1
|
Li M, Liu S, Zhu H, Guo Z, Zhi Y, Liu R, Jiang Z, Liang X, Hu H, Zhu J. Decreased locus coeruleus signal associated with Alzheimer’s disease based on neuromelanin-sensitive magnetic resonance imaging technique. Front Neurosci 2022; 16:1014485. [PMID: 36278009 PMCID: PMC9580271 DOI: 10.3389/fnins.2022.1014485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) technique was used to detect the changes of the locus coeruleus (LC) signals in Alzheimer’s disease patients (AD), and to analyze its correlation with cognitive function. Materials and methods A total of 27 patients with AD, 15 patients with mild cognitive impairment (MCI), and 25 healthy controls (HC) were examined by NM-MRI technique. ImageJ software was used to measure the LC signals. The locus coeruleus signal contrast ratios (LC-CRs) were calculated, along with the measurement of neuropsychological scales. Results The LC-CRs of AD patients were significantly different from that of HC (p = 0.007, 95% CI: −0.053∼−0.007). However, such significant differences were not observed between MCI and HC (p = 1.000, 95% CI: −0.030∼0.024), AD and MCI (p = 0.050, 95% CI: −0.054∼0.000). Furthermore, a significant positive correlation was identified between LC-CRs and MMSE sub item Drawing (r = 0.484, p = 0.011) in the AD group, MoCA sub item Attention (r = 0.519, p = 0.047) in the MCI group. The area under the curve of LC-CRs in the diagnosis of AD was 0.749 (p = 0.002, 95% CI: 0.618∼0.880), with a sensitivity of 85.2% and a specificity of 56.0%. Conclusion The NM-MRI technique could quantify the pathological degenerations of the LC in AD. Such LC degenerations can be employed to distinguish AD from healthy elderly.
Collapse
Affiliation(s)
- Meng Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shanwen Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhiwen Guo
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuqi Zhi
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rong Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyun Liang
- Institute of Artificial Intelligence and Clinical Innovation, Neusoft Medical Systems Co., Ltd., Shanghai, China
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Hua Hu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Hua Hu,
| | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Jiangtao Zhu,
| |
Collapse
|
2
|
Crunfli F, Vrechi TA, Costa AP, Torrão AS. Cannabinoid Receptor Type 1 Agonist ACEA Improves Cognitive Deficit on STZ-Induced Neurotoxicity Through Apoptosis Pathway and NO Modulation. Neurotox Res 2019; 35:516-529. [PMID: 30607903 DOI: 10.1007/s12640-018-9991-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
The cannabinoid system has the ability to modulate cellular and molecular mechanisms, including excitotoxicity, oxidative stress, apoptosis, and inflammation, acting as a neuroprotective agent, by its relationship with signaling pathways associated to the control of cell proliferation, differentiation, and survival. Recent reports have raised new perspectives on the possible role of cannabinoid system in neurodegenerative diseases like Alzheimer disease's (AD). AD is a neurodegenerative disorder characterized by the presence of amyloid plaques, neurofibrillary tangles, neuronal death, and progressive cognitive loss, which could be caused by energy metabolism impairment, changes in insulin signaling, chronic oxidative stress, neuroinflammation, Tau hyperphosphorylation, and Aβ deposition in the brain. Thus, we investigated the presumptive protective effect of the cannabinoid type 1 (CB1)-selective receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against streptozotocin (STZ) exposure stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells) and in vivo model (intracerebroventricular STZ injection), experimental models of sporadic AD. Our results demonstrated that ACEA treatment reversed cognitive impairment and increased activity of Akt and ERK triggered by STZ, and increased IR expression and increased the anti-apoptotic proteins levels, Bcl-2. In the in vitro model, ACEA was able to rescue cells from STZ-triggered death and modulated the NO release by STZ. Our study has demonstrated a participation of the cannabinoid system in cellular survival, involving the CB1 receptor, which occurs by positive regulation of the anti-apoptotic proteins, suggesting the participation of this system in neurodegenerative processes. Our data suggest that the cannabinoid system is an interesting therapeutic target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernanda Crunfli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
| | - Talita A Vrechi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Andressa P Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Andréa S Torrão
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
3
|
Abstract
Various fungi and bacteria can colonize in the brain and produce physical alterations seen in Alzheimer’s disease (AD). Environmental and genetic factors affect the occurrence of fungal colonization, and how fungi can grow, enter the brain, and interact with the innate immune system. The essence of AD development is the defeat of the innate immune system, whether through vulnerable patient health status or treatment that suppresses inflammation by suppressing the innate immune system. External and mechanical factors that lead to inflammation are a door for pathogenic opportunity. Current research associates the presence of fungi in the etiology of AD and is shown in cerebral tissue at autopsy. From the time of the discovery of AD, much speculation exists for an infective cause. Identifying any AD disease organism is obscured by processes that can take place over years. Amyloid protein deposits are generally considered to be evidence of an intrinsic response to stress or imbalance, but instead amyloid may be evidence of the innate immune response which exists to destroy fungal colonization through structural interference and cytotoxicity. Fungi can remain ensconced for a long time in niches or inside cells, and it is the harboring of fungi that leads to repeated reinfection and slow wider colonization that eventually leads to a grave outcome. Although many fungi and bacteria are associated with AD affected tissues, discussion here focuses on Candida albicans as the archetype of human fungal pathology because of its wide proliferation as a commensal fungus, extensive published research, numerous fungal morphologies, and majority proliferation in AD tissues.
Collapse
Affiliation(s)
- Bodo Parady
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.,Visiting Scholar, University of California, Berkeley, Berkeley CA, USA
| |
Collapse
|
4
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Zoltan V Varga
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - George Hasko
- 2 Department of Surgery, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Pal Pacher
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
5
|
Emery DC, Shoemark DK, Batstone TE, Waterfall CM, Coghill JA, Cerajewska TL, Davies M, West NX, Allen SJ. 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain. Front Aging Neurosci 2017; 9:195. [PMID: 28676754 PMCID: PMC5476743 DOI: 10.3389/fnagi.2017.00195] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
The neurological deterioration associated with Alzheimer's disease (AD), involving accumulation of amyloid-beta peptides and neurofibrillary tangles, is associated with evident neuroinflammation. This is now seen to be a significant contributor to pathology. Recently the tenet of the privileged status of the brain, regarding microbial compromise, has been questioned, particularly in terms of neurodegenerative diseases. It is now being considered that microbiological incursion into the central nervous system could be either an initiator or significant contributor to these. This is a novel study using 16S ribosomal gene-specific Next generation sequencing (NGS) of extracted brain tissue. A comparison was made of the bacterial species content of both frozen and formaldehyde fixed sections of a small cohort of Alzheimer-affected cases with those of cognitively unimpaired (normal). Our findings suggest an increase in bacterial populations in Alzheimer brain tissue compared with normal.
Collapse
Affiliation(s)
- David C. Emery
- School of Clinical Sciences, Faculty of Health Sciences, University of BristolBristol, United Kingdom
| | | | - Tom E. Batstone
- School of Biological Sciences, Life Sciences, University of BristolBristol, United Kingdom
| | - Christy M. Waterfall
- School of Biological Sciences, Life Sciences, University of BristolBristol, United Kingdom
| | - Jane A. Coghill
- School of Biological Sciences, Life Sciences, University of BristolBristol, United Kingdom
| | | | - Maria Davies
- School of Oral and Dental SciencesBristol, United Kingdom
| | - Nicola X. West
- School of Oral and Dental SciencesBristol, United Kingdom
| | - Shelley J. Allen
- School of Clinical Sciences, Faculty of Health Sciences, University of BristolBristol, United Kingdom
| |
Collapse
|
6
|
P. Hurst T, Coleman-Vaughan C, Patwal I, V. McCarthy J. Regulated intramembrane proteolysis, innate immunity and therapeutic targets in Alzheimer’s disease. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
7
|
Islam BU, Habib S, Ahmad P, Allarakha S, Moinuddin, Ali A. Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human Diseases: A Special Focus on Poly(ADP-ribose) Polymerase (PARP). Indian J Clin Biochem 2015; 30:368-385. [PMID: 26788021 PMCID: PMC4712174 DOI: 10.1007/s12291-014-0475-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
Peroxynitrite is formed in biological systems when nitric oxide and superoxide rapidly interact at near equimolar ratio. Peroxynitrite, though not a free radical by chemical nature, is a powerful oxidant which reacts with proteins, DNA and lipids. These reactions trigger a wide array of cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. The present review outlines the various peroxynitrite-induced DNA modifications with special mention to the formation of 8-nitroguanine and 8-oxoguanine as well as the induction of DNA single strand breakage. Low concentrations of peroxynitrite cause apoptotic death, whereas higher concentrations cause necrosis with cellular energetics (ATP and NAD(+)) serving as control between the two modes of cell death. DNA damage induced by peroxynitrite triggers the activation of DNA repair systems. A DNA nick sensing enzyme, poly(ADP-ribose) polymerase-1 (PARP-1) becomes activated upon detecting DNA breakage and it cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter on nuclear acceptor proteins. Over-activation of PARP induced by peroxynitrite consumes NAD(+) and consequently ATP decreases, culminating in cell dysfunction, apoptosis or necrosis. This mechanism has been implicated in the pathogenesis of various diseases like diabetes, cardiovascular diseases and neurodegenerative diseases. In this review, we have discussed the cytotoxic effects (apoptosis and necrosis) of peroxynitrite in the etiology of the mentioned diseases, focusing on the role of PARP in DNA repair in presence of peroxynitrite.
Collapse
Affiliation(s)
- Badar ul Islam
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Safia Habib
- />Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Parvez Ahmad
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Shaziya Allarakha
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Moinuddin
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Asif Ali
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|
8
|
Fu L, Li Y, Hu Y, Yu B, Zhang H, Wu J, Wu H, Yu X, Kong W. Norovirus P particle: an excellent vaccine platform for antibody production against Alzheimer's disease. Immunol Lett 2015; 168:22-30. [PMID: 26349054 DOI: 10.1016/j.imlet.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/04/2023]
Abstract
Active vaccination against amyloid β (Aβ42) is considered a potential therapeutic approach for Alzheimer's disease (AD). However, immunization with synthetic human Aβ1-42 has resulted in meningoencephalitis in 6% of patients and generated only low-titer anti-Aβ42 antibodies. In order to develop a safe and effective vaccine against Alzheimer's disease, the Aβ1-6 peptide was used as the novel immunogen and Norovirus P particles as the vaccine platform in this study. By inserting and presenting Aβ1-6 on the outermost surface of the P particle, we showed that the chimeric P particle-based AD protein vaccine could elicit a strong immune response, inducing highly specific antibody titers against Aβ42 without causing T-cell activation. Furthermore, antibodies induced by the AD protein vaccines were demonstrated to be effective at the cellular level. In addition, we also compared the immunogenicity of the chimeric P particles with different insertional loci in the loop structure domain and demonstrated that insertion of the antigen into all three loops of the P particle at the same time could significantly improve immune responses to the vaccine. In conclusion, the Norovirus P particle is an excellent vaccine platform for stimulating Aβ42 antibody production, and chimeric P particles may be developed as an effective therapy for AD.
Collapse
Affiliation(s)
- Lu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yingnan Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Hu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Narayanan B, Ethridge LE, O'Neil K, Dunn S, Mathew I, Tandon N, Calhoun VD, Ruaño G, Kocherla M, Windemuth A, Clementz BA, Tamminga CA, Sweeney JA, Keshavan MS, Pearlson GD. Genetic Sources of Subcomponents of Event-Related Potential in the Dimension of Psychosis Analyzed From the B-SNIP Study. Am J Psychiatry 2015; 172:466-78. [PMID: 25615564 PMCID: PMC4455958 DOI: 10.1176/appi.ajp.2014.13101411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Biological risk factors underlying psychosis are poorly understood. Biological underpinnings of the dimension of psychosis can be derived using genetic associations with intermediate phenotypes such as subcomponents of auditory event-related potentials (ERPs). Various ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder are heritable and are expressed in unaffected relatives, although studies investigating genetic contributions to ERP abnormalities are limited. The authors used a novel parallel independent component analysis (para-ICA) to determine which empirically derived gene clusters are associated with data-driven ERP subcomponents, assuming a complex etiology underlying psychosis. METHOD The authors examined the multivariate polygenic association of ERP subcomponents from 64-channel auditory oddball data in 144 individuals with schizophrenia, 210 psychotic bipolar disorder probands, and 95 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Data were reduced by principal components analysis to two target and one standard ERP waveforms. Multivariate association of compressed ERP waveforms with a set of 20,329 single-nucleotide polymorphisms (SNPs) (reduced from a 1-million-SNP array) was examined using para-ICA. Genes associated with SNPs were further examined using pathway analysis tools. RESULTS Para-ICA identified four ERP components that were significantly correlated with three genetic components. Enrichment analysis revealed complement immune response pathway and multiple processes that significantly mediate ERP abnormalities in psychosis, including synaptic cell adhesion, axon guidance, and neurogenesis. CONCLUSIONS This study identified three genetic components comprising multiple genes mediating ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder. The data suggest a possible polygenic structure comprising genes influencing key neurodevelopmental processes, neural circuitry, and brain function mediating biological pathways plausibly associated with psychosis.
Collapse
Affiliation(s)
- Balaji Narayanan
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Lauren E. Ethridge
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Kasey O'Neil
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Sabra Dunn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Ian Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Vince D. Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131,The Mind Research Network, Albuquerque, NM-87106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| | - Gualberto Ruaño
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | - Mohan Kocherla
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | | | | | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| |
Collapse
|
10
|
Piejko M, Dec R, Babenko V, Hoang A, Szewczyk M, Mak P, Dzwolak W. Highly amyloidogenic two-chain peptide fragments are released upon partial digestion of insulin with pepsin. J Biol Chem 2015; 290:5947-58. [PMID: 25586185 DOI: 10.1074/jbc.m114.608844] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteases play a well recognized role in the emergence of highly aggregation-prone protein fragments in vivo, whereas in vitro limited proteolysis is often employed to probe different phases of amyloidogenic pathways. Here, we show that addition of moderate amounts of pepsin to acidified bovine insulin at close to physiological temperature results in an abrupt self-assembly of amyloid-like fibrils from partially digested insulin fragments. Biochemical analysis of the pepsin-induced fibrils implicates peptide fragments (named H) consisting of the 13 or 15 N-terminal residues of the A-chain and 11 or 13 N-terminal residues of the B-chain linked by the disulfide bond between Cys-7A-Cys-7B as the main constituents. There are up to eight pepsin-cleavage sites remaining within the double chain peptide, which become protected upon fast fibrillation unless concentration of the enzyme is increased resulting in complete digestion of insulin. Controlled re-association of H-peptides leads to "explosive" fibrillation only under nonreducing conditions implying the key role of the disulfide bond in their amyloidogenicity. Such re-assembled amyloid is similar in terms of morphology and infrared features to typical bovine insulin fibrils, although it lacks the ability to seed the intact protein.
Collapse
Affiliation(s)
- Marcin Piejko
- From the Protein Biophysics Group, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, the Department of Analytical Biochemistry
| | - Robert Dec
- the Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Viktoria Babenko
- From the Protein Biophysics Group, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, the Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Agnieszka Hoang
- From the Protein Biophysics Group, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology
| | - Monika Szewczyk
- the Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Paweł Mak
- the Department of Analytical Biochemistry, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, and
| | - Wojciech Dzwolak
- From the Protein Biophysics Group, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, the Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
11
|
Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract 2014; 24:1-10. [PMID: 25471398 PMCID: PMC5588216 DOI: 10.1159/000369101] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Biochemical and immunological aspects of protein aggregation in neurodegenerative diseases. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0491-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 2014; 14:36. [PMID: 24656052 PMCID: PMC3994432 DOI: 10.1186/1471-2318-14-36] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/26/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology? DISCUSSION Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology. MECHANISM Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of 'immunosterol' 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease. SUMMARY We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology.
Collapse
Affiliation(s)
- Richard Lathe
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK
| | - Alexandra Sapronova
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Optical Research Group, Laboratory of Evolutionary Biophysics of Development, Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri Kotelevtsev
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Biomedical Centre for Research Education and Innovation (CREI), Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK
| |
Collapse
|
14
|
Discovery of the Endocannabinoid System: A Breakthrough in Neuroscience. ARCHIVES OF NEUROSCIENCE 2014. [DOI: 10.5812/archneurosci.15030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Kyrtsos CR, Baras JS. Studying the role of ApoE in Alzheimer's disease pathogenesis using a systems biology model. J Bioinform Comput Biol 2013; 11:1342003. [PMID: 24131052 DOI: 10.1142/s0219720013420031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Even with its well-known symptoms of memory loss and well-characterized pathology of beta amyloid (Aβ) plaques and neurofibrillary tangles, the disease pathogenesis and initiating factors are still not well understood. To tackle this problem, a systems biology model has been developed and used to study the varying effects of variations in the ApoE allele present, as well as the effects of short term and periodic inflammation at low to moderate levels. Simulations showed a late onset peak of Aβ in the ApoE4 case that lead to localized neuron loss which could be ameliorated in part by application of short-term pro-inflammatory mediators. The model that has been developed herein represents one of the first attempts to model AD from a systems approach to study physiologically relevant parameters that may prove useful to physicians in the future.
Collapse
|
16
|
Hernández-Rodríguez M, Correa-Basurto J, Benitez-Cardoza CG, Resendiz-Albor AA, Rosales-Hernández MC. In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process. Protein Sci 2013; 22:1320-35. [PMID: 23904252 DOI: 10.1002/pro.2319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 11/06/2022]
Abstract
The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ 1-42 ) is the most important pathophysiological event associated with Alzheimer's disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu(2+) and various drugs used for AD treatment, such as galanthamine (Reminyl(®) ), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu(2+) and galanthamine prevent the formation of Aβ1-42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1-42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ 1-42 in the presence of Cu(2+) or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu(2+) ) or to Lys 28 (galanthamine), which prevents Aβ 1-42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu(2+) and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.
Collapse
Affiliation(s)
- Maricarmen Hernández-Rodríguez
- Laboratorio de Modelado Molecular y Bioinformatica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, D.F., México; Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, D.F., México
| | | | | | | | | |
Collapse
|
17
|
Guan X, Yang J, Gu H, Zou J, Yao Z. Immunotherapeutic efficiency of a tetravalent Aβ1-15 vaccine in APP/PS1 transgenic mice as mouse model for Alzheimer's disease. Hum Vaccin Immunother 2013; 9:1643-53. [PMID: 23732905 PMCID: PMC3906261 DOI: 10.4161/hv.24830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 01/22/2023] Open
Abstract
Immunization with synthetic, preaggregated β-amyloid (Aβ) was the first treatment approach able to dramatically reduce brain Aβ pathology in Alzheimer's disease (AD) animal models. For the development of a safe vaccine, we investigated whether 4Aβ1-15 (four tandem repeats of GPGPG-linked Aβ1-15 sequences) had therapeutic effects in the APP/PS1 transgenic mice model of AD. We described the production of anti-Aβ antibodies in APP/PS1 mice immunized with 4Aβ1-15 mixed with MF59 adjuvant. The anti-Aβ antibody concentrations were increased which bound to AD plaques, markedly reduced Aβ pathology in transgenic AD mice and levels of intracerebral Aβ (soluble and insoluble), whereas increased serum Aβ levels. Immunization via 4Aβ1-15 (mainly of the IgG1 Class) may induce a non-inflammatory Th2 reaction. Immunohistochemistry analysis of MHC Class II and CD45 revealed that microglial cells were in a less activated state. Of note, 4Aβ1-15-immunized mice showed improved acquisition of memory compared with controls in a reference-memory Morris water-maze behavior test. The data identify the novel immunogen 4Aβ1-15 as a promising new tool for AD immunotherapy.
Collapse
Affiliation(s)
- Xiaoying Guan
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Junhua Yang
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Juntao Zou
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Zhibin Yao
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| |
Collapse
|
18
|
Tan L, Wang H, Tan X, Zou J, Yao Z. Yeast expressed foldable quadrivalent Aβ15 elicited strong immune response against Aβ without Aβ-specific T cell response in wild C57BL/6 mice. Hum Vaccin Immunother 2012; 8:1090-8. [PMID: 22854673 DOI: 10.4161/hv.20472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Active and passive immunizations with Aβ and Aβ antibodies successfully reduced AD pathology and improved cognitive functions in an AD mouse model. However, human clinical trials of vaccination with synthetic Aβ(AN1792), were halted due to brain inflammation, presumably induced by T cell-mediated immune response. In this study, we used Picha pastoris to produce a recombinant peptide vaccine, r4 × Aβ15(recombinant 4 × Aβ15), four tandem repeats of Aβ(1-15) interlinked by spacers . Wild-type mice were injected subcutaneously with CFA/IFA as adjuvant. r4 × Aβ15 vaccine elicited high titer anti-Aβ antibodies which bound to Aβ plaque in brain tissue from Tg2576 mouse. The antibody isotype was mainly IgG(1), indicating anti-inflammatory Th2 type. There was no splenocyte proliferation against Aβ peptide, which indicates that the r4 × Aβ15 vaccine does not induce Aβ-specific T cellular immune response. Thus, r4 × Aβ15 vaccine may be a safe and efficient vaccine for AD.
Collapse
Affiliation(s)
- Lin Tan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, Guangdong China
| | | | | | | | | |
Collapse
|
19
|
Prisco A, De Berardinis P. Filamentous bacteriophage fd as an antigen delivery system in vaccination. Int J Mol Sci 2012; 13:5179-5194. [PMID: 22606037 PMCID: PMC3344273 DOI: 10.3390/ijms13045179] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/29/2012] [Accepted: 04/19/2012] [Indexed: 12/15/2022] Open
Abstract
Peptides displayed on the surface of filamentous bacteriophage fd are able to induce humoral as well as cell-mediated immune responses, which makes phage particles an attractive antigen delivery system to design new vaccines. The immune response induced by phage-displayed peptides can be enhanced by targeting phage particles to the professional antigen presenting cells, utilizing a single-chain antibody fragment that binds dendritic cell receptor DEC-205. Here, we review recent advances in the use of filamentous phage fd as a platform for peptide vaccines, with a special focus on the use of phage fd as an antigen delivery platform for peptide vaccines in Alzheimer's Disease and cancer.
Collapse
Affiliation(s)
- Antonella Prisco
- Institute of Genetics and Biophysics, CNR, via P. Castellino 111, 80131, Naples, Italy
| | | |
Collapse
|
20
|
He H, Dong W, Huang F. Anti-amyloidogenic and anti-apoptotic role of melatonin in Alzheimer disease. Curr Neuropharmacol 2011; 8:211-7. [PMID: 21358971 PMCID: PMC3001214 DOI: 10.2174/157015910792246137] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/17/2010] [Accepted: 05/28/2010] [Indexed: 01/02/2023] Open
Abstract
Alzheimer disease (AD) is an age-related neurodegenerative disorder characterized by the presence of senile plaques, neurofibrillary tangles and neuronal loss. Amyloid-β protein (Aβ) deposition plays a critical role in the development of AD. It is now generally accepted that massive neuronal death due to apoptosis is a common characteristic in the brains of patients suffering from neurodegenerative diseases, and apoptotic cell death has been found in neurons and glial cells in AD. Melatonin is a secretory product of the pineal gland; melatonin is a potent antioxidant and free radical scavenger and may play an important role in aging and AD. Melatonin decreases during aging and patients with AD have a more profound reduction of this indoleamine. Additionally, the antioxidant properties, the anti-amyloidogenic properties and anti-apoptotic properties of melatonin in AD models have been studied. In this article, we review the anti-amyloidogenic and anti-apoptotic role of melatonin in AD
Collapse
Affiliation(s)
- Hongwen He
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | | | | |
Collapse
|
21
|
Muramatsu H, Yokoi K, Chen L, Ichihara-Tanaka K, Kimura T, Muramatsu T. Midkine as a factor to counteract the deposition of amyloid β-peptide plaques: in vitro analysis and examination in knockout mice. Int Arch Med 2011; 4:1. [PMID: 21223602 PMCID: PMC3024247 DOI: 10.1186/1755-7682-4-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 01/12/2011] [Indexed: 12/31/2022] Open
Abstract
Background Midkine is a heparin-binding cytokine involved in cell survival and various inflammatory processes. Midkine accumulates in senile plaques of patients with Alzheimer's disease, while it counteracts the cytotoxic effects of amyloid β-peptide and inhibits its oligomerization. The present study was conducted to understand the role of midkine upon plaque formation of amyloid β-peptide. Methods A surface plasmon assay was performed to determine the affinity of midkine for amyloid β-peptide. The deposition of amyloid β-peptide was compared in the brain of wild-type and midkine-deficient mice. An effect of midkine to microglias was examined by cell migration assay. Results Midkine bound to amyloid β-peptide with the affinity of 160 nM. The C-terminal half bound to the peptide more strongly than the N-terminal half, and heparin inhibited midkine from binding to the peptide. Pleiotrophin, which has about 50% sequence identity with midkine also bound to amyloid β-peptide. The deposition of amyloid β-peptide plaques in the cortex and hippocampus was more intense in 15-month-old midkine-deficient mice, compared to the corresponding wild-type mice. Midkine promoted migration of microglias in culture. Conclusions These results are consistent with the view that midkine attenuates the deposition of amyloid β-peptide plaques, and thus progression of Alzheimer's disease, by direct binding and also by promoting migration of microglias.
Collapse
Affiliation(s)
- Hisako Muramatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Straub JE, Thirumalai D. Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Annu Rev Phys Chem 2011; 62:437-63. [PMID: 21219143 PMCID: PMC11237996 DOI: 10.1146/annurev-physchem-032210-103526] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative understanding of the kinetics of fibril formation and the molecular mechanism of transition from monomers to fibrils is needed to obtain insights into the growth of amyloid fibrils and more generally self-assembly multisubunit protein complexes. Significant advances using computations of protein aggregation in a number of systems have established generic and sequence-specific aspects of the early steps in oligomer formation. Theoretical considerations, which view oligomer and fibril growth as diffusion in a complex energy landscape, and computational studies, involving minimal lattice and coarse-grained models, have revealed general principles governing the transition from monomeric protein to ordered fibrillar aggregates. Detailed atomistic calculations have explored the early stages of the protein aggregation pathway for a number of amyloidogenic proteins, most notably amyloid β- (Aβ-) protein and fragments from proteins linked to various diseases. These computational studies have provided insights into the role of sequence, role of water, and specific interatomic interactions underlying the thermodynamics and dynamics of elementary kinetic steps in the aggregation pathway. Novel methods are beginning to illustrate the structural basis for the production of Aβ-peptides through interactions with secretases in the presence of membranes. We show that a variety of theoretical approaches, ranging from scaling arguments to minimal models to atomistic simulations, are needed as a complement to experimental studies probing the principles governing protein aggregation.
Collapse
Affiliation(s)
- John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
23
|
|
24
|
Sperling RA, Dickerson BC, Pihlajamaki M, Vannini P, LaViolette PS, Vitolo OV, Hedden T, Becker JA, Rentz DM, Selkoe DJ, Johnson KA. Functional alterations in memory networks in early Alzheimer's disease. Neuromolecular Med 2010; 12:27-43. [PMID: 20069392 PMCID: PMC3036844 DOI: 10.1007/s12017-009-8109-7] [Citation(s) in RCA: 416] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 12/02/2009] [Indexed: 12/22/2022]
Abstract
The hallmark clinical symptom of early Alzheimer's disease (AD) is episodic memory impairment. Recent functional imaging studies suggest that memory function is subserved by a set of distributed networks, which include both the medial temporal lobe (MTL) system and the set of cortical regions collectively referred to as the default network. Specific regions of the default network, in particular, the posteromedial cortices, including the precuneus and posterior cingulate, are selectively vulnerable to early amyloid deposition in AD. These regions are also thought to play a key role in both memory encoding and retrieval, and are strongly functionally connected to the MTL. Multiple functional magnetic resonance imaging (fMRI) studies during memory tasks have revealed alterations in these networks in patients with clinical AD. Similar functional abnormalities have been detected in subjects at-risk for AD, including those with genetic risk and older individuals with mild cognitive impairment. Recently, we and other groups have found evidence of functional alterations in these memory networks even among cognitively intact older individuals with occult amyloid pathology, detected by PET amyloid imaging. Taken together, these findings suggest that the pathophysiological process of AD exerts specific deleterious effects on these distributed memory circuits, even prior to clinical manifestations of significant memory impairment. Interestingly, some of the functional alterations seen in prodromal AD subjects have taken the form of increases in activity relative to baseline, rather than a loss of activity. It remains unclear whether these increases in fMRI activity may be compensatory to maintain memory performance in the setting of early AD pathology or instead, represent evidence of excitotoxicity and impending neuronal failure. Recent studies have also revealed disruption of the intrinsic connectivity of these networks observable even during the resting state in early AD and asymptomatic individuals with high amyloid burden. Research is ongoing to determine if these early network alterations will serve as sensitive predictors of clinical decline, and eventually, as markers of pharmacological response to potential disease-modifying treatments for AD.
Collapse
Affiliation(s)
- Reisa A Sperling
- Department of Neurology, Center for Alzheimer's Research and Treatment, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
In-vivo visualization of key molecular processes involved in Alzheimer's disease pathogenesis: Insights from neuroimaging research in humans and rodent models. Biochim Biophys Acta Mol Basis Dis 2010; 1802:373-88. [PMID: 20060898 DOI: 10.1016/j.bbadis.2010.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/17/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
Diverse age-associated neurodegenerative disorders are featured at a molecular level by depositions of self-aggregating molecules, as represented by amyloid beta peptides (Abeta) and tau proteins in Alzheimer's disease, and cascade-type chain reactions are supposedly commenced with biochemical aberrancies of these amyloidogenic components. Mutagenesis and multiplication of the genes encoding Abeta, tau and other pathogenic initiators may accelerate the incipient process at the cascade top, rationalizing generations of transgenic and knock-in animal models of these illnesses. Meanwhile, these genetic manipulations do not necessarily compress the timelines of crucial intermediate events linking amyloidogenesis and neuronal lethality, resulting in an incomplete recapitulation of the diseases. Requirements for modeling the entire cascade can be illustrated by a side-by-side comparison of humans and animal models with the aid of imaging-based biomarkers commonly applicable to different species. Notably, key components in a highly reactive state are assayable by probe-assisted neuroimaging techniques exemplified by positron emission tomography (PET), providing critical information on the in-vivo accessibility of these target molecules. In fact, multispecies PET studies in conjunction with biochemical, electrophysiological and neuropathological tests have revealed putative neurotoxic subspecies of Abeta assemblies, translocator proteins accumulating in aggressive but not neuroprotective microglia, and functionally active neuroreceptors available to endogenous neurotransmitters and exogenous agonistic ligands. Bidirectional translational studies between human cases and model strains based on this experimental paradigm are presently aimed at clarifying the tau pathogenesis, and would be expanded to analyses of disrupted calcium homeostasis and mitochondrial impairments. Since reciprocal causalities among the key processes have indicated an architectural interchangeability between cascade and network connections as an etiological representation, longitudinal imaging assays with manifold probes covering the cascade from top to bottom virtually delineate the network dynamics continuously altering in the course of the disease and its treatment, and therefore expedite the evaluation and optimization of therapeutic strategies intended for suppressing the neurodegenerative pathway over its full length.
Collapse
|
26
|
Adekar SP, Klyubin I, Macy S, Rowan MJ, Solomon A, Dessain SK, O'Nuallain B. Inherent anti-amyloidogenic activity of human immunoglobulin gamma heavy chains. J Biol Chem 2009; 285:1066-74. [PMID: 19889627 DOI: 10.1074/jbc.m109.044321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously shown that a subpopulation of naturally occurring human IgGs were cross-reactive against conformational epitopes on pathologic aggregates of Abeta, a peptide that forms amyloid fibrils in the brains of patients with Alzheimer disease, inhibited amyloid fibril growth, and dissociated amyloid in vivo. Here, we describe similar anti-amyloidogenic activity that is a general property of free human Ig gamma heavy chains. A gamma(1) heavy chain, F1, had nanomolar binding to an amyloid fibril-related conformational epitope on synthetic oligomers and fibrils as well as on amyloid-laden tissue sections. F1 did not bind to native Abeta monomers, further indicating the conformational nature of its binding site. The inherent anti-amyloidogenic activity of Ig gamma heavy chains was demonstrated by nanomolar amyloid fibril and oligomer binding by polyclonal and monoclonal human heavy chains that were isolated from inert or weakly reactive antibodies. Most importantly, the F1 heavy chain prevented in vitro fibril growth and reduced in vivo soluble Abeta oligomer-induced impairment of rodent hippocampal long term potentiation, a cellular mechanism of learning and memory. These findings demonstrate that free human Ig gamma heavy chains comprise a novel class of molecules for developing potential therapeutics for Alzheimer disease and other amyloid disorders. Moreover, establishing the molecular basis for heavy chain-amyloidogenic conformer interactions should advance understanding on the types of interactions that these pathologic assemblies have with biological molecules.
Collapse
Affiliation(s)
- Sharad P Adekar
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Does IgG therapy prevent Alzheimer's disease? J Neuroimmunol 2009; 215:122-4. [DOI: 10.1016/j.jneuroim.2009.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 07/07/2009] [Accepted: 07/10/2009] [Indexed: 11/20/2022]
|
28
|
Ho CC, Lee LYL, Huang KT, Lin CC, Ku MY, Yang CC, Chan SI, Hsu RL, Chen RPY. Tuning the conformational properties of the prion peptide. Proteins 2009; 76:213-25. [DOI: 10.1002/prot.22341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Sabbagh MN. Drug development for Alzheimer's disease: where are we now and where are we headed? THE AMERICAN JOURNAL OF GERIATRIC PHARMACOTHERAPY 2009; 7:167-85. [PMID: 19616185 PMCID: PMC2948028 DOI: 10.1016/j.amjopharm.2009.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/10/2009] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this article was to provide a survey of the clinical development of pharmacotherapy for Alzheimer's disease (AD). METHODS A search of PubMed to identify pertinent English-language literature was conducted using the terms Alzheimer's disease AND clinical trials (2003-2008), dementia AND prevention AND clinical trials (2003-2008), and the chemical names of all compounds mentioned in articles on new drugs for AD published since 2005. www.ClinicalTrials.gov was searched for relevant trials. Abstracts of the 2008 International Conference on Alzheimer's Disease (ICAD) were reviewed for relevance, as were pharmaceutical company and AD advocacy Web sites. Articles selected for review were primary reports of data from preclinical studies and clinical trials. RESULTS A large number of drugs with differing targets and mechanisms of action are under development for the treatment of AD. Phase III trials of Ginkgo biloba, NSAIDs, phenserine, statins, tarenflurbil, tramiprosate, and xaliproden have been completed, none of them demonstrating adequate efficacy. Encouraging results from completed Phase II trials of dimebon, huperzine A, intravenous immunoglobulin, and methylthioninium chloride were reported at ICAD 2008. Nineteen compounds are currently in Phase II trials, and 3 compounds (AN1792, lecozotan SR, and SGS742) failed at this stage of development. CONCLUSIONS Despite disappointing results from recently completed Phase III trials of several novel compounds, the extent and breadth of activity at all phases of clinical development suggest that new pharmacotherapeutic options for the treatment of AD will become available within the next decade.
Collapse
Affiliation(s)
- Marwan N Sabbagh
- The Cleo Roberts Center for Clinical Research, Banner-Sun Health Research Institute, Sun City, AZ 85351, USA.
| |
Collapse
|
30
|
Perdivara I, Deterding LJ, Cozma C, Tomer KB, Przybylski M. Glycosylation profiles of epitope-specific anti-beta-amyloid antibodies revealed by liquid chromatography-mass spectrometry. Glycobiology 2009; 19:958-70. [PMID: 19318519 DOI: 10.1093/glycob/cwp038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of age-related neurodementia. The accumulation of beta-amyloid polypeptide (Abeta) in brain is generally believed to be a key event in AD. The recent discovery of physiological beta-amyloid autoantibodies represents a promising perspective for treatment and early diagnosis of AD. The mechanisms by which natural beta-amyloid autoantibodies prevent neurodegeneration are currently unknown. The aim of the present study was to analyze the N-linked glycosylation of a plaque-specific, monoclonal antibody (clone 6E10) relevant for immunotherapy of AD, in comparison with the glycosylation pattern of an Abeta autoantibody isolated from an IgG source. Liquid chromatography in combination with tandem mass spectrometry was used to analyze the glycopeptides generated by enzymatic degradation of the antibodies reduced and alkylated heavy chains. The oligosaccharide pattern of the 6E10 antibody shows primarily core-fucosylated biantennary complex structures and, to a low extent, tri- and tetragalactosyl glycoforms, with or without terminal sialic acids. The glycans associated with the serum anti-Abeta autoantibodies are of the complex, biantennary-type, fucosylated at the first N-acetyl glucosamine residue of the trimannosyl chitobiose core and contain zero to two galactose residues, and zero to one terminal sialic acid, with or without bisecting N-acetyl glucosamine. Glycosylation analysis of the Abeta-autoantibody performed at the peptide level revealed all four human IgG subclasses, with IgG(1) and IgG(2) as the dominant subclasses.
Collapse
Affiliation(s)
- Irina Perdivara
- Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
31
|
Kozora E, Hanly JG, Lapteva L, Filley CM. Cognitive dysfunction in systemic lupus erythematosus: past, present, and future. ACTA ACUST UNITED AC 2009; 58:3286-98. [PMID: 18975345 DOI: 10.1002/art.23991] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elizabeth Kozora
- National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
There are currently over two dozen agents targeting β-amyloid (Aβ) in human clinical trials. More than a dozen of these are forms of anti-amyloid immunotherapy. Although other anti-amyloid interventions are further along in the development process, thus far only immunotherapy has provided post-mortem evidence that it can alter elements of the underlying pathology of Alzheimer’s disease (AD) in actual patients.In the past 30 years, there have been many attempts to develop treatments for AD. Early therapies were developed based on a limited understanding of the disease (Slide 1). Prior to the 1980s, a clear pathophysiologic mechanism for AD was not known; instead, symptomatic therapies targeted associated symptoms, such as agitation, insomnia, and psychosis. In the 1970s, several preclinical studies pointed toward synaptic transmission abnormalities, particularly neurochemical abnormalities, as the root cause of AD, and treatments with cholinesterase inhibitors grew out of that theory. Today, the cholinergic hypothesis has been largely discredited in the primary pathogenesis of AD. Another theory based on neurotransmitter abnormalities, the glutaminergic hypothesis, has also gone out of favor as a causal explanation for AD. This did not stop medications based on these mechanisms from finding a meaningful place in the clinical pharmacopeia for treatment of AD.In the 1990s, many clinical trials followed up on epidemiologic studies suggesting systemic causes of AD. These clinical trials focused on anti-inflammatories, hormone replacement, and antioxidants. The trials performed have largely failed, with the possible exception of the trials of vitamin E, an antioxidant. None of these agents have proven useful as disease-modifying therapies for symptomatic AD.
Collapse
|
33
|
Esposito M, Luccarini I, Cicatiello V, De Falco D, Fiorentini A, Barba P, Casamenti F, Prisco A. Immunogenicity and therapeutic efficacy of phage-displayed beta-amyloid epitopes. Mol Immunol 2008; 45:1056-62. [PMID: 17850871 DOI: 10.1016/j.molimm.2007.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
In vitro and in vivo studies indicate that Alzheimer's Disease (AD) could be prevented or treated by active immunization against self-peptide beta-amyloid. In this study, we compared the immunogenicity of different regions of beta-amyloid, displayed on filamentous phages. We established that a filamentous phage displaying epitope 2-6 (AEFRH) of beta-amyloid at the N-terminus of Major Capside Protein (phage fdAD(2-6)) is more immunogenic than a phage displaying epitope 1-7 (DAEFRHD) that differs only in flanking residues. Monthly injections of fdAD(2-6) trigger a robust anti-beta-amyloid antibody response, and afford a significant reduction of plaque pathology in a mouse model of AD, whereas the same treatment, performed with phage fdAD(1-7), induces a lower anti-beta-amyloid titer and does not protect from amyloid deposition. "Memory" anti-amyloid antibodies induced by a single prime-boost cycle with vaccine fdAD(2-6), that have a lower titer compared to antibodies induced by monthly restimulations, do not prevent plaque pathology. Our data show that optimization of epitope display is essential in vaccine design, and suggest that the titer of the anti-amyloid response is the crucial parameter to obtain therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Marianna Esposito
- Istituto di Genetica e Biofisica A. Buzzati Traverso, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Asuni AA, Boutajangout A, Scholtzova H, Knudsen E, Li YS, Quartermain D, Frangione B, Wisniewski T, Sigurdsson EM. Vaccination of Alzheimer's model mice with Abeta derivative in alum adjuvant reduces Abeta burden without microhemorrhages. Eur J Neurosci 2007; 24:2530-42. [PMID: 17100841 PMCID: PMC1779823 DOI: 10.1111/j.1460-9568.2006.05149.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunotherapy holds great promise for Alzheimer's disease (AD) and other conformational disorders but certain adverse reactions need to be overcome. The meningoencephalitis observed in the first AD vaccination trial was likely related to excessive cell-mediated immunity caused by the immunogen, amyloid-beta (Abeta) 1-42, and the adjuvant, QS-21. To avoid this toxicity, we have been using Abeta derivatives in alum adjuvant that promotes humoral immunity. Other potential side effects of immunotherapy are increased vascular amyloid and associated microhemorrhages that may be related to rapid clearance of parenchymal amyloid. Here, we determined if our immunization strategy was associated with this form of toxicity, and if the therapeutic effect was age-dependent. Tg2576 mice and wild-type littermates were immunized from 11 or 19 months and their behaviour evaluated prior to killing at 24 months. Subsequently, plaque- and vascular-Abeta burden, Abeta levels and associated pathology was assessed. The therapy started at the cusp of amyloidosis reduced cortical Abeta deposit burden by 31% and Abeta levels by 30-37%, which was associated with cognitive improvements. In contrast, treatment from 19 months, when pathology is well established, was not immunogenic and therefore did not reduce Abeta burden or improve cognition. Significantly, the immunotherapy in the 11-24 months treatment group, that reduced Abeta burden, did not increase cerebral bleeding or vascular Abeta deposits in contrast to several Abeta antibody studies. These findings indicate that our approach age-dependently improves cognition and reduces Abeta burden when used with an adjuvant suitable for humans, without increasing vascular Abeta deposits or microhemorrhages.
Collapse
Affiliation(s)
- Ayodeji A. Asuni
- Department of Psychiatry, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
| | - Allal Boutajangout
- Department of Psychiatry, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
| | - Henrieta Scholtzova
- Neurology, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
| | - Elin Knudsen
- Department of Psychiatry, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
| | - Yong Sheng Li
- Neurology, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
| | - David Quartermain
- Neurology, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
| | - Blas Frangione
- Department of Psychiatry, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
- Pathology, New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA
| | - Thomas Wisniewski
- Department of Psychiatry, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
- Pathology, New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA
- Neurology, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
| | - Einar M. Sigurdsson
- Department of Psychiatry, New York University School of Medicine, Millhauser Laboratories, 560 First Avenue, New York, NY 10016, USA
- Pathology, New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA
- Correspondence: Dr Einar M. Sigurdsson, Department of Psychiatry, or Thomas Wisniewski, Department of Neurology, as above. or
| |
Collapse
|
35
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
36
|
Abstract
The advent of human amyloid imaging represents a research breakthrough in Alzheimer's disease (AD). It is now possible to detect the early stages of cerebral amyloidosis, a major pathologic component of AD, in living humans using positron emission tomography (PET). This technology will likely enable earlier AD diagnosis, but further research is required to determine whether a positive amyloid PET scan predicts imminent decline in questionably or mildly impaired individuals, and whether amyloid PET can be used to track the efficacy of emerging antiamyloid therapeutic agents. Initial human data are encouraging but suggest that individual amyloid PET findings should be interpreted cautiously, because cerebral amyloidosis precedes and does not equate with either clinical AD or pathologic criteria that define AD.
Collapse
Affiliation(s)
- Keith A Johnson
- Department of Radiology, Tilton 201, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
37
|
Patton RL, Kalback WM, Esh CL, Kokjohn TA, Van Vickle GD, Luehrs DC, Kuo YM, Lopez J, Brune D, Ferrer I, Masliah E, Newel AJ, Beach TG, Castaño EM, Roher AE. Amyloid-beta peptide remnants in AN-1792-immunized Alzheimer's disease patients: a biochemical analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1048-63. [PMID: 16936277 PMCID: PMC1698828 DOI: 10.2353/ajpath.2006.060269] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Experiments with amyloid-beta (Abeta)-42-immunized transgenic mouse models of Alzheimer's disease have revealed amyloid plaque disruption and apparent cognitive function recovery. Neuropathological examination of patients vaccinated against purified Abeta-42 (AN-1792) has demonstrated that senile plaque disruption occurred in immunized humans as well. Here, we examined tissue histology and quantified and biochemically characterized the remnant amyloid peptides in the gray and white matter and leptomeningeal/cortical vessels of two AN-1792-vaccinated patients, one of whom developed meningoencephalitis. Compact core and diffuse amyloid deposits in both vaccinated individuals were focally absent in some regions. Although parenchymal amyloid was focally disaggregated, vascular deposits were relatively preserved or even increased. Immunoassay revealed that total soluble amyloid levels were sharply elevated in vaccinated patient gray and white matter compared with Alzheimer's disease cases. Our experiments suggest that although immunization disrupted amyloid deposits, vascular capture prevented large-scale egress of Abeta peptides. Trapped, solubilized amyloid peptides may ultimately have cascading toxic effects on cerebrovascular, gray and white matter tissues. Anti-amyloid immunization may be most effective not as therapeutic or mitigating measures but as a prophylactic measure when Abeta deposition is still minimal. This may allow Abeta mobilization under conditions in which drainage and degradation of these toxic peptides is efficient.
Collapse
Affiliation(s)
- R Lyle Patton
- The Longtine Center for Molecular Biology and Genetics, W.H. Civin Laboratory for Neuropathology, M.D. Sun Health Research Institute, 10515 W. Santa Fe Dr., Sun City, AZ 85351, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Istrin G, Bosis E, Solomon B. Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-beta peptide. J Neurosci Res 2006; 84:434-43. [PMID: 16767774 DOI: 10.1002/jnr.20886] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intravenous immunoglobulin (IVIg), a purified immunoglobulin fraction manufactured from the blood of healthy humans, is an FDA-approved treatment for many immune and inflammatory diseases. Recent studies have demonstrated that IVIg therapy has several positive effects on patients with Alzheimer's disease (AD). These include improving cognitive functions and lowering the level of soluble amyloid-beta peptide (AbetaP) in the brain. Nonetheless, the mechanism by which IVIg mediates the clearance of AbetaP from the AD brain currently remains unknown. In this study we investigated the molecular basis for the direct and indirect effects of IVIg on AbetaP clearance using the BV-2 cellular microglia line. Specifically, we show that IVIg dissolves preformed AbetaP fibrils in vitro. Moreover, IVIg increases cellular tolerance to AbetaP, enhances microglial migration toward AbetaP deposits, and mediates phagocytosis of AbetaP. Thus, several mechanisms can be considered when examining the effects of IVIg. Our work supports the hypothesis that IVIg interferes by more than one mechanism in clearing AbetaP from the brains of Alzheimer's patients.
Collapse
Affiliation(s)
- Gili Istrin
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
39
|
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006; 58:389-462. [PMID: 16968947 PMCID: PMC2241751 DOI: 10.1124/pr.58.3.2] [Citation(s) in RCA: 1473] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson's and Huntington's disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients' need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-24, Bethesda, MD 20892-9413, USA
| | | | | |
Collapse
|
40
|
Arakawa T, Ejima D, Kita Y, Tsumoto K. Small molecule pharmacological chaperones: From thermodynamic stabilization to pharmaceutical drugs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1677-87. [PMID: 17046342 DOI: 10.1016/j.bbapap.2006.08.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/04/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
A great deal of attention has been paid to so-called amyloid diseases, in which the proteins responsible for the cell death and resultant diseases undergo conformational changes and aggregate in vivo, although whether aggregate formation is the cause or the result of the cell death is controversial. Recently, an increasing attention is given to protein folding diseases tightly associated with mutations. These mutations result in temperature-dependent misfolding and hence inactivation of the proteins, leading to loss of function, at physiological temperature; at low so-called permissive temperatures, the mutant proteins correctly fold and acquire functional structure. Alternatively, activation can be induced by use of osmolytes, which restores the folding of the mutant proteins and hence are called chemical chaperones. The osmolytes are compatible with macromolecular function and do stabilize the native protein structure. However, chemical chaperones require high concentrations for effective folding of mutant proteins and hence are too toxic in in-vivo applications. This limitation can be overcome by pharmacological chaperones, whose functions are similar to the chemical chaperones, but occur at much lower concentrations, i.e., physiologically acceptable concentrations. Although the research and clinical importance of pharmacological chaperones has been emphasized, the initial and central concept of osmolytes is largely ignored. Here we attempt to bridge the concept of osmolytes to applications of pharmacological chaperones.
Collapse
|
41
|
Lenzken SC, Racchi M, Lucchelli A, Govoni S. The search for disease-modifying drugs for neurodegenerative disorders. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.1.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative disorders (NDs) are a complex group of illnesses that possibly share common mechanisms. The onset and progression of NDs may depend upon genetic traits as well as complex interactions between individual genetic backgrounds and environmental factors. The exact role of the risk factors involved, and how they influence the onset and pacing of the disease, is not yet fully understood. Similarly, the relationship between the rate of neuronal death and clinical expression of the disease is a matter for discussion. The knowledge of the various molecules and mechanisms that accompany NDs as primary or secondary events is increasing steadily, but the distinction between their physiological and pathological roles is still uncertain. These premises highlight the difficulties underlying the design of disease modifying strategies. However, it is possible to identify several disease modifying strategies based on various approaches, including the targeting of putative causal elements or of general mechanisms of degeneration and reparative strategies. The purpose of this review is to examine the biological rationale behind attempted protective, restorative and therapeutic strategies.
Collapse
|