1
|
Gillespie GM, Quastel MN, McMichael AJ. HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies. Immunol Rev 2025; 329:e13434. [PMID: 39753525 PMCID: PMC11698700 DOI: 10.1111/imr.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
HLA-E is a nonclassical, nonpolymorphic, class Ib HLA molecule. Its primary function is to present a conserved nonamer peptide, termed VL9, derived from the signal sequence of classical MHC molecules to the NKG2x-CD94 receptors on NK cells and a subset of T lymphocytes. These receptors regulate the function of NK cells, and the importance of this role, which is conserved across mammalian species, probably accounts for the lack of genetic polymorphism. A second minor function is to present other, weaker binding, pathogen-derived peptides to T lymphocytes. Most of these peptides bind suboptimally to HLA-E, but this binding appears to be enabled by the relative stability of peptide-free, but receptive, HLA-E-β2m complexes. This, in turn, may favor nonclassical antigen processing that may be associated with bacteria infected cells. This review explores how the structure of HLA-E, bound to different peptides and then to NKG2-CD94 or T-cell receptors, relates to HLA-E cell biology and immunology. A detailed understanding of this molecule could open up opportunities for development of universal T-cell and NK-cell-based immunotherapies.
Collapse
MESH Headings
- Humans
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/chemistry
- Animals
- HLA-E Antigens
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Protein Binding
- Antigen Presentation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Structure-Activity Relationship
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/chemistry
- NK Cell Lectin-Like Receptor Subfamily D/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Protein Conformation
Collapse
Affiliation(s)
| | - Max N. Quastel
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| | - Andrew J. McMichael
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Li L, Peng X, Batliwala M, Bouvier M. Crystal structures of MHC class I complexes reveal the elusive intermediate conformations explored during peptide editing. Nat Commun 2023; 14:5020. [PMID: 37596268 PMCID: PMC10439229 DOI: 10.1038/s41467-023-40736-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Studies have suggested that MHC class I (MHC I) molecules fluctuate rapidly between numerous conformational states and these motions support peptide sampling. To date, MHC I intermediates are largely uncharacterized experimentally and remain elusive. Here, we present x-ray crystal structures of HLA-B8 loaded with 20mer peptides that show pronounced distortions at the N-terminus of the groove. Long stretches of N-terminal amino acid residues are missing in the electron density maps creating an open-ended groove. Our structures also reveal highly unusual features in MHC I-peptide interaction at the N-terminus of the groove. Molecular dynamics simulations indicate that the complexes have varying degrees of conformational flexibility in a manner consistent with the structures. We suggest that our structures have captured the remarkable molecular dynamics of MHC I-peptide interaction. The visualization of peptide-dependent conformational motions in MHC I is a major step forward in our conceptual understanding of dynamics in high-affinity peptide selection.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA
| | - Xubiao Peng
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Mansoor Batliwala
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Arosa FA, Esgalhado AJ, Reste-Ferreira D, Cardoso EM. Open MHC Class I Conformers: A Look through the Looking Glass. Int J Mol Sci 2021; 22:ijms22189738. [PMID: 34575902 PMCID: PMC8470049 DOI: 10.3390/ijms22189738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Studies carried out during the last few decades have consistently shown that cell surface MHC class I (MHC-I) molecules are endowed with functions unrelated with antigen presentation. These include cis–trans-interactions with inhibitory and activating KIR and LILR, and cis-interactions with receptors for hormones, growth factors, cytokines, and neurotransmitters. The mounting body of evidence indicates that these non-immunological MHC-I functions impact clinical and biomedical settings, including autoimmune responses, tumor escape, transplantation, and neuronal development. Notably, most of these functions appear to rely on the presence in hematopoietic and non-hematopoietic cells of heavy chains not associated with β2m and the peptide at the plasma membrane; these are known as open MHC-I conformers. Nowadays, open conformers are viewed as functional cis-trans structures capable of establishing physical associations with themselves, with other surface receptors, and being shed into the extracellular milieu. We review past and recent developments, strengthening the view that open conformers are multifunctional structures capable of fine-tuning cell signaling, growth, differentiation, and cell communication.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Débora Reste-Ferreira
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elsa M Cardoso
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Health School, Guarda Polytechnic Institute, 6300-749 Guarda, Portugal
| |
Collapse
|
4
|
Cruz FM, Colbert JD, Rock KL. The GTPase Rab39a promotes phagosome maturation into MHC-I antigen-presenting compartments. EMBO J 2020; 39:e102020. [PMID: 31821587 PMCID: PMC6960445 DOI: 10.15252/embj.2019102020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
For CD8 T lymphocytes to mount responses to cancer and virally-infected cells, dendritic cells must capture antigens present in tissues and display them as peptides bound to MHC-I molecules. This is most often accomplished through a pathway called antigen cross-presentation (XPT). Here, we report that the vesicular trafficking protein Rab39a is needed for optimal cross-presentation by dendritic cells in vitro and cross-priming of CD8 T cells in vivo. Without Rab39a, MHC-I presentation of intraphagosomal peptides is inhibited, indicating that Rab39a converts phagosomes into peptide-loading compartments. In this process, Rab39a promotes the delivery of MHC-I molecules from the endoplasmic reticulum (ER) to phagosomes, and increases the levels of peptide-empty MHC-I conformers that can be loaded with peptide in this compartment. Rab39a also increases the levels of Sec22b and NOX2, previously recognized to participate in cross-presentation, on phagosomes, thereby filling in a missing link into how phagosomes mature into cross-presenting vesicles.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Jeff D Colbert
