1
|
Payet SD, Underwood J, Berry O, Saunders T, Travers MJ, Wakefield CB, Miller K, Newman SJ. Population genomics informs the management of harvested snappers across north-western Australia. Sci Rep 2024; 14:26598. [PMID: 39496708 PMCID: PMC11535392 DOI: 10.1038/s41598-024-77424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Failure to consider population structure when managing harvested fishes increases the risk of stock depletion, yet empirical estimates of population structure are often lacking for important fishery species. In this study, we characterise genetic variation in single nucleotide polymorphisms (SNPs) to assess population structure for three harvested species of tropical snappers across the broad (up to 300 km wide) and extensive (~ 4000 km) continental shelf of north-western Australia. Comparisons across ~ 300 individuals per species, showed remarkably similar patterns of genetic structure among Lutjanus sebae (red emperor), L. malabaricus (saddletail snapper) and Pristipomoides multidens (goldband snapper) despite subtle differences in biological and ecological traits. Low levels of genetic subdivision were reflected in an isolation by distance relationship where genetic connectivity increased with geographic proximity. This indicates extensive but not unlimited dispersal across the north-western Australian shelf. Our findings provide evidence of connectivity between current management areas, violating the assumption of multiple independent stocks. Spatial stock assessment models may be more suitable for the management of these species however demographic connectivity rates cannot be accurately estimated from the conventional population genetic approaches applied in this study. We recommend that managers aim to maintain adequate spawning biomass across current management areas, and assess stocks at finer scales, where practical.
Collapse
Affiliation(s)
- Samuel D Payet
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 39 Northside Drive, Hillarys, Western Australia, 6025, Australia.
| | - Jim Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Level 3, The University of Western Australia, Fairway, Crawley, WA, 6009, Australia
| | - Oliver Berry
- CSIRO Environomics Future Science Platform, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Thor Saunders
- Department of Primary Industry and Resources, Northern Territory Government, 33 Vaughan St, Berrimah, NT, 0828, Australia
| | - Michael J Travers
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 39 Northside Drive, Hillarys, Western Australia, 6025, Australia
| | - Corey B Wakefield
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 39 Northside Drive, Hillarys, Western Australia, 6025, Australia
| | - Karen Miller
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Level 3, The University of Western Australia, Fairway, Crawley, WA, 6009, Australia
| | - Stephen J Newman
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, 39 Northside Drive, Hillarys, Western Australia, 6025, Australia
| |
Collapse
|
2
|
Fernández-Alías A, Razinkovas-Baziukas A, Morkūnė R, Ibáñez-Martínez H, Bacevičius E, Muñoz I, Marcos C, Pérez-Ruzafa A. Recolonization origin and reproductive locations, but not isolation from the sea, lead to genetic structure in migratory lagoonal fishes. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105732. [PMID: 36063780 DOI: 10.1016/j.marenvres.2022.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The assessment of connectivity in marine ecosystems is a requirement to adequate fisheries management. In this study we have selected two commercially exploited migratory species, European perch (Perca fluviatilis) and European smelt (Osmerus eperlanus), to evaluate the connectivity between the Curonian Lagoon and the coastal Baltic Sea. Our results indicate that isolation between the coastal lagoon and the adjacent sea area does not lead to the formation of genetic structure in migratory fish species. However, both species do register subpopulations coexisting in the area without interbreeding. This indicates that the fisheries management for migratory fishes in coastal lagoons affects a wider area than just the coastal lagoon. European perch, being a postglacial recolonizer from various refugees, has four different subpopulations, while the mechanism that maintains this division remains unexplored. The feeding migrations of European perch to the coastal zone suggest that the reproduction might occur elsewhere and that the factors for genetic structure suggested at the Baltic Sea scale might operate during these migrations. For European smelt, we discuss the existence of two different ecotypes, one lagoonal and one diadromous, and the different registered spawning locations as explicative causes for the maintenance of two genetically divergent clusters. The lagoonal ecotype reproduces and spawns inside the Curonian Lagoon while the diadromous one lives in the open Baltic Sea, performing spawning migrations to the lagoon and the mouth of Nemunas river, thus, maintaining the genetic divergence among them. However, our results indicate that there are no differences in size between both clusters, while the lagoonal population is expected to be smaller, forbidding the determination of two genetically different ecotypes. We conclude that there are no geographically and genetically separated populations of these two species in the lagoon-sea- terrestrial inlets continuum, and unified stock management for the coastal Baltic Sea and the Curonian lagoon is required.
