deficiencies were detected in 3 of 4 years for Pgm. For Tpi, allele frequencies of the most common allele and genotype frequency varied between years and among individuals from different host species. Heterozygote deficiencies for Tpi were detected in 2 years. No significant heterozygous deficiencies were detected among O. virerrini from different fish species in 2005, except at Pgm and Tpi from Puntioplites protozsron. There was no statistical significance in pairwise FST values between O. viverrini from Cyclocheilichthys armatus in different years or different host species in 2005. Significant departures from Hardy-Weinberg expectations and a high rate of gene flow in a population of O. viverrini are discussed in terms of self- and cross-fertilisation, natural selection, non-random mating, the Wahlund effect, presence of null alleles, intensity of infection, biology and ecology of their intermediate cyprinid hosts.
Collapse
|
28
|
Lagrue C, Poulin R, Keeney DB. EFFECTS OF CLONALITY IN MULTIPLE INFECTIONS ON THE LIFE-HISTORY STRATEGY OF THE TREMATODECOITOCAECUM PARVUMIN ITS AMPHIPOD INTERMEDIATE HOST. Evolution 2009; 63:1417-26. [DOI: 10.1111/j.1558-5646.2009.00619.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Steinauer ML, Hanelt B, Agola LE, Mkoji GM, Loker ES. Genetic structure of Schistosoma mansoni in western Kenya: The effects of geography and host sharing. Int J Parasitol 2009; 39:1353-62. [PMID: 19464296 DOI: 10.1016/j.ijpara.2009.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
We examined the spatial structure of Schistosoma mansoni, a parasite of humans, from natural infections at two levels: across the Lake Victoria basin of Kenya and among snail hosts. Using 20 microsatellite markers we examined geographic patterns of relatedness and population structure of cercariae and found weak, but significant structure detected by some, but not all analyses. We hypothesise structure created by aggregations of clonal individuals or adherence of hosts to local transmission sites is eroded by high amounts of gene flow in the region. This finding also supports previous hypotheses concerning the evolution of drug resistance in the region. Intrasnail dynamics were investigated in the context of aggregation and kin selection theory to determine how relatedness and also sex influence host sharing and host exploitation. Cercarial production did not differ significantly between snails with one or two genotypes suggesting that mixed infections resulted in decreased individual fitness and provides a framework for reproductive competition. Coinfection patterns in snails were independent of parasite relatedness indicating that schistosomes were not aggregated according to their relatedness and that kin selection was not influencing host sharing. Additionally, host exploitation in coinfections (measured by cercarial production) was not negatively correlated with relatedness, as predicted by classical models due to increased competition and thus exploitation when parasites are unrelated. Because of the low levels of relatedness within the population, schistosomes may rarely encounter close relatives and kin selection mechanisms that influence the distribution of individuals within snails or the virulence mode of the parasites may simply have not evolved.
Collapse
Affiliation(s)
- M L Steinauer
- Department of Biological Sciences, University of New Mexico, MSC03 2020, Albuquerque, NM87131, USA.
| | | | | | | | | |
Collapse
|
30
|
Dybdahl MF, Jokela J, Delph LF, Koskella B, Lively CM. Hybrid fitness in a locally adapted parasite. Am Nat 2009; 172:772-82. [PMID: 18950274 DOI: 10.1086/592866] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The parasite (Red Queen) hypothesis for the maintenance of sexual reproduction and genetic diversity assumes that host-parasite interactions result from tight genetic specificity. Hence, hybridization between divergent parasite populations would be expected to disrupt adaptive gene combinations, leading to reduced infectivity on exposure to parental sympatric hosts, as long as gene effects are nonadditive. In contrast, hybridization would not cause reduced infectivity on allopatric hosts unless the divergent parasite populations possess alleles that are intrinsically incompatible when they are combined. In three different experiments, we compared the infectivity of locally adapted parasite (trematode) populations with that of F(1) hybrid parasites when exposed to host (snail) populations that were sympatric to one of the two parasite populations. We tested for intrinsic genetic incompatibilities in two experiments by including one host population that was allopatric to both parasite populations. As predicted, when the target host populations were sympatric to the parasite populations, the hybrids were significantly less infective than the parental average, while hybrid parasites on allopatric hosts were not, thereby ruling out intrinsic genetic incompatibilities. The results are consistent with nonadditive gene effects and tightly specific host-driven selection underlying parasite divergence, as envisioned by coevolutionary theory and the Red Queen hypothesis.
Collapse
Affiliation(s)
- Mark F Dybdahl
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA.
| | | | | | | | | |
Collapse
|
31
|
Keeney DB, Lagrue C, Bryan-Walker K, Khan N, Leung TL, Poulin R. The use of fluorescent fatty acid analogs as labels in trematode experimental infections. Exp Parasitol 2008; 120:15-20. [DOI: 10.1016/j.exppara.2008.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 03/30/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
|
32
|
Quantifying inbreeding in natural populations of hermaphroditic organisms. Heredity (Edinb) 2008; 100:431-9. [PMID: 18301439 DOI: 10.1038/hdy.2008.2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We review molecular methods for estimating selfing rates and inbreeding in populations. Two main approaches are available: the population structure approach (PSA) and progeny-array approach (PAA). The PSA approach relies on single-generation samples and produces estimates that integrate the inbreeding history over several generations, but is based on strong assumptions (for example, inbreeding equilibrium). The PSA has classically relied on single-locus inbreeding coefficients averaged over loci. Unfortunately PSA estimates are very sensitive to technical problems such as the occurrence of null alleles at one or more of the loci. Consequently inbreeding might be substantially overestimated, especially in outbred populations. However, the robustness of the PSA has recently been greatly improved by the development of multilocus methods free of such bias. The PAA, on the other hand, is based on the comparison between offspring and mother genotypes. As a consequence, PAA estimates do not reflect long-term inbreeding history but only recent mating events of the maternal individuals studied ('here and now' selfing). In addition to selfing rates, the PAA allows estimating other mating system parameters, including biparental inbreeding and the correlation of selfing among sibs. Although PAA estimates could also be biased by technical problems, incompatibilities between the mother's genotype and her offspring allow the identification and correction of such bias. For all methods, we provide guidelines on the required number of loci and sample sizes. We conclude that the PSA and PAA are equally robust, provided multilocus information is used. Although experimental constraints may make the PAA more demanding, especially in animals, the two methods provide complementary information, and can fruitfully be conducted together.
Collapse
|
33
|
Criscione CD, Anderson JD, Raby K, Sudimack D, Subedi J, Rai DR, Upadhayay RP, Jha B, Williams-Blangero S, Anderson TJC. Microsatellite markers for the human nematode parasite Ascaris lumbricoides: development and assessment of utility. J Parasitol 2007; 93:704-8. [PMID: 17626368 DOI: 10.1645/ge-1058r.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We describe 35 microsatellite markers from the human parasitic nematode Ascaris lumbricoides. We found 7 sex-linked markers and demonstrate that 26 autosomal loci can be scored reliably. These markers have high genetic variability and provide the tools to address multiple questions concerning the epidemiology, fine-scale genetic structure, host specificity, and mating systems of this parasite.
Collapse
Affiliation(s)
- Charles D Criscione
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, Texas 78245, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Keeney DB, Waters JM, Poulin R. Clonal diversity of the marine trematode Maritrema novaezealandensis within intermediate hosts: the molecular ecology of parasite life cycles. Mol Ecol 2007; 16:431-9. [PMID: 17217355 DOI: 10.1111/j.1365-294x.2006.03143.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We quantified the clonal diversity of the New Zealand marine trematode Maritrema novaezealandensis (n = 1250) within Zeacumantus subcarinatus snail (n = 25) and Macrophthalmus hirtipes crab (n = 25) intermediate hosts using four to six microsatellite loci, and investigated the potential biological and physical factors responsible for the observed genetic patterns. Individual snails harboured one to five trematode genotypes and 48% of snails were infected by multiple parasite genotypes. Overall, the number of parasite genotypes did not increase with snail size, but was highest in intermediate-sized snails. Significantly larger numbers of parasite genotypes were detected in crabs (relative to snails; P < 0.001), with 16-25 genotypes recovered from individual crabs. Although crabs are typically infected by small numbers of cercariae sourced from many snails, they are occasionally infected by large numbers of cercariae sourced from single snails. The latter cases explain the significant genetic differentiation of trematode populations detected among their crab hosts (F(ST) = 0.009, P < 0.001). Our results suggest that the timing of infection and/or intraspecific competition among parasite clones within snails determine(s) the diversity of parasite clones that snails harbour. The presence of a large number of infected snails and tidal mixing of cercariae prior to infection results in crabs potentially harbouring hundreds of parasite genotypes despite the crabs' territorial behaviour.
Collapse
Affiliation(s)
- Devon B Keeney
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
35
|
Gomulkiewicz R, Drown DM, Dybdahl MF, Godsoe W, Nuismer SL, Pepin KM, Ridenhour BJ, Smith CI, Yoder JB. Dos and don'ts of testing the geographic mosaic theory of coevolution. Heredity (Edinb) 2007; 98:249-58. [PMID: 17344805 DOI: 10.1038/sj.hdy.6800949] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The geographic mosaic theory of coevolution is stimulating much new research on interspecific interactions. We provide a guide to the fundamental components of the theory, its processes and main predictions. Our primary objectives are to clarify misconceptions regarding the geographic mosaic theory of coevolution and to describe how empiricists can test the theory rigorously. In particular, we explain why confirming the three main predicted empirical patterns (spatial variation in traits mediating interactions among species, trait mismatching among interacting species and few species-level coevolved traits) does not provide unequivocal support for the theory. We suggest that strong empirical tests of the geographic mosaic theory of coevolution should focus on its underlying processes: coevolutionary hot and cold spots, selection mosaics and trait remixing. We describe these processes and discuss potential ways each can be tested.
Collapse
Affiliation(s)
- R Gomulkiewicz
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Keeney DB, Waters JM, Poulin R. Diversity of trematode genetic clones within amphipods and the timing of same-clone infections. Int J Parasitol 2007; 37:351-7. [PMID: 17188274 DOI: 10.1016/j.ijpara.2006.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
The genetic diversity of trematodes within second intermediate hosts has important implications for the evolution of trematode populations as these hosts are utilized after the parasites reproduce asexually within first intermediate hosts and before sexual reproduction within definitive hosts. We characterised the genetic clonal diversity of the marine trematode Maritrema novaezealandensis within amphipod (Paracalliope novizealandiae) second intermediate hosts using four to six microsatellite loci to determine if multiple copies of identical trematode clones existed within naturally infected amphipods. To determine the relative timing of infections by identical clones within hosts, trematode metacercariae were assigned to six developmental stages and the stages of identical clones were compared. The genotypes of 306 trematodes were determined from 44 amphipods each containing more than one trematode. Six pairs of identical trematode clones were recovered in total (representing five amphipods: 11% of amphipods with greater than one trematode) and all pairs of clones belonged to the same developmental stage. This suggests that identical clone infections are effectively synchronous. A general decrease in the number of metacercariae recovered, prevalence, and mean intensity of infection for each subsequent developmental stage coupled with large numbers of metacercariae (>9) only being recovered from recent infections, supports the occurrence of post-infection amphipod mortality and/or within-host trematode mortality. Taken together, our results indicate that natural infections are characterised by high genetic diversity, but that amphipods also periodically encounter "batches" of genetically identical clones, potentially setting the stage for interactions within and between clonal groups inside the host.
Collapse
Affiliation(s)
- Devon B Keeney
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|
37
|
Nieberding CM, Olivieri I. Parasites: proxies for host genealogy and ecology? Trends Ecol Evol 2007; 22:156-65. [PMID: 17157954 DOI: 10.1016/j.tree.2006.11.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 10/26/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Genetic information is used extensively to reconstruct the evolutionary and demographic history of organisms. Recently, it has been suggested that genetic information from some parasites can complement genetic data from their hosts. This approach relies upon the hypothesis that such parasites share a common history with their host. In some cases, parasites provide an additional source of information because parasite data can better reconstruct the common history. Here, we discuss which parasite traits are important in determining their usefulness for analysing host history. The key is the matching of the traits of the parasite (e.g. effective population size, generation time, mutation rate and level of host specificity) with the timescales (phylogenetic, phylogeographic and demographic) that are relevant to the issues of concern in host history.
Collapse
|
38
|
Criscione CD, Blouin MS. Parasite phylogeographical congruence with salmon host evolutionarily significant units: implications for salmon conservation. Mol Ecol 2006; 16:993-1005. [PMID: 17305856 DOI: 10.1111/j.1365-294x.2006.03220.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Comparative phylogeographical studies between parasites and their hosts or with biogeographical regions are useful to predict parasite dispersal potential over a broad geographical range. We used both microsatellite markers and mtDNA sequence data from a trematode parasite, Plagioporus shawi, to test for congruence across two evolutionarily significant unit (ESU) boundaries of its salmonid hosts (Oncorhynchus spp.). We find congruent patterns with the nuclear loci of P. shawi and the ESU boundaries of its salmonid hosts. This pattern indicates that broad-scale phylogeographical patterns of a parasite can be predicted by the biogeographical history of their hosts. Furthermore, this pattern provides independent support for these ESU boundaries as biologically relevant barriers. The mtDNA shows some discordance with nuclear loci and a level of genetic differentiation greater than can be explained by genetic drift. Thus, the mtDNA cannot be used in isolation to infer the population history of P. shawi. The genetic differentiation at both the nuclear and mtDNA markers will be useful for salmon fisheries management by providing a tool to assign ocean-migrating salmonids back to their freshwater population of origin.
Collapse
Affiliation(s)
- Charles D Criscione
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA.
| | | |
Collapse
|
39
|
Koffi BB, de Meeûs T, Barré N, Durand P, Arnathau C, Chevillon C. Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management. Mol Ecol 2006; 15:4603-11. [PMID: 17107486 DOI: 10.1111/j.1365-294x.2006.03098.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since its immigration in the Pacific island of New Caledonia in 1942 (i.e. about 240 tick-generations ago), the cattle tick Boophilus microplus has experienced a remarkable adaptive diversification there. In order to better understand the population factors involved, we have investigated the B. microplus population structure on that main host-species, Bos taurus. This study was based microsatellite loci and confirmed that the island colonization came along with a significant bottleneck. Knowledge on B. microplus biology led us to expect B. microplus populations to be composed of highly inbred lineages irregularly dispatched among the individual hosts belonging to the same herds. Instead, this study evidenced a weak inbreeding level and an absence of genetic differentiation within herds. Complementarily, a significant signal of isolation by distance exhibited that human-traffic of cattle does not promote high tick dispersal within the island. Finally, the tick density was found to be about a few hundreds of reproducing adults per squared kilometre, for a gene dispersal range of about a few hundred metres per tick generation. Results are discussed with regard to the evolution of new adaptive changes.
Collapse
Affiliation(s)
- Brou Basile Koffi
- Génétique et Evolution des Maladies Infectieuses (G.E.M.I.), UMR CNRS-IRD 2724, Centre IRD, 911 avenue Agropolis, BP 64501, 34 394 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|