1
|
Maddalon A, Pierzchalski A, Kretschmer T, Bauer M, Zenclussen AC, Marinovich M, Corsini E, Herberth G. Mixtures of per- and poly-fluoroalkyl substances (PFAS) reduce the in vitro activation of human T cells and basophils. CHEMOSPHERE 2023; 336:139204. [PMID: 37315852 DOI: 10.1016/j.chemosphere.2023.139204] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
In the last decades, per- and poly-fluoroalkyl substances (PFAS), widely used industrial chemicals, have been in the center of attention because of their omnipotent presence in water and soils worldwide. Although efforts have been made to substitute long-chain PFAS towards safer alternatives, their persistence in humans still leads to exposure to these compounds. PFAS immunotoxicity is poorly understood as no comprehensive analyses on certain immune cell subtypes exist. Furthermore, mainly single entities and not PFAS mixtures have been assessed. In the present study we aimed to investigate the effect of PFAS (short-chain, long-chain and a mixture of both) on the in vitro activation of primary human immune cells. Our results show the ability of PFAS to reduce T cells activation. In particular, exposure to PFAS affected T helper cells, cytotoxic T cells, Natural Killer T cells, and Mucosal associated invariant T (MAIT) cells, as assessed by multi-parameter flow cytometry. Furthermore, the exposure to PFAS reduced the expression of several genes involved in MAIT cells activation, including chemokine receptors, and typical proteins of MAIT cells, such as GZMB, IFNG and TNFSF15 and transcription factors. These changes were mainly induced by the mixture of both short- and long-chain PFAS. In addition, PFAS were able to reduce basophil activation induced by anti-FcεR1α, as assessed by the decreased expression of CD63. Our data clearly show that the exposure of immune cells to a mixture of PFAS at concentrations mimicking real-life human exposure resulted in reduced cell activation and functional changes of primary innate and adaptive human immune cells.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Tobias Kretschmer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany; Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany.
| |
Collapse
|
2
|
Li YR, Dunn ZS, Garcia G, Carmona C, Zhou Y, Lee D, Yu J, Huang J, Kim JT, Arumugaswami V, Wang P, Yang L. Development of off-the-shelf hematopoietic stem cell-engineered invariant natural killer T cells for COVID-19 therapeutic intervention. Stem Cell Res Ther 2022; 13:112. [PMID: 35313965 PMCID: PMC8935266 DOI: 10.1186/s13287-022-02787-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND New COVID-19 treatments are desperately needed as case numbers continue to rise and emergent strains threaten vaccine efficacy. Cell therapy has revolutionized cancer treatment and holds much promise in combatting infectious disease, including COVID-19. Invariant natural killer T (iNKT) cells are a rare subset of T cells with potent antiviral and immunoregulatory functions and an excellent safety profile. Current iNKT cell strategies are hindered by the extremely low presence of iNKT cells, and we have developed a platform to overcome this critical limitation. METHODS We produced allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells through TCR engineering of human cord blood CD34+ hematopoietic stem cells (HSCs) and differentiation of these HSCs into iNKT cells in an Ex Vivo HSC-Derived iNKT Cell Culture. We then established in vitro SARS-CoV-2 infection assays to assess AlloHSC-iNKT cell antiviral and anti-hyperinflammation functions. Lastly, using in vitro and in vivo preclinical models, we evaluated AlloHSC-iNKT cell safety and immunogenicity for off-the-shelf application. RESULTS We reliably generated AlloHSC-iNKT cells at high-yield and of high-purity; these resulting cells closely resembled endogenous human iNKT cells in phenotypes and functionalities. In cell culture, AlloHSC-iNKT cells directly killed SARS-CoV-2 infected cells and also selectively eliminated SARS-CoV-2 infection-stimulated inflammatory monocytes. In an in vitro mixed lymphocyte reaction (MLR) assay and an NSG mouse xenograft model, AlloHSC-iNKT cells were resistant to T cell-mediated alloreaction and did not cause GvHD. CONCLUSIONS Here, we report a method to robustly produce therapeutic levels of AlloHSC-iNKT cells. Preclinical studies showed that these AlloHSC-iNKT cells closely resembled endogenous human iNKT cells, could reduce SARS-CoV-2 virus infection load and mitigate virus infection-induced hyperinflammation, and meanwhile were free of GvHD-risk and resistant to T cell-mediated allorejection. These results support the development of AlloHSC-iNKT cells as a promising off-the-shelf cell product for treating COVID-19; such a cell product has the potential to target the new emerging SARS-CoV-2 variants as well as the future new emerging viruses.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, Los Angeles, CA, 90089, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Camille Carmona
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jocelyn T Kim
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, Los Angeles, CA, 90089, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Wu J, Ling B, Guo N, Zhai G, Li M, Guo Y. Immunological Manifestations of Hepatitis E-Associated Acute and Chronic Liver Failure and Its Regulatory Mechanisms. Front Med (Lausanne) 2021; 8:725993. [PMID: 34434948 PMCID: PMC8380956 DOI: 10.3389/fmed.2021.725993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is a common cause of viral hepatitis in developing countries, most commonly transmitted through the fecal-oral route. The virus is mainly of genotypes (GT) 1 and GT2 genotypes, and patients usually show symptoms of acute hepatitis. Due to the rising trend of HEV serological prevalence in global population, HEV has become an important public health problem in developed countries. Severe hepatitis caused by HEV includes acute and chronic liver failure (ACLF). ACLF frequently occurs in developed countries and is caused by overlapping chronic liver diseases of HEV with genotypes GT3 and GT4. Because the onset of hepatitis E is closely associated with immunity, it is critical to understand the immunological mechanism of hepatitis E associated with acute and chronic liver failure (HEV-ACLF). This review discusses the immunological manifestations and mechanisms of HEV-ACLF, intrahepatic immune microenvironment and treatment, and raises outstanding questions about the immunological mechanism and treatment of the disease.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Bai Ling
- Department of Pharmacy, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Naizhou Guo
- Department of Clinical Laboratory, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Meifen Li
- Department of Clinical Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Yurong Guo
- Department of Laboratory Medicine, Yancheng Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Yancheng, China
| |
Collapse
|
4
|
Ishikawa H, Ino S, Yamochi T, Sasaki H, Kobayashi T, Kohda C, Takimoto M, Tanaka K. NKT cells are responsible for the clearance of murine norovirus through the virus-specific secretory IgA pathway. Biochem Biophys Rep 2020; 21:100722. [PMID: 31909227 PMCID: PMC6940707 DOI: 10.1016/j.bbrep.2019.100722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/23/2019] [Accepted: 12/25/2019] [Indexed: 12/30/2022] Open
Abstract
Norovirus infection cause epidemic nonbacterial gastroenteritis in patients. The immune mechanisms responsible for the clearance of virus are not completely understood. We examined whether NKT cells are effective against norovirus infection using CD1d KO mice. The body weights of 4-weeks-old CD1d KO mice that were infected with murine norovirus-S7 (MNV-S7) were significantly lower than those of non-infected CD1d KO mice. On the other hand, the body weights of infected WT mice were comparable to those of non-infected WT mice. Correspondingly, CD1d KO mice had an almost 1000-fold higher MNV-S7 burden in the intestine after infection in comparison to WT mice. The mechanism responsible for the insufficient MNV-S7 clearance in CD1d KO mice was attributed to reduced IFN-γ production early during MNV-S7 infection. In addition, the markedly impaired IL-4 production in CD1d KO mice resulted in an impaired MNV-S7-specific secretory IgA production after MNV-S7 infection which is associated with mucosal immunity. Thus, the present results provide evidence that NKT cells play an essential role in MNV-S7 clearance.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Satoshi Ino