Collapse
Affiliation(s)
- Alfredo Fernández-Alías
- Department of Ecology and Hydrology, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| | | | - Rasa Morkūnė
- Marine Research Institute, Klaipėda University, 92294, Klaipėda, Lithuania
| | - Helena Ibáñez-Martínez
- Department of Ecology and Hydrology, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | | | - Irene Muñoz
- Department of Zoology and Physic Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Concepción Marcos
- Department of Ecology and Hydrology, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Angel Pérez-Ruzafa
- Department of Ecology and Hydrology, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
3
|
Cossu P, Mura L, Dedola GL, Lai T, Sanna D, Scarpa F, Azzena I, Fois N, Casu M. Detection of Genetic Patterns in Endangered Marine Species Is Affected by Small Sample Sizes. Animals (Basel) 2022; 12:ani12202763. [PMID: 36290149 PMCID: PMC9597844 DOI: 10.3390/ani12202763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Knowledge of Genetic diversity and its spatial distribution is crucial to improve conservation plans for endangered species. Genetic tools help ensure species' long-term persistence by unraveling connectivity patterns and evolutionary trajectories of populations. Here, microsatellite genotypes of individuals from populations of Patella ferruginea are used to assess the effect of sample size on metrics of within-and between-population genetic diversity by combining empirical and simulated data. Within-population metrics are slightly to moderately affected by small sample size, albeit the magnitude of the bias is proportional to the effective population size and gene flow. The power of detecting genetic differentiation among populations increases with sample size, albeit the gain of increasing the number of sampled individuals tends to be negligible between 30 and 50. Our results line up with those of previous studies and highlight that small sample sizes are not always a hindrance to investigating genetic patterns in endangered marine species. Caution is needed in interpreting genetic patterns based on small sample sizes when the observed genetic differentiation is weak. This study also highlights the importance of carrying out genetic monitoring in seemingly well-preserved but potentially isolated populations.
Collapse
Affiliation(s)
- Piero Cossu
- Department of Sciences for Nature and Environmental Resources, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-2280924
| | - Laura Mura
- Dipartimento per la Ricerca nelle Produzioni Animali, Agris Sardegna, 07040 Olmedo, Italy
| | - Gian Luca Dedola
- Department of Sciences for Nature and Environmental Resources, University of Sassari, 07100 Sassari, Italy
| | - Tiziana Lai
- Department of Sciences for Nature and Environmental Resources, University of Sassari, 07100 Sassari, Italy
| | - Daria Sanna
- Department of Sciences for Nature and Environmental Resources, University of Sassari, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Fabio Scarpa
- Department of Sciences for Nature and Environmental Resources, University of Sassari, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Nicola Fois
- Dipartimento per la Ricerca nelle Produzioni Animali, Agris Sardegna, 07040 Olmedo, Italy
| | - Marco Casu
- Department of Sciences for Nature and Environmental Resources, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Vranken S, Wernberg T, Scheben A, Severn-Ellis AA, Batley J, Bayer PE, Edwards D, Wheeler D, Coleman MA. Genotype-Environment mismatch of kelp forests under climate change. Mol Ecol 2021; 30:3730-3746. [PMID: 34018645 DOI: 10.1111/mec.15993] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023]
Abstract
Climate change is increasingly impacting ecosystems globally. Understanding adaptive genetic diversity and whether it will keep pace with projected climatic change is necessary to assess species' vulnerability and design efficient mitigation strategies such as assisted adaptation. Kelp forests are the foundations of temperate reefs globally but are declining in many regions due to climate stress. A lack of knowledge of kelp's adaptive genetic diversity hinders assessment of vulnerability under extant and future climates. Using 4245 single nucleotide polymorphisms (SNPs), we characterized patterns of neutral and putative adaptive genetic diversity for the dominant kelp in the southern hemisphere (Ecklonia radiata) from ~1000 km of coastline off Western Australia. Strong population structure and isolation-by-distance was underpinned by significant signatures of selection related to temperature and light. Gradient forest analysis of temperature-linked SNPs under selection revealed a strong association with mean annual temperature range, suggesting adaptation to local thermal environments. Critically, modelling revealed that predicted climate-mediated temperature changes will probably result in high genomic vulnerability via a mismatch between current and future predicted genotype-environment relationships such that kelp forests off Western Australia will need to significantly adapt to keep pace with projected climate change. Proactive management techniques such as assisted adaptation to boost resilience may be required to secure the future of these kelp forests and the immense ecological and economic values they support.
Collapse
Affiliation(s)
- Sofie Vranken
- UWA Oceans Institute, Crawley, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Thomas Wernberg
- UWA Oceans Institute, Crawley, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Institute of Marine Research, His, Norway
| | - Armin Scheben
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Philipp Emanuel Bayer
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - David Wheeler
- New South Wales Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, Australia
| | - Melinda Ann Coleman
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- New South Wales Fisheries, National Marine Science Centre, Coffs Harbour, NSW, Australia
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, Australia
| |
Collapse
|
5
|
Iannucci A, Cannicci S, Caliani I, Baratti M, Pretti C, Fratini S. Investigation of mechanisms underlying chaotic genetic patchiness in the intertidal marbled crab Pachygrapsus marmoratus (Brachyura: Grapsidae) across the Ligurian Sea. BMC Evol Biol 2020; 20:108. [PMID: 32831022 PMCID: PMC7444255 DOI: 10.1186/s12862-020-01672-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Background Studies on marine community dynamics and population structures are limited by the lack of exhaustive knowledge on the larval dispersal component of connectivity. Genetic data represents a powerful tool in understanding such processes in the marine realm. When dealing with dispersion and connectivity in marine ecosystems, many evidences show patterns of genetic structure that cannot be explained by any clear geographic trend and may show temporal instability. This scenario is usually referred to as chaotic genetic patchiness, whose driving mechanisms are recognized to be selection, temporal shifts in local population dynamics, sweepstakes reproductive success and collective dispersal. In this study we focused on the marbled crab Pachygrapsus marmoratus that inhabits the rocky shores of the Mediterranean Sea, Black Sea and East Atlantic Ocean, and disperses through planktonic larvae for about 1 month. P. marmoratus exhibits unexpectedly low connectivity levels at local scale, although well-defined phylogeographic patterns across the species’ distribution range were described. This has been explained as an effect of subtle geographic barriers or due to sweepstake reproductive success. In order to verify a chaotic genetic patchiness scenario, and to explore mechanisms underlying it, we planned our investigation within the Ligurian Sea, an isolated basin of the western Mediterranean Sea, and we genotyped 321 individuals at 11 microsatellite loci. Results We recorded genetic heterogeneity among our Ligurian Sea samples with the occurrence of genetic clusters not matching the original populations and a slight inter-population divergence, with the geographically most distant populations being the genetically most similar ones. Moreover, individuals from each site were assigned to all the genetic clusters. We also recorded evidences of self-recruitment and a higher than expected within-site kinship. Conclusions Overall, our results suggest that the chaotic genetic patchiness we found in P. marmoratus Ligurian Sea populations is the result of a combination of differences in reproductive success, en masse larval dispersion and local larval retention. This study defines P. marmoratus as an example of marine spawner whose genetic pool is not homogenous at population level, but rather split in a chaotic mosaic of slightly differentiated genetic patches derived from complex and dynamic ecological processes.
Collapse
Affiliation(s)
- A Iannucci
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - S Cannicci
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy. .,The Swire Institute of Marine Science and the Division of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR.
| | - I Caliani
- Department of Environment, Earth and Physical Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - M Baratti
- National Research Council - IBBR, via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - C Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", viale N. Sauro 4, 57128, Livorno, Italy.,Department of Veterinary Sciences, University of Pisa, via Livornese lato monte, 56122, San Piero a Grado (PI), Italy
| | - S Fratini
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Virta L, Gammal J, Järnström M, Bernard G, Soininen J, Norkko J, Norkko A. The diversity of benthic diatoms affects ecosystem productivity in heterogeneous coastal environments. Ecology 2019; 100:e02765. [DOI: 10.1002/ecy.2765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Leena Virta
- Department of Geosciences and Geography University of Helsinki PO Box 64 FIN‐00014 Helsinki Finland
- Tvärminne Zoological Station University of Helsinki J.A. Palméns väg 260 FI‐10900 Hangö Finland
| | - Johanna Gammal
- Tvärminne Zoological Station University of Helsinki J.A. Palméns väg 260 FI‐10900 Hangö Finland
| | - Marie Järnström
- Environmental and Marine Biology Åbo Akademi University Artillerigatan 6 20520 Åbo Finland
| | | | - Janne Soininen
- Department of Geosciences and Geography University of Helsinki PO Box 64 FIN‐00014 Helsinki Finland
| | - Joanna Norkko
- Tvärminne Zoological Station University of Helsinki J.A. Palméns väg 260 FI‐10900 Hangö Finland
| | - Alf Norkko
- Tvärminne Zoological Station University of Helsinki J.A. Palméns väg 260 FI‐10900 Hangö Finland
- Baltic Sea Centre Stockholm University Stockholm Sweden
| |
Collapse
|
7
|
Demographic history and asynchronous spawning shape genetic differentiation among populations of the hard coral Acropora tenuis in Western Australia. Mol Phylogenet Evol 2016; 98:89-96. [PMID: 26876640 DOI: 10.1016/j.ympev.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/31/2015] [Accepted: 02/04/2016] [Indexed: 11/23/2022]
Abstract
Genetic subdivision within populations can ultimately lead to the evolution of new species, and in populations of broadcast-spawners a potential facilitator of genetic subdivision is asynchronous reproduction. However, the factors that shape genetic variation in marine systems are complex and ambiguous, and ecological genetic structure may be influenced by the overriding signature of past demographic events. Here, the relative roles of the timing of reproduction and historical geography on the partitioning of genetic variation were examined in seven populations of the broadcast-spawning coral Acropora tenuis over 12° of latitude. The analysis of multiple loci (mitochondrial control region, two nuclear introns and six microsatellites) revealed significant genetic division between the most northern reef and all other reefs, suggesting that WA reefs were re-colonized from two different sources after the Pleistocene glaciation. Accompanying this pattern was significant genetic differentiation associated with different breeding seasons (spring and autumn), which was greatest in PaxC, in which there were two divergent lineages (ΦST=0.98). This is the second study to find divergent clades of PaxC associated with spring and autumn spawners, strengthening the suggestion of some selective connection to timing of reproduction in corals. This study reiterates the need to incorporate reproductive timing into population genetic studies of corals because it facilitates genetic differentiation; however, careful analysis of population genetic data is required to separate ecological and evolutionary processes.
Collapse
|
8
|
Thomas L, Kennington WJ, Stat M, Wilkinson SP, Kool JT, Kendrick GA. Isolation by resistance across a complex coral reef seascape. Proc Biol Sci 2015; 282:20151217. [PMID: 26224707 PMCID: PMC4528533 DOI: 10.1098/rspb.2015.1217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/29/2015] [Indexed: 01/27/2023] Open
Abstract
A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve our understanding of forces driving genetic divergence in the marine environment. Information about barriers to gene flow (such as ocean currents) is used to define a resistance surface to predict the spatial genetic structure of populations and explain deviations from the widely applied isolation-by-distance model. The majority of seascape approaches to date have been applied to linear coastal systems or at large spatial scales (more than 250 km), with very few applied to complex systems at regional spatial scales (less than 100 km). Here, we apply a seascape genetics approach to a peripheral population of the broadcast-spawning coral Acropora spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral reef system off the central coast of Western Australia. We coupled population genetic data from a panel of microsatellite DNA markers with a biophysical dispersal model to test whether oceanographic processes could explain patterns of genetic divergence. We identified significant variation in allele frequencies over distances of less than 10 km, with significant differentiation occurring between adjacent sites but not between the most geographically distant ones. Recruitment probabilities between sites based on simulated larval dispersal were projected into a measure of resistance to connectivity that was significantly correlated with patterns of genetic divergence, demonstrating that patterns of spatial genetic structure are a function of restrictions to gene flow imposed by oceanographic currents. This study advances our understanding of the role of larval dispersal on the fine-scale genetic structure of coral populations across a complex island system and applies a methodological framework that can be tailored to suit a variety of marine organisms with a range of life-history characteristics.
Collapse
Affiliation(s)
- Luke Thomas
- The UWA Oceans Institute, School of Plant Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Michael Stat
- Trace and Environmental DNA (TrEnD) Laboratory, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102, Australia
| | - Shaun P Wilkinson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Johnathan T Kool
- Geoscience Australia, Symonston, Australian Capital Territory 2601, Australia
| | - Gary A Kendrick
- The UWA Oceans Institute, School of Plant Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
9
|
Pommier T, Douzery EJP, Mouillot D. Environment drives high phylogenetic turnover among oceanic bacterial communities. Biol Lett 2012; 8:562-6. [PMID: 22258446 DOI: 10.1098/rsbl.2011.0990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although environmental filtering has been observed to influence the biodiversity patterns of marine bacterial communities, it was restricted to the regional scale and to the species level, leaving the main drivers unknown at large biogeographic scales and higher taxonomic levels. Bacterial communities with different species compositions may nevertheless share phylogenetic lineages, and phylogenetic turnover (PT) among those communities may be surprisingly low along any biogeographic or environmental gradient. Here, we investigated the relative influence of environmental filtering and geographical distance on the PT between marine bacterial communities living more than 8000 km apart in contrasted abiotic conditions. PT was high between communities and was more structured by local environmental factors than by geographical distance, suggesting the predominance of a lineage filtering process. Strong phenotype-environment mismatches observed in the ocean may surpass high connectivity between marine microbial communities.
Collapse
Affiliation(s)
- Thomas Pommier
- Université de Lyon, INRA, CNRS, Université Lyon 1, Ecologie Microbienne (UMR 5557, USC 1193), 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France.
| | | | | |
Collapse
|
10
|
White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ. Ocean currents help explain population genetic structure. Proc Biol Sci 2010; 277:1685-94. [PMID: 20133354 PMCID: PMC2871860 DOI: 10.1098/rspb.2009.2214] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/15/2010] [Indexed: 11/12/2022] Open
Abstract
Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management.
Collapse
Affiliation(s)
- Crow White
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Underwood JN, Smith LD, van Oppen MJH, Gilmour JP. Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2009; 19:18-29. [PMID: 19323171 DOI: 10.1890/07-1461.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Coral reefs are in decline worldwide, and marine reserve networks have been advocated as a powerful management tool for maximizing the resilience of coral communities to an increasing variety, number, and severity of disturbances. However, the effective design of reserves must account for the spatial scales of larval dispersal that affect the demography of communities over ecological time frames. Ecologically relevant distances of dispersal were inferred from DNA microsatellite data in a broadcast-spawning (Acropora tenuis) and a brooding (Seriatopora hystrix) coral at isolated reef systems off northwest Australia. Congruent with expectations based on life histories, levels of genetic subdivision among populations were markedly higher in the brooder than in the broadcast spawner. Additionally, significant subdivision for both species between systems (>100 km), and between (>10 km) or within reefs (<10 km) within systems, indicated that many reefs or reef patches are demographically independent. There was also a clear distinction in the scale of genetic structure between the different systems; at the more geographically complex of the systems, a much finer scale structure was detected in both species. This suggested that the hydrodynamics associated with these complex reefs restrict distances regularly traveled by larvae. The primary implication is that short-term recovery of these coral communities after severe disturbance requires the input of larvae from viable communities kilometers to a few tens of kilometers away. Therefore, to be self-sustaining, we suggest that coral reef protected areas need to be large enough to encompass these routine dispersal distances. Further, to facilitate recovery from severe disturbances, protected areas need to be replicated over these spatial scales. However, specific designs also need to account for size, complexity, and isolation of reefs, which will either restrict or enhance dispersal within this range.
Collapse
Affiliation(s)
- Jim N Underwood
- School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | | | | |
Collapse
|
12
|
Butlin RK, Galindo J, Grahame JW. Review. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos Trans R Soc Lond B Biol Sci 2008; 363:2997-3007. [PMID: 18522915 DOI: 10.1098/rstb.2008.0076] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The most common classification of modes of speciation begins with the spatial context in which divergence occurs: sympatric, parapatric or allopatric. This classification is unsatisfactory because it divides a continuum into discrete categories, concentrating attention on the extremes, and it subordinates other dimensions on which speciation processes vary, such as the forces driving differentiation and the genetic basis of reproductive isolation. It also ignores the fact that speciation is a prolonged process that commonly has phases in different spatial contexts. We use the example of local adaptation and partial reproductive isolation in the intertidal gastropod Littorina saxatilis to illustrate the inadequacy of the spatial classification of speciation modes. Parallel divergence in shell form in response to similar environmental gradients in England, Spain and Sweden makes this an excellent model system. However, attempts to demonstrate 'incipient' and 'sympatric' speciation involve speculation about the future and the past. We suggest that it is more productive to study the current balance between local adaptation and gene flow, the interaction between components of reproductive isolation and the genetic basis of differentiation.
Collapse
Affiliation(s)
- Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
13
|
van Oppen MJH, Lutz A, De'ath G, Peplow L, Kininmonth S. Genetic traces of recent long-distance dispersal in a predominantly self-recruiting coral. PLoS One 2008; 3:e3401. [PMID: 18852897 PMCID: PMC2564835 DOI: 10.1371/journal.pone.0003401] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/19/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Understanding of the magnitude and direction of the exchange of individuals among geographically separated subpopulations that comprise a metapopulation (connectivity) can lead to an improved ability to forecast how fast coral reef organisms are likely to recover from disturbance events that cause extensive mortality. Reef corals that brood their larvae internally and release mature larvae are believed to show little exchange of larvae over ecological times scales and are therefore expected to recover extremely slowly from large-scale perturbations. METHODOLOGY/PRINCIPAL FINDINGS Using analysis of ten DNA microsatellite loci, we show that although Great Barrier Reef (GBR) populations of the brooding coral, Seriatopora hystrix, are mostly self-seeded and some populations are highly isolated, a considerable amount of sexual larvae (up to approximately 4%) has been exchanged among several reefs 10 s to 100 s km apart over the past few generations. Our results further indicate that S. hystrix is capable of producing asexual propagules with similar long-distance dispersal abilities (approximately 1.4% of the sampled colonies had a multilocus genotype that also occurred at another sampling location), which may aid in recovery from environmental disturbances. CONCLUSIONS/SIGNIFICANCE Patterns of connectivity in this and probably other GBR corals are complex and need to be resolved in greater detail through genetic characterisation of different cohorts and linkage of genetic data with fine-scale hydrodynamic models.
Collapse
|
14
|
Johnson MS, Black R. Adaptive responses of independent traits to the same environmental gradient in the intertidal snail Bembicium vittatum. Heredity (Edinb) 2008; 101:83-91. [PMID: 18461084 DOI: 10.1038/hdy.2008.33] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The snail Bembicium vittatum occupies a wide range of intertidal habitats in the Houtman Abrolhos Islands, Western Australia. Allozyme variation reflects patterns of connectivity, which are independent of local habitat. In contrast, heritable differences in shell shape among 83 shore sites vary with habitat, indicating local adaptation. Here we examine dimorphisms of colour and spotting of the shell in the same populations, as a test of consistency and complexity of patterns of local adaptation. Within populations, the frequency of spotted shells is higher in dark shells. Despite this association, spatial variations of colour and spotting are only weakly correlated. As predicted for traits associated with local adaptation, subdivision is greater for colour, spotting and shape than for allozymes. Colour and shape are associated with local habitat, such that populations on vertical shores have higher frequencies of dark and relatively flatter shells than those on gently sloping shores. These associations are repeatable between three separate groups of islands. Spotting shows a weaker, but significant association with the same gradient. Although shape does not differ between colour morphs within populations, the proportion of dark shells is strongly associated with shape. Thus, the independent shell traits are apparently adapted to a common, biologically significant gradient, even though the adaptive mechanisms probably differ for colour and shape. The parallel variations of independent traits highlight both the complexity of local adaptation and the potential to reveal evolutionarily significant environmental contrasts by examining adaptively relevant traits.
Collapse
Affiliation(s)
- M S Johnson
- School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia.
| | | |
Collapse
|