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kenneth L Rock
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|
5
|
Montealegre S, Abramova A, Manceau V, de Kanter AF, van Endert P. The role of MHC class I recycling and Arf6 in cross-presentation by murine dendritic cells. Life Sci Alliance 2019; 2:2/6/e201900464. [PMID: 31740564 PMCID: PMC6861705 DOI: 10.26508/lsa.201900464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022] Open
Abstract
Cross-presentation by MHC class I molecules (MHC-I) is critical for priming of cytotoxic T cells. Peptides derived from cross-presented antigens can be loaded on MHC-I in the endoplasmic reticulum and in endocytic or phagocytic compartments of murine DCs. However, the origin of MHC-I in the latter compartments is poorly understood. Recently, Rab22-dependent MHC-I recycling through a Rab11+ compartment has been suggested to be implicated in cross-presentation. We have examined the existence of MHC-I recycling and the role of Arf6, described to regulate recycling in nonprofessional antigen presenting cells, in murine DCs. We confirm folded MHC-I accumulation in a juxtanuclear Rab11+ compartment and partially localize Arf6 to this compartment. MHC-I undergo fast recycling, however, both folded and unfolded internalized MHC-I fail to recycle to the Rab11+Arf6+ compartment. Therefore, the source of MHC-I molecules in DC endocytic compartments remains to be identified. Functionally, depletion of Arf6 compromises cross-presentation of immune complexes but not of soluble, phagocytosed or mannose receptor-targeted antigen, suggesting a role of Fc receptor-regulated Arf6 trafficking in cross-presentation of immune complexes.
Collapse
Affiliation(s)
- Sebastian Montealegre
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Anastasia Abramova
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Valerie Manceau
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Anne-Floor de Kanter
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France .,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| |
Collapse
|
6
|
Salutari I, Martin R, Caflisch A. The 3A6-TCR/superagonist/HLA-DR2a complex shows similar interface and reduced flexibility compared to the complex with self-peptide. Proteins 2019; 88:31-46. [PMID: 31237711 DOI: 10.1002/prot.25764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 11/11/2022]
Abstract
T-cell receptor (TCR) recognition of the myelin basic protein (MBP) peptide presented by major histocompatibility complex (MHC) protein HLA-DR2a, one of the MHC class II alleles associated with multiple sclerosis, is highly variable. Interactions in the trimolecular complex between the TCR of the MBP83-99-specific T cell clone 3A6 with the MBP-peptide/HLA-DR2a (abbreviated TCR/pMHC) lead to substantially different proliferative responses when comparing the wild-type decapeptide MBP90-99 and a superagonist peptide, which differs mainly in the residues that point toward the TCR. Here, we investigate the influence of the peptide sequence on the interface and intrinsic plasticity of the TCR/pMHC trimolecular and pMHC bimolecular complexes by molecular dynamics simulations. The intermolecular contacts at the TCR/pMHC interface are similar for the complexes with the superagonist and the MBP self-peptide. The orientation angle between TCR and pMHC fluctuates less in the complex with the superagonist peptide. Thus, the higher structural stability of the TCR/pMHC tripartite complex with the superagonist peptide, rather than a major difference in binding mode with respect to the self-peptide, seems to be responsible for the stronger proliferative response.
Collapse
Affiliation(s)
- Ilaria Salutari
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Montealegre S, van Endert PM. Endocytic Recycling of MHC Class I Molecules in Non-professional Antigen Presenting and Dendritic Cells. Front Immunol 2019; 9:3098. [PMID: 30666258 PMCID: PMC6330327 DOI: 10.3389/fimmu.2018.03098] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules are glycoproteins that display peptide epitopes at the cell surface of nucleated cells for recognition by CD8+ T cells. Like other cell surface receptors, MHC class I molecules are continuously removed from the surface followed by intracellular degradation or recycling to the cell surface, in a process likely involving active quality control the mechanism of which remains unknown. The molecular players and pathways involved in internalization and recycling have previously been studied in model cell lines such as HeLa. However, dendritic cells (DCs), which rely on a specialized endocytic machinery that confers them the unique ability to “cross”-present antigens acquired by internalization, may use distinct MHC I recycling pathways and quality control mechanisms. By providing MHC I molecules cross-presenting antigens, these pathways may play an important role in one of the key functions of DCs, priming of T cell responses against pathogens and tumors. In this review, we will focus on endocytic recycling of MHC I molecules in various experimental conditions and cell types. We discuss the organization of the recycling pathway in model cell lines compared to DCs, highlighting the differences in the recycling rates and pathways of MHC I molecules between various cell types, and their putative functional consequences. Reviewing the literature, we find that conclusive evidence for significant recycling of MHC I molecules in primary DCs has yet to be demonstrated. We conclude that endocytic trafficking of MHC class I in DCs remains poorly understood and should be further studied because of its likely role in antigen cross-presentation.
Collapse
Affiliation(s)
- Sebastian Montealegre
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| | - Peter M van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, France.,Université Paris Descartes, Faculté de Médecine, Paris, France.,Centre National de la Recherche Scientifique, UMR8253, Paris, France
| |
Collapse
|
8
|
Cardoso EM, Esgalhado AJ, Patrão L, Santos M, Neves VP, Martinez J, Patto MAV, Silva H, Arosa FA. Distinctive CD8 + T cell and MHC class I signatures in polycythemia vera patients. Ann Hematol 2018; 97:1563-1575. [PMID: 29789880 DOI: 10.1007/s00277-018-3332-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
Polycythemia vera (PV) is a myeloproliferative neoplasm characterized by overproduction of red blood cells. We have performed a comprehensive characterization of blood immune cells for expression of naïve and memory receptors as well as β2m-associated and β2m-free MHC class I heavy chains, also known as closed and open conformers, respectively, in PV patients and age-matched controls (CTR). We show that the peripheral CD3+CD8+ T cell pool in PV patients is clearly divided into two discrete populations, a more granular CD3+CD8high T cell population enriched in effector-memory CD45RA+ T cells (CD8+ TEMRA) when compared to CTR (P < 0.001), and a less granular CD3+CD8int T cell population that is completely absent in the CTR group (78 vs. 0%, P < 0.001) and is a mixture of naïve (CD8+ TN) and CD8+ TEMRA cells expressing intermediate levels of CD28, i.e., CD3+CD8intCD28int. While the percentage of CD3+CD8int TN cells correlated positively with the number of erythrocytes, the percentage of CD3+CD8int TEMRA correlated negatively with the number of platelets. Finally, we report that PV patients' lymphocytes and monocytes display lower levels of closed (W6/32+) MHC-I conformers at the cell surface while exhibiting increased amounts of open (HC-10+) MHC-I conformers. The implications of this distinctive immune signature are discussed.
Collapse
Affiliation(s)
- Elsa M Cardoso
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,IPG-Instituto Politécnico da Guarda, Guarda, Portugal
| | - André J Esgalhado
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Luís Patrão
- FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CHTV-Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Mónica Santos
- CHTV-Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | | | - Jorge Martinez
- FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CHCB-Centro Hospitalar Cova da Beira, Covilhã, Portugal
| | - Maria Assunção Vaz Patto
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,ULSG-Unidade Local de Saúde, Guarda, Portugal
| | - Helena Silva
- CHTV-Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Fernando A Arosa
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal. .,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol 2017. [PMID: 28367149 DOI: 10.3389/fimmu.2017.00292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.
Collapse
Affiliation(s)
- Marek Wieczorek
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | | | - Frank Noé
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
10
|
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol 2017; 8:292. [PMID: 28367149 PMCID: PMC5355494 DOI: 10.3389/fimmu.2017.00292] [Citation(s) in RCA: 625] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/28/2017] [Indexed: 11/21/2022] Open
Abstract
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.
Collapse
Affiliation(s)
- Marek Wieczorek
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | | | - Frank Noé
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
11
|
Mahmutefendić H, Blagojević Zagorac G, Grabušić K, Karleuša L, Maćešić S, Momburg F, Lučin P. Late Endosomal Recycling of Open MHC-I Conformers. J Cell Physiol 2016; 232:872-887. [DOI: 10.1002/jcp.25495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Hana Mahmutefendić
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| | | | | | - Ljerka Karleuša
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| | - Senka Maćešić
- Faculty of Engineering, Department of Mathematics, Physics, Foreign Languages and Kinesiology; University of Rijeka; Rijeka Croatia
| | - Frank Momburg
- Antigen Presentation & T/NK Cell Activation Group, Clinical Cooperation Unit Applied Tumor Immunity; German Cancer Research Center; Heidelberg Germany
| | - Pero Lučin
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| |
Collapse
|
12
|
Ravindranath MH, Terasaki PI, Pham T, Jucaud V, Kawakita S. Suppression of blastogenesis and proliferation of activated CD4(+) T cells: intravenous immunoglobulin (IVIg) versus novel anti-human leucocyte antigen (HLA)-E monoclonal antibodies mimicking HLA-I reactivity of IVIg. Clin Exp Immunol 2014; 178:154-77. [PMID: 24889882 PMCID: PMC4360205 DOI: 10.1111/cei.12391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 01/08/2023] Open
Abstract
Activated CD4(+) T cells undergo blastogenesis and proliferation and they express several surface receptors, including β2-microglobulin-free human leucocyte antigen (HLA) heavy chains (open conformers). Intravenous immunoglobulin (IVIg) suppresses activated T cells, but the mechanism is unclear. IVIg reacts with HLA-Ia/Ib antigens but its reactivity is lost when the anti-HLA-E Ab is adsorbed out. Anti-HLA-E antibodies may bind to the peptides shared by HLA-E and the HLA-I alleles. These shared peptides are cryptic in intact HLA, but exposed in open conformers. The hypothesis that anti-HLA-E monoclonal antibodies (mAbs) that mimic HLA-I reactivity of IVIg may suppress activated T cells by binding to the shared peptides of the open conformers on the T cell surface was tested by examining the relative binding affinity of those mAbs for open conformers coated on regular beads and for intact HLA coated on iBeads, and by comparing the effects on the suppression of phytohaemagglutinin (PHA)-activated T cells of three entities: IVIg, anti-HLA-E mAbs that mimic IVIg [Terasaki Foundation Laboratory (TFL)-006 and (TFL)-007]; and anti-HLA-E antibodies that do not mimic IVIg (TFL-033 and TFL-037). Suppression of blastogenesis and proliferation of those T cells by both IVIg and the anti-HLA-E mAbs was dose-dependent, the dose required with mAbs 50-150-fold lower than with IVIg. TFL-006 and TFL-007 significantly suppressed blastogenesis and proliferation of activated CD4(+) T cells, but neither the non-IVIg-mimicking mAbs nor control antibodies did so. The suppression may be mediated by Fab-binding of TFL-006/TFL-007 to the exposed shared peptides. The mAb binding to the open conformer may signal T cell deactivation because the open conformers have an elongated cytoplasmic tail with phosphorylation sites (tryosine(320)/serine(335)).
Collapse
|
13
|
Kurimoto E, Kuroki K, Yamaguchi Y, Yagi-Utsumi M, Igaki T, Iguchi T, Maenaka K, Kato K. Structural and functional mosaic nature of MHC class I molecules in their peptide-free form. Mol Immunol 2013; 55:393-9. [DOI: 10.1016/j.molimm.2013.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
14
|
Theodossis A. On the trail of empty MHC class-I. Mol Immunol 2013; 55:131-4. [DOI: 10.1016/j.molimm.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/08/2012] [Indexed: 11/27/2022]
|
15
|
Bello M, Correa-Basurto J. Molecular dynamics simulations to provide insights into epitopes coupled to the soluble and membrane-bound MHC-II complexes. PLoS One 2013; 8:e72575. [PMID: 23977319 PMCID: PMC3747130 DOI: 10.1371/journal.pone.0072575] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/10/2013] [Indexed: 11/24/2022] Open
Abstract
Epitope recognition by major histocompatibility complex II (MHC-II) is essential for the activation of immunological responses to infectious diseases. Several studies have demonstrated that this molecular event takes place in the MHC-II peptide-binding groove constituted by the α and β light chains of the heterodimer. This MHC-II peptide-binding groove has several pockets (P1-P11) involved in peptide recognition and complex stabilization that have been probed through crystallographic experiments and in silico calculations. However, most of these theoretical calculations have been performed without taking into consideration the heavy chains, which could generate misleading information about conformational mobility both in water and in the membrane environment. Therefore, in absence of structural information about the difference in the conformational changes between the peptide-free and peptide-bound states (pMHC-II) when the system is soluble in an aqueous environment or non-covalently bound to a cell membrane, as the physiological environment for MHC-II is. In this study, we explored the mechanistic basis of these MHC-II components using molecular dynamics (MD) simulations in which MHC-II was previously co-crystallized with a small epitope (P7) or coupled by docking procedures to a large (P22) epitope. These MD simulations were performed at 310 K over 100 ns for the water-soluble (MHC-IIw, MHC-II-P7w, and MHC-II-P22w) and 150 ns for the membrane-bound species (MHC-IIm, MHC-II-P7m, and MHC-II-P22m). Our results reveal that despite the different epitope sizes and MD simulation environments, both peptides are stabilized primarily by residues lining P1, P4, and P6-7, and similar noncovalent intermolecular energies were observed for the soluble and membrane-bound complexes. However, there were remarkably differences in the conformational mobility and intramolecular energies upon complex formation, causing some differences with respect to how the two peptides are stabilized in the peptide-binding groove.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City, México.
| | | |
Collapse
|
16
|
Ferrante A. HLA-DM: arbiter conformationis. Immunology 2013; 138:85-92. [PMID: 23113687 DOI: 10.1111/imm.12030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/31/2022] Open
Abstract
The recognition by CD4(+) T cells of peptides bound to class II MHC (MHCII) molecules expressed on the surface of antigen-presenting cells is a key step in the initiation of an adaptive immune response. Presentation of peptides is the outcome of an intracellular selection process occurring in dedicated endosomal compartments involving, among others, an MHCII-like molecule named HLA-DM (DM). The impact of DM on the epitope selection machinery has been known for more than 15 years. However, the mechanism by which DM skews the presented repertoire in favour of kinetically stable complexes has remained elusive. Here, a review of the most recent observations in the field is presented, pointing to the possibility that DM decides the survival of a peptide-MHCII complex (pMHCII) on the basis of its conformational flexibility, which is a function of the 'tightness' of interaction between the peptide and the MHCII at a specific region of the binding site.
Collapse
Affiliation(s)
- Andrea Ferrante
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| |
Collapse
|
17
|
Mage MG, Dolan MA, Wang R, Boyd LF, Revilleza MJ, Robinson H, Natarajan K, Myers NB, Hansen TH, Margulies DH. The peptide-receptive transition state of MHC class I molecules: insight from structure and molecular dynamics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1391-9. [PMID: 22753930 PMCID: PMC3422668 DOI: 10.4049/jimmunol.1200831] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed "open" position in the PR transition state to a "closed" position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.
Collapse
Affiliation(s)
- Michael G. Mage
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD,Corresponding authors: , ph: 301-402-5537, fax: 301-480-7352; or , ph: 301-496-6429, fax: 301-496-0222
| | - Michael A. Dolan
- Computational Biology Section, Bioinformatics and Computational Biosciences Branch (BCBB), NIAID, NIH, Bethesda, MD
| | - Rui Wang
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | | | - Howard Robinson
- National Synchrotron Light Source, Brookhaven National Laboratories, Upton, New York
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | - Nancy B. Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ted H. Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD,Corresponding authors: , ph: 301-402-5537, fax: 301-480-7352; or , ph: 301-496-6429, fax: 301-496-0222
| |
Collapse
|
18
|
Zagorac GB, Mahmutefendić H, Tomaš MI, Kučić N, Le Bouteiller P, Lučin P. Early endosomal rerouting of major histocompatibility class I conformers. J Cell Physiol 2012; 227:2953-64. [PMID: 21959869 DOI: 10.1002/jcp.23042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major histocompatibility class I (MHC-I) molecules are present at the cell surface both as fully conformed trimolecular complexes composed of heavy chain (HC), beta-2-microglobulin (β2m) and peptide, and various open forms, devoid of peptide and/or β2m (open MHC-I conformers). Fully conformed MHC-I complexes and open MHC-I conformers can be distinguished by well characterized monoclonal antibody reagents that recognize their conformational difference in the extracellular domain. In the present study, we used these tools in order to test whether conformational difference in the extracellular domain determines endocytic and endosomal route of plasma membrane (PM) proteins. We analyzed PM localization, internalization, endosomal trafficking, and recycling of human and murine MHC-I proteins on various cell lines. We have shown that fully conformed MHC-I and open MHC-I conformers segregate at the PM and during endosomal trafficking resulting in the exclusion of open MHC-I conformers from the recycling route. This segregation is associated with their partitioning into the membranes of different compositions. As a result, the open MHC-I conformers internalized with higher rate than fully conformed counterparts. Thus, our data suggest the existence of conformation-based protein sorting mechanism in the endosomal system.
Collapse
|
19
|
A proteasome-dependent, TAP-independent pathway for cross-presentation of phagocytosed antigen. EMBO Rep 2011; 12:1257-64. [PMID: 22037009 DOI: 10.1038/embor.2011.203] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/09/2011] [Accepted: 09/19/2011] [Indexed: 11/08/2022] Open
Abstract
Major histocompatibility complex (MHC) class I cross-presentation is thought to involve two pathways, one of which depends on both the TAP transporters and the proteasome and the other on neither. We found that preincubation of TAP-deficient dendritic cells at low temperature increases the density of MHC class I at the surface and fully restores cross-presentation of phagocytosed antigen, but not of soluble antigen internalized through receptors. Restoration of cross-presentation by TAP-deficient cells requires antigen degradation by the proteasome. Thus, TAP might mainly be required for recycling cell surface class I molecules during cross-presentation of phagocytosed antigens. Furthermore, phagosomes-but not endosomes-seem to have a TAP-independent mechanism to import peptides generated by cytosolic proteasome complexes.
Collapse
|
20
|
Chua WJ, Kim S, Myers N, Huang S, Yu L, Fremont DH, Diamond MS, Hansen TH. Endogenous MHC-related protein 1 is transiently expressed on the plasma membrane in a conformation that activates mucosal-associated invariant T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:4744-50. [PMID: 21402896 DOI: 10.4049/jimmunol.1003254] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of mucosal-associated invariant T (MAIT) cells is dependent upon the class Ib molecule MHC-related protein 1 (MR1), commensal bacteria, and a thymus. Furthermore, recent studies have implicated MR1 presentation to MAIT cells in bacteria recognition, although the mechanism remains undefined. Surprisingly, however, surface expression of MR1 has been difficult to detect serologically, despite ubiquitous detection of MR1 transcripts and intracellular protein. In this article, we define a unique mAb capable of stabilizing endogenous mouse MR1 at the cell surface, resulting in enhanced mouse MAIT cell activation. Our results demonstrated that under basal conditions, endogenous MR1 transiently visits the cell surface, thus reconciling the aforementioned serologic and functional studies. Furthermore, using this approach, double-positive thymocytes, macrophages, and dendritic cells were identified as potential APCs for MAIT cell development and activation. Based on this pattern of MR1 expression, it is intriguing to speculate that constitutive expression of MR1 may be detrimental for maintenance of immune homeostasis in the gut and/or detection of pathogenic bacteria in mucosal tissues.
Collapse
Affiliation(s)
- Wei-Jen Chua
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zaheer-ul-Haq, Khan W. Molecular and structural determinants of adamantyl susceptibility to HLA-DRs allelic variants: an in silico approach to understand the mechanism of MLEs. J Comput Aided Mol Des 2010; 25:81-101. [DOI: 10.1007/s10822-010-9404-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 11/14/2010] [Indexed: 10/18/2022]
|
22
|
Ting YT, Temme S, Koch N, McLellan AD. A new monoclonal antibody recognizing a linear determinant on the HLA-DRalpha chain N-terminus. Hybridoma (Larchmt) 2010; 28:423-9. [PMID: 20025501 DOI: 10.1089/hyb.2009.0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report the generation of a monoclonal antibody (MAb) that reacts to the N-terminus of the denatured HLA-DRalpha chain. The 1C4.6 MAb was raised against a peptide corresponding to amino acid residues 10 to 32 of a highly conserved region within the alpha1 domain of HLA-DR. This region partially overlaps with the epitope recognized by the conformationally dependent L243 MAb. In Western blot analysis, MAb 1C4.6 reacted with denatured HLA-DRalpha chains, but failed to bind the HLA-DRbeta chain expressed individually by transfectant cells, confirming that it recognizes an epitope on the alpha-chain of HLA-DR. In addition, this antibody was found to be isotype specific to HLA-DRalpha, as it did not cross-react to HLA class II proteins HLA-DP and-HLA-DQ. The 1C4.6 MAb is a valuable addition to existing reagents used to probe the structure and function of MHC class II molecules. This anti-HLA-DRalpha1 domain MAb may prove valuable for studies of HLA class II heterodimer assembly, structure, and function, as well as for studies into the release of soluble MHC class II.
Collapse
Affiliation(s)
- Yi Tian Ting
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
23
|
Peptide binding to MHC class I and II proteins: New avenues from new methods. Mol Immunol 2010; 47:649-57. [DOI: 10.1016/j.molimm.2009.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 01/27/2023]
|
24
|
MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 2009; 9:503-13. [PMID: 19498380 DOI: 10.1038/nri2575] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.
Collapse
|
25
|
Martayan A, Sibilio L, Tremante E, Lo Monaco E, Mulder A, Fruci D, Cova A, Rivoltini L, Giacomini P. Class I HLA folding and antigen presentation in beta 2-microglobulin-defective Daudi cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3609-17. [PMID: 19265139 DOI: 10.4049/jimmunol.0802316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To present virus and tumor Ags, HLA class I molecules undergo a complex multistep assembly involving discrete but transient folding intermediates. The most extensive folding abnormalities occur in cells lacking the class I L chain subunit, called beta(2)-microglobulin (beta(2)m). Herein, this issue was investigated taking advantage of eight conformational murine mAbs (including the prototypic W6/32 mAb) to mapped H chain epitopes of class I molecules, four human mAbs to class I alloantigens, as well as radioimmunoprecipitation, in vitro assembly, pulse-chase, flow cytometry, and peptide-pulse/ELISPOT experiments. We show that endogenous (HLA-A1, -A66, and -B58) as well as transfected (HLA-A2) heavy chains in beta(2)m-defective Burkitt lymphoma Daudi cells are capable of being expressed on the cell surface, although at low levels, and exclusively as immature glycoforms. In addition, HLA-A2 is: 1) partially folded at crucial interfaces with beta(2)m, peptide Ag, and CD8; 2) receptive to exogenous peptide; and 3) capable of presenting exogenous peptide epitopes (from virus and tumor Ags) to cytotoxic T lymphocytes (bulk populations as well as clones) educated in a beta(2)m-positive environment. These experiments demonstrate a precursor-product relationship between novel HLA class I folding intermediates, and define a stepwise mechanism whereby distinct interfaces of the class I H chain undergo successive, ligand-induced folding adjustments in vitro as well as in vivo. Due to this unprecedented class I plasticity, Daudi is the first human cell line in which folding and function of class I HLA molecules are observed in the absence of beta(2)m. These findings bear potential implications for tumor immunotherapy.
Collapse
Affiliation(s)
- Aline Martayan
- Laboratory of Immunology, Regina Elena Cancer Institute Centro della Ricerca Sperimentale, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dong G, Wearsch PA, Peaper DR, Cresswell P, Reinisch KM. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity 2009; 30:21-32. [PMID: 19119025 DOI: 10.1016/j.immuni.2008.10.018] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/17/2008] [Accepted: 10/22/2008] [Indexed: 11/19/2022]
Abstract
Tapasin is a glycoprotein critical for loading major histocompatibility complex (MHC) class I molecules with high-affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here, we present the 2.6 A resolution structure of the tapasin-ERp57 core of the PLC. The structure revealed that tapasin interacts with both ERp57 catalytic domains, accounting for the stability of the heterodimer, and provided an example of a protein disulfide isomerase family member interacting with substrate. Mutational analysis identified a conserved surface on tapasin that interacted with MHC class I molecules and was critical for peptide loading and editing functions of the tapasin-ERp57 heterodimer. By combining the tapasin-ERp57 structure with those of other defined PLC components, we present a molecular model that illuminates the processes involved in MHC class I peptide loading.
Collapse
Affiliation(s)
- Gang Dong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
27
|
Deshaies F, Diallo DA, Fortin JS, O'Rourke HM, Pezeshki AM, Bellemare-Pelletier A, Raby N, Bédard N, Brunet A, Denzin LK, Thibodeau J. Evidence for a human leucocyte antigen-DM-induced structural change in human leucocyte antigen-DObeta. Immunology 2008; 127:408-17. [PMID: 19019088 DOI: 10.1111/j.1365-2567.2008.02984.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human leucocyte antigen (HLA)-DO is a non-classical major histocompatibility complex class II molecule which modulates the function of HLA-DM and the loading of antigenic peptides on molecules such as HLA-DR. The bulk of HLA-DO associates with HLA-DM and this interaction is critical for HLA-DO egress from the endoplasmic reticulum. HLA-DM assists the early steps of HLA-DO maturation presumably through the stabilization of the interactions between the N-terminal regions of the alpha and beta chains. To evaluate a possible role for HLA-DM in influencing the conformation of HLA-DO, we made use of a monoclonal antibody, Mags.DO5, that was raised against HLA-DO/DM complexes. Using transfected cells expressing mismatched heterodimers between HLA-DR and -DO chains, we found that the epitope for Mags.DO5 is located on the DObeta chain and that Mags.DO5 reactivity was increased upon cotransfection with HLA-DM. Our results suggest that HLA-DM influences the folding of HLA-DO in the endoplasmic reticulum. A mutant HLA-DO showing reduced capacity for endoplasmic reticulum egress was better recognized by Mags.DO5 in the presence of HLA-DM. On the other hand, an HLA-DO mutant capable of endoplasmic reticulum egress on its own was efficiently recognized by Mags.DO5, irrespective of the presence of HLA-DM. Taken together, our results suggest that HLA-DM acts as a private chaperone, directly assisting the folding of HLA-DO to promote egress from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Francis Deshaies
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Painter CA, Cruz A, López GE, Stern LJ, Zavala-Ruiz Z. Model for the peptide-free conformation of class II MHC proteins. PLoS One 2008; 3:e2403. [PMID: 18545669 PMCID: PMC2408972 DOI: 10.1371/journal.pone.0002403] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 05/09/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Major histocompatibility complex proteins are believed to undergo significant conformational changes concomitant with peptide binding, but structural characterization of these changes has remained elusive. METHODOLOGY/PRINCIPAL FINDINGS Here we use molecular dynamics simulations and experimental probes of protein conformation to investigate the peptide-free state of class II MHC proteins. Upon computational removal of the bound peptide from HLA-DR1-peptide complex, the alpha50-59 region folded into the P1-P4 region of the peptide binding site, adopting the same conformation as a bound peptide. Strikingly, the structure of the hydrophobic P1 pocket is maintained by engagement of the side chain of Phe alpha54. In addition, conserved hydrogen bonds observed in crystal structures between the peptide backbone and numerous MHC side chains are maintained between the alpha51-55 region and the rest of the molecule. The model for the peptide-free conformation was evaluated using conformationally-sensitive antibody and superantigen probes predicted to show no change, moderate change, or dramatic changes in their interaction with peptide-free DR1 and peptide-loaded DR1. The binding observed for these probes is in agreement with the movements predicted by the model. CONCLUSION/SIGNIFICANCE This work presents a molecular model for peptide-free class II MHC proteins that can help to interpret the conformational changes known to occur within the protein during peptide binding and release, and can provide insight into possible mechanisms for DM action.
Collapse
Affiliation(s)
- Corrie A. Painter
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anthony Cruz
- Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Gustavo E. López
- Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Lawrence J. Stern
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (LS); (ZZ)
| | - Zarixia Zavala-Ruiz
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
- * E-mail: (LS); (ZZ)
| |
Collapse
|
29
|
Sibilio L, Martayan A, Setini A, Monaco EL, Tremante E, Butler RH, Giacomini P. A single bottleneck in HLA-C assembly. J Biol Chem 2007; 283:1267-1274. [PMID: 17956861 DOI: 10.1074/jbc.m708068200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poor assembly of class I major histocompatibility HLA-C heavy chains results in their intracellular accumulation in two forms: free of and associated with their light chain subunit (beta(2)-microglobulin). Both intermediates are retained in the endoplasmic reticulum by promiscuous and HLA-dedicated chaperones and are poorly associated with peptide antigens. In this study, the eight serologically defined HLA-C alleles and the interlocus recombinant HLA-B46 allele (sharing the HLA-C-specific motif KYRV at residues 66-76 of the alpha1-domain alpha-helix) were compared with a large series of HLA-B and HLA-A alleles. Pulse-labeling experiments with HLA-C transfectants and HLA homozygous cell lines demonstrated that KYRV alleles accumulate as free heavy chains because of both poor assembly and post-assembly instability. Reactivity with antibodies to mapped linear epitopes, co-immunoprecipitation experiments, and molecular dynamics simulation studies additionally showed that the KYRV motif confers association to the HLA-dedicated chaperones TAP and tapasin as well as reduced plasticity and unfolding in the peptide-binding groove. Finally, in vitro assembly experiments in cell extracts of the T2 and 721.220 mutant cell lines demonstrated that HLA-Cw1 retains the ability to form a peptide-receptive interface despite a lack of TAP and functional tapasin, respectively. In the context of the available literature, these results indicate that a single locus-specific biosynthetic bottleneck renders HLA-C peptide-selective (rather than peptide-unreceptive) and a preferential natural killer cell ligand.
Collapse
Affiliation(s)
- Leonardo Sibilio
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Aline Martayan
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Andrea Setini
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Elisa Lo Monaco
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Elisa Tremante
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Richard H Butler
- Cell Biology Institute, Consiglio Nazionale delle Ricerche, Via E. Ramarini 32, 00016 Monterotondo Scalo Rome, Italy
| | - Patrizio Giacomini
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy.
| |
Collapse
|
30
|
Arosa FA, Santos SG, Powis SJ. Open conformers: the hidden face of MHC-I molecules. Trends Immunol 2007; 28:115-23. [PMID: 17261379 DOI: 10.1016/j.it.2007.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/13/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
A pool of MHC-I molecules present at the plasma membrane can dissociate from the peptide and/or the light chain, becoming open MHC-I conformers. Whereas peptide-bound MHC-I molecules have an important role in regulating adaptive and innate immune responses, through trans-interactions with T cell and NK cell receptors, the function of the open MHC-I conformers is less clear but seems to be related to their inherent ability to cis-associate, both with themselves and with other receptors. Here, we review data indicating the open MHC-I conformers as regulators of ligand-receptor interactions and discuss the biological implications for immune and non-immune cells. The likelihood that the MHC-I heavy chains have hidden functions that are determined by the amino acid sequence of the alpha1 and alpha2 domains are discussed.
Collapse
Affiliation(s)
- Fernando A Arosa
- Lymphocyte Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal.
| | | | | |
Collapse
|
31
|
Garbi N, Hämmerling G, Tanaka S. Interaction of ERp57 and tapasin in the generation of MHC class I-peptide complexes. Curr Opin Immunol 2006; 19:99-105. [PMID: 17150345 DOI: 10.1016/j.coi.2006.11.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 11/23/2006] [Indexed: 11/22/2022]
Abstract
Antigen presentation by MHC class I molecules is necessary for CD8 T-cell activation. Optimal peptide loading onto MHC class I molecules occurs mainly in the peptide-loading complex in the endoplasmic reticulum. The identification of a covalent association between the thiol oxidoreductase ERp57 and tapasin, and its impact on the loading complex, are important recent developments in this field of research. In the absence of ERp57, the recruitment of MHC class I molecules into this complex by tapasin is greatly impaired both in the number of molecules and in their interaction time, suggesting a key structural role for the ERp57-tapasin association in the peptide-loading complex. The role of ERp57 as a thiol oxidoreductase in the peptide-loading complex remains, however, controversial and further research regarding this subject is required.
Collapse
Affiliation(s)
- Natalio Garbi
- Division of Molecular Immunology, German Cancer Research Center DKFZ, Heidelberg, Germany.
| | | | | |
Collapse
|
32
|
Glithero A, Tormo J, Doering K, Kojima M, Jones EY, Elliott T. The Crystal Structure of H-2Db Complexed with a Partial Peptide Epitope Suggests a Major Histocompatibility Complex Class I Assembly Intermediate. J Biol Chem 2006; 281:12699-704. [PMID: 16478731 DOI: 10.1074/jbc.m511683200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the absence of bound peptide ligands, major histocompatibility complex (MHC) class I molecules are unstable. In an attempt to determine the minimum requirement for peptide-dependent MHC class I stabilization, we have used short synthetic peptides derived from the Sendai virus nucleoprotein epitope (residues 324-332, 1FAPGNYPAL9) to promote its folding in vitro of H-2D(b). We found that H-2D(b) can be stabilized by the pentapeptide 5NYPAL9, which is equivalent to the C-terminal portion of the optimal nonapeptide and includes both the P5 and P9 anchor residues. We have crystallized the complex of the H-2D(b) molecule with the pentamer and determined the structure to show how a quasi-stable MHC class I molecule can be formed by occupancy of a single binding pocket in the peptide-binding groove.
Collapse
Affiliation(s)
- Ann Glithero
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 4RU, United Kingdom
| | | | | | | | | | | |
Collapse
|