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Toshiko Yamochi
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiraku Sasaki
- Department of Health Science, Juntendo University School of Health and Sports Science, Inzai, Chiba, 270-1695, Japan
| | - Takahiro Kobayashi
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kazuo Tanaka
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
5
|
Das R, Tripathy A. Increased expressions of NKp44, NKp46 on NK/NKT-like cells are associated with impaired cytolytic function in self-limiting hepatitis E infection. Med Microbiol Immunol 2014; 203:303-14. [DOI: 10.1007/s00430-014-0338-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/10/2014] [Indexed: 12/23/2022]
|
6
|
Abstract
Patients with the dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome suffer from recurrent viral and bacterial infections, hyper-immunoglobulin E levels, eczema, and greater susceptibility to cancer. Because natural killer T (NKT) cells have been implicated in these diseases, we asked if these cells were affected by DOCK8 deficiency. Using a mouse model, we found that DOCK8 deficiency resulted in impaired NKT cell development, principally affecting the formation and survival of long-lived, differentiated NKT cells. In the thymus, DOCK8-deficient mice lack a terminally differentiated subset of NK1.1(+) NKT cells expressing the integrin CD103, whereas in the liver, DOCK8-deficient NKT cells express reduced levels of the prosurvival factor B-cell lymphoma 2 and the integrin lymphocyte function-associated antigen 1. Although the initial NKT cell response to antigen is intact in the absence of DOCK8, their ongoing proliferative and cytokine responses are impaired. Importantly, a similar defect in NKT cell numbers was detected in DOCK8-deficient humans, highlighting the relevance of the mouse model. In conclusion, our data demonstrate that DOCK8 is required for the development and survival of mature NKT cells, consistent with the idea that DOCK8 mediates survival signals within a specialized niche. Accordingly, impaired NKT cell numbers and function are likely to contribute to the susceptibility of DOCK8-deficient patients to recurrent infections and malignant disease.
Collapse
|
7
|
Lack of PD-L1 expression by iNKT cells improves the course of influenza A infection. PLoS One 2013; 8:e59599. [PMID: 23555047 PMCID: PMC3598698 DOI: 10.1371/journal.pone.0059599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 02/19/2013] [Indexed: 01/12/2023] Open
Abstract
There is evidence indicating that invariant Natural Killer T (iNKT) cells play an important role in defense against influenza A virus (IAV). However, the effect of inhibitory receptor, programmed death-1 (PD-1), and its ligands, programmed death ligand (PD-L) 1 and 2 on iNKT cells in protection against IAV remains to be elucidated. Here we investigated the effects of these co-stimulatory molecules on iNKT cells in the response to influenza. We discovered that compare to the wild type, PD-L1 deficient mice show reduced sensitivity to IAV infection as evident by reduced weight loss, decreased pulmonary inflammation and cellular infiltration. In contrast, PD-L2 deficient mice showed augmented weight loss, pulmonary inflammation and cellular infiltration compare to the wild type mice after influenza infection. Adoptive transfer of iNKT cells from wild type, PD-L1 or PD-L2 deficient mice into iNKT cell deficient mice recapitulated these findings. Interestingly, in our transfer system PD-L1−/−-derived iNKT cells produced high levels of interferon-gamma whereas PD-L2−/−-derived iNKT cells produced high amounts of interleukin-4 and 13 suggesting a role for these cytokines in sensitivity to influenza. We identified that PD-L1 negatively regulates the frequency of iNKT cell subsets in the lungs of IAV infected mice. Altogether, these results demonstrate that lack of PD-L1 expression by iNKT cells reduces the sensitivity to IAV and that the presence of PD-L2 is important for dampening the deleterious inflammatory responses after IAV infection. Our findings potentially have clinical implications for developing new therapies for influenza.
Collapse
|
8
|
Maradana MR, Thomas R, O'Sullivan BJ. Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 2013; 57:1550-6. [PMID: 23495213 DOI: 10.1002/mnfr.201200791] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes is a chronic condition in which cells have reduced insulin signalling, leading to hyperglycemia and long-term complications, including heart, kidney and liver disease. Macrophages activated by dying or stressed cells, induce the transcription factor nuclear factor kappa-B leading to the production of pro-inflammatory cytokines including TNF and IL-6. These inflammatory macrophages in liver and adipose tissue promote insulin resistance, and medications which reduce inflammation and enhance insulin signalling improve glucose control. Curcumin is an anti-oxidant and nuclear factor kappa-B inhibitor derived from turmeric. A number of studies have shown that dietary curcumin reduces inflammation and delays or prevents obesity-induced insulin resistance and associated complications, including atherosclerosis and immune mediate liver disease. Unfortunately dietary curcumin is poorly absorbed by the digestive system and undergoes glucuronidation and excretion rather than being released into the serum and systemically distributed. This confounds understanding of how dietary curcumin exerts its beneficial effects in type 2 diabetes and associated diseases. New improved methods of delivering curcumin are being developed including nanoparticles and lipid/liposome formulations that increase absorption and bioavailability of curcumin. Development and refinement of these technologies will enable cell-directed targeting of curcumin and improved therapeutic outcome.
Collapse
Affiliation(s)
- Muralidhara Rao Maradana
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
9
|
Carvalho KI, Bruno FR, Snyder-Cappione JE, Maeda SM, Tomimori J, Xavier MB, Haslett PA, Nixon DF, Kallas EG. Lower numbers of natural killer T cells in HIV-1 and Mycobacterium leprae co-infected patients. Immunology 2012; 136:96-102. [PMID: 22269018 PMCID: PMC3372761 DOI: 10.1111/j.1365-2567.2012.03563.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/14/2012] [Accepted: 01/18/2012] [Indexed: 11/26/2022] Open
Abstract
Natural killer T (NKT) cells are a heterogeneous population of lymphocytes that recognize antigens presented by CD1d and have attracted attention because of their potential role linking innate and adaptive immune responses. Peripheral NKT cells display a memory-activated phenotype and can rapidly secrete large amounts of pro-inflammatory cytokines upon antigenic activation. In this study, we evaluated NKT cells in the context of patients co-infected with HIV-1 and Mycobacterium leprae. The volunteers were enrolled into four groups: 22 healthy controls, 23 HIV-1-infected patients, 20 patients with leprosy and 17 patients with leprosy and HIV-1-infection. Flow cytometry and ELISPOT assays were performed on peripheral blood mononuclear cells. We demonstrated that patients co-infected with HIV-1 and M. leprae have significantly lower NKT cell frequencies [median 0.022%, interquartile range (IQR): 0.007-0.051] in the peripheral blood when compared with healthy subjects (median 0.077%, IQR: 0.032-0.405, P < 0.01) or HIV-1 mono-infected patients (median 0.072%, IQR: 0.030-0.160, P < 0.05). Also, more NKT cells from co-infected patients secreted interferon-γ after stimulation with DimerX, when compared with leprosy mono-infected patients (P = 0.05). These results suggest that NKT cells are decreased in frequency in HIV-1 and M. leprae co-infected patients compared with HIV-1 mono-infected patients alone, but are at a more activated state. Innate immunity in human subjects is strongly influenced by their spectrum of chronic infections, and in HIV-1-infected subjects, a concurrent mycobacterial infection probably hyper-activates and lowers circulating NKT cell numbers.
Collapse
Affiliation(s)
- Karina I Carvalho
- Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kok WL, Denney L, Benam K, Cole S, Clelland C, McMichael AJ, Ho LP. Pivotal Advance: Invariant NKT cells reduce accumulation of inflammatory monocytes in the lungs and decrease immune-pathology during severe influenza A virus infection. J Leukoc Biol 2011; 91:357-68. [DOI: 10.1189/jlb.0411184] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Grela F, Aumeunier A, Bardel E, Van LP, Bourgeois E, Vanoirbeek J, Leite-de-Moraes M, Schneider E, Dy M, Herbelin A, Thieblemont N. The TLR7 agonist R848 alleviates allergic inflammation by targeting invariant NKT cells to produce IFN-gamma. THE JOURNAL OF IMMUNOLOGY 2010; 186:284-90. [PMID: 21131420 DOI: 10.4049/jimmunol.1001348] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been documented that TLR7 stimulation triggers not only antiviral responses, but also alleviates experimental asthma. Considering the implication of invariant NKT (iNKT) cells in both situations, we postulated that they might contribute to the anti-inflammatory effect of TLR7 ligands. We show in this study that spleen cells activated by the TLR7 agonist resiquimod (R848) attenuate allergic inflammation upon adoptive transfer when they are recovered from wild-type, but not from iNKT cell-deficient Jα18(-/-) mice, which proves the specific involvement of this regulatory population. Furthermore, we provide evidence that IFN-γ is critical for the protective effect, which is lost when transferred iNKT cells are sorted from IFN-γ-deficient mice. In support of a direct activation of iNKT cells through TLR7 signaling in vivo, we observed a prompt increase of serum IFN-γ levels, associated with upregulation of CD69 expression on iNKT cells. Moreover, we demonstrate that iNKT cells effectively express TLR7 and respond to R848 in vitro by producing high levels of IFN-γ in the presence of IL-12, consistent with the conclusion that their contribution to the alleviation of allergic inflammation upon treatment with TLR7 ligands is mediated through IFN-γ.
Collapse
Affiliation(s)
- Françoise Grela
- Université Paris Descartes, Faculté de Médecine-Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Hôpital Necker, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ishikawa H, Tanaka K, Kutsukake E, Fukui T, Sasaki H, Hata A, Noda S, Matsumoto T. IFN-γ production downstream of NKT cell activation in mice infected with influenza virus enhances the cytolytic activities of both NK cells and viral antigen-specific CD8+ T cells. Virology 2010; 407:325-32. [DOI: 10.1016/j.virol.2010.08.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/16/2010] [Accepted: 08/25/2010] [Indexed: 01/12/2023]
|
13
|
Catelani G, D'Andrea F, Griselli A, Guazzelli L, Nemcová P, Bezouska K, Krenek K, Kren V. Deoxynojirimycin and its hexosaminyl derivatives bind to natural killer cell receptors rNKR-P1A and hCD69. Bioorg Med Chem Lett 2010; 20:4645-8. [PMID: 20580553 DOI: 10.1016/j.bmcl.2010.05.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/27/2010] [Accepted: 05/29/2010] [Indexed: 10/19/2022]
Abstract
Deoxynojirimycin (1) and two new related 4-O-hexosaminyl-containing disaccharide mimics, beta-d-TalNAc-(1-->4)-DNJ (4) and beta-d-ManNAc-(1-->4)-DNJ (5), have been studied as agonists of natural killer (NK) cell receptors. As a positive and unexpected result, DNJ (1) displayed a remarkable activation effect towards both NKR-P1A (rat) and CD69 (human) receptors, and a quite similar activity was found for 4 and 5. The synthesis of the two disaccharide mimics is based on an approach that avoids the glycosylation step using known intermediates arising from lactose. The key stage of the synthesis involves the construction of the DNJ unit through an initial C-5 oxidation of the reducing d-glucopyranosyl unit followed by a stereoselective double-reductive aminocyclization of the 1,5-dicarbonyl disaccharide intermediates.
Collapse
Affiliation(s)
- Giorgio Catelani
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
NKT cells are innate-like T lymphocytes that are found in rodents and primates. They are non-conventional T cells restricted by the CD1d molecule that presents self and exogenous glycolipids. NKT cells are unique in their ability to promptly secrete copious amounts of cytokines such as IFN-gamma and IL-4. Once activated, NKT cells can provide maturation signals to downstream cells, including DC, NK cells, and lymphocytes, thereby contributing to both innate and acquired immunity. Accordingly, NKT cells can influence a wide array of immune responses, including tumor surveillance, maintenance of self-tolerance and anti-infectious defenses. Studies performed with NKT-cell-deficient mice have shown that these cells are critical for the clearance of various pathogens. During bacterial infections, NKT cells can be activated either indirectly by DC or directly by bacterial lipid antigens presented by CD1d. Although viruses do not contain lipid antigens, NKT cells have also been implicated in antiviral responses. The capacity of NKT cells to regulate viral immune-surveillance, either constitutively or post-activation, makes them an attractive clinical target. In this review, we summarize recent publications dealing with the functions and relevance of NKT cells in the context of viral infections, both in murine models and in humans.
Collapse
Affiliation(s)
- Julien Diana
- INSERM, U561, Hôpital Cochin/St. Vincent de Paul, Université Paris Descartes, Paris, France
| | | |
Collapse
|
15
|
Mattarollo SR, Rahimpour A, Choyce A, Godfrey DI, Leggatt GR, Frazer IH. Invariant NKT cells in hyperplastic skin induce a local immune suppressive environment by IFN-gamma production. THE JOURNAL OF IMMUNOLOGY 2009; 184:1242-50. [PMID: 20028654 DOI: 10.4049/jimmunol.0902191] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NKT cells can promote or inhibit adaptive immune responses. Cutaneous immunity is tightly regulated by cooperation between innate and adaptive immune processes, but the role of NKT cells in regulating cutaneous immunity is largely unknown. In this study, we show, in a mouse model, that skin-infiltrating CD1d-restricted NKT cells in HPV16-E7 transgenic hyperplastic skin produce IFN-gamma, which can prevent rejection of HPV16-E7-expressing skin grafts. Suppression of graft rejection is associated with the accumulation of CD1d(hi)-expressing CD11c(+)F4/80(hi) myeloid cells in hyperplastic skin. Blockade of CD1d, removal of NKT cells, or local inhibition of IFN-gamma signaling is sufficient to restore immune-mediated graft rejection. Thus, inhibition of NKT cell recruitment or function may enable effective immunity against tumor and viral Ags expressed in epithelial cells.
Collapse
Affiliation(s)
- Stephen R Mattarollo
- The University of Queensland Diamantina Institute, Immunology and Metabolic Medicine, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Ho LP, Denney L, Luhn K, Teoh D, Clelland C, McMichael AJ. Activation of invariant NKT cells enhances the innate immune response and improves the disease course in influenza A virus infection. Eur J Immunol 2008; 38:1913-22. [PMID: 18521958 DOI: 10.1002/eji.200738017] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Invariant NKT (iNKT) cells have an indubitable role in antiviral immunity, although the mechanisms by which these cells exert their functions are not fully elucidated. With the emerging importance of high-pathogenicity influenza A virus infections in humans, we questioned whether iNKT cells contribute to immune defence against influenza A virus and whether activation of these cells influences outcome. We show that activation of iNKT cells with alpha-galactosylceramide (alpha-GC) during influenza virus infection transiently enhanced early innate immune response without affecting T cell immunity, and reduced early viral titres in lungs of C57BL/6 mice. This is accompanied by a better disease course with improved weight loss profile. Temporal changes in iNKT cells in the liver, blood and lungs suggest activation and migration of iNKT cells from the liver to the lungs in mice that were administered alpha-GC. Improvement in viral titres appears dependent on activation of iNKT cells via the intraperitoneal route since intranasal administration of alpha-GC did not have the same effect. We conclude that activation of iNKT cells enhances early innate immune response in the lungs and contribute to antiviral immunity and improved disease course in influenza A virus infection.
Collapse
Affiliation(s)
- Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Modulation of NKT cell development by B7-CD28 interaction: an expanding horizon for costimulation. PLoS One 2008; 3:e2703. [PMID: 18628995 PMCID: PMC2442875 DOI: 10.1371/journal.pone.0002703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/19/2008] [Indexed: 11/19/2022] Open
Abstract
It has been demonstrated that the development of NKT cells requires CD1d. The contribution of costimulatory molecules in this process has not been studied. Here we show that in mice with targeted mutations of B7-1/2 and CD28, the TCRbeta(+)alpha-Galcer/CD1d(+) (iValpha14 NKT) subset is significantly reduced in the thymus, spleen and liver. This is mainly due to decreased cell proliferation; although increased cell death in the thymi of CD28-deficient mice was also observed. Moreover, in the B7-1/2- and CD28-deficient mice, we found a decreased percentage of the CD4(-)NK1.1(+) subset and a correspondingly increased portion of the CD4(+)NK1.1(-) subset. In addition, the mice with a targeted mutation of either B7 or CD28 had a reduced susceptibility to Con A induced hepatitis, which is known to be mediated by NKT cells. Our results demonstrate that the development, maturation and function of NKT cell are modulated by the costimulatory pathway and thus expand the horizon of costimulation into NKT, which is widely viewed as a bridge between innate and adaptive immunity. As such, costimulation may modulate all major branches of cell-mediated immunity, including T cells, NK cells and NKT cells.
Collapse
|
19
|
Welton AR, Gralinski LE, Spindler KR. Mouse adenovirus type 1 infection of natural killer cell-deficient mice. Virology 2007; 373:163-70. [PMID: 18155121 DOI: 10.1016/j.virol.2007.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/23/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Natural killer (NK) cells contribute to the initial nonspecific response to viral infection, and viruses exhibit a range of sensitivities to NK cells in vivo. We investigated the role of NK cells in infection of mice by mouse adenovirus type 1 (MAV-1) using antibody-mediated depletion and knockout mice. MAV-1 causes encephalomyelitis and replicates to highest levels in brains. NK cell-depleted mice infected with MAV-1 showed brain viral loads 8-20 days p.i. that were similar to wild-type control non-depleted mice. Mice genetically deficient for NK cells behaved similarly to wild-type control mice with respect to brain viral loads and survival. We conclude that NK cells are not required to control virus replication in the brains of MAV-1-infected mice.
Collapse
Affiliation(s)
- Amanda R Welton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
20
|
Lu LM, Zavitz CCJ, Chen B, Kianpour S, Wan Y, Stämpfli MR. Cigarette smoke impairs NK cell-dependent tumor immune surveillance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:936-43. [PMID: 17202355 DOI: 10.4049/jimmunol.178.2.936] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we investigated the impact of cigarette smoke on tumor immune surveillance and its consequences to lung tumor burden in a murine lung metastasis model. Cigarette smoke exposure significantly increased the numbers of lung metastases following B16-MO5 melanoma challenge. This effect was reversible; we observed significantly fewer tumor nodules following smoking cessation. Using RAG2(-/-) and RAG2(-/-)gamma(c)(-/-) mice, we provide strong evidence that increased tumor incidence was NK cell dependent. Furthermore, we show that cigarette smoke suppressed NK activation and attenuated NK CTL activity, without apparent effect on activating or inhibitory receptor expression. Finally, activation of NK cells through bone marrow-derived dendritic cells conferred protection against lung metastases in smoke-exposed mice; however, protection was not as efficacious as in sham-exposed mice. To our knowledge, this is the first experimental evidence showing that cigarette smoke impairs NK cell-dependent tumor immune surveillance and that altered immunity is associated with increased tumor burden. Our findings suggest that altered innate immunity may contribute to the increased risk of cancer in smokers.
Collapse
Affiliation(s)
- Ling-Min Lu
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Ilyinskii PO, Wang R, Balk SP, Exley MA. CD1d mediates T-cell-dependent resistance to secondary infection with encephalomyocarditis virus (EMCV) in vitro and immune response to EMCV infection in vivo. J Virol 2006; 80:7146-58. [PMID: 16809320 PMCID: PMC1489038 DOI: 10.1128/jvi.02745-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The innate and adaptive immune responses have evolved distinct strategies for controlling different viral pathogens. Encephalomyocarditis virus (EMCV) is a picornavirus that can cause paralysis, diabetes, and myocarditis within days of infection. The optimal innate immune response against EMCV in vivo requires CD1d. Interaction of antigen-presenting cell CD1d with distinct natural killer T-cell ("NKT") populations can induce rapid gamma interferon (IFN-gamma) production and NK-cell activation. The T-cell response of CD1d-deficient mice (lacking all NKT cells) against acute EMCV infection was further studied in vitro and in vivo. EMCV persisted at higher levels in CD1d-knockout (KO) splenocyte cultures infected in vitro. Furthermore, optimal resistance to repeat cycles of EMCV infection in vitro was also shown to depend on CD1d. However, this was not reflected in the relative levels of NK-cell activation but rather by the responses of both CD4(+) and CD8(+) T-cell populations. Repeated EMCV infection in vitro induced less IFN-gamma and alpha interferon (IFN-alpha) from CD1d-deficient splenocytes than with the wild type. Furthermore, the level of EMCV replication in wild-type splenocytes was markedly and specifically increased by addition of blocking anti-CD1d antibody. Depletion experiments demonstrated that dendritic cells contributed less than the combination of NK and NKT cells to anti-EMCV responses and that none of these cell types was the main source of IFN-alpha. Finally, EMCV infection in vivo produced higher levels of viremia in CD1d-KO mice than in wild-type animals, coupled with significantly less lymphocyte activation and IFN-alpha production. These results point to the existence of a previously unrecognized mechanism of rapid CD1d-dependent stimulation of the antiviral adaptive cellular immune response.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigen Presentation/immunology
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, CD1d
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cardiovirus Infections/genetics
- Cardiovirus Infections/immunology
- Diabetes Mellitus/immunology
- Diabetes Mellitus/virology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon-alpha/immunology
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Maus Elberfeld virus/genetics
- Maus Elberfeld virus/immunology
- Mice
- Mice, Knockout
- Myocarditis/immunology
- Myocarditis/virology
- Paralysis/immunology
- Paralysis/virology
- Viremia/genetics
- Viremia/immunology
- Virus Replication/drug effects
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Petr O Ilyinskii
- Cancer Biology Program, Hematology/Oncology Division, Beth Israel Deaconess Medical Center, NRB 1030L, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
22
|
Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, Kammula US, Chen Y, Qin LX, Tang ZY, Wang XW. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006; 10:99-111. [PMID: 16904609 DOI: 10.1016/j.ccr.2006.06.016] [Citation(s) in RCA: 639] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/12/2006] [Accepted: 06/27/2006] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy mainly due to metastases or postsurgical recurrence. We postulate that metastases are influenced by the liver microenvironment. Here, we show that a unique inflammation/immune response-related signature is associated with noncancerous hepatic tissues from metastatic HCC patients. This signature is principally different from that of the tumor. A global Th1/Th2-like cytokine shift in the venous metastasis-associated liver microenvironment coincides with elevated expression of macrophage colony-stimulating factor (CSF1). Moreover, a refined 17 gene signature was validated as a superior predictor of HCC venous metastases in an independent cohort, when compared to other clinical prognostic parameters. We suggest that a predominant humoral cytokine profile occurs in the metastatic liver milieu and that a shift toward anti-inflammatory/immune-suppressive responses may promote HCC metastases.
Collapse
Affiliation(s)
- Anuradha Budhu
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bruder D, Srikiatkhachorn A, Enelow RI. Cellular Immunity and Lung Injury in Respiratory Virus Infection. Viral Immunol 2006; 19:147-55. [PMID: 16817757 DOI: 10.1089/vim.2006.19.147] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory virus infection may result in considerable lung injury, and host immune responses may be an important contributor to this. Important factors that determine the magnitude of immunopathologic tissue damage include the degree of distal distribution of infection into alveolar cells, the overall viral load, the magnitude of the T-cell responses, the effector mechanisms employed by the T cells, and regulatory mechanisms which may come into play. CD8+ T cells are important contributors to viral clearance, utilizing contact-dependent effector functions (perforin and CD95L) as well as IFN-gamma and TNF-alpha. IFN-gamma and TNF-alpha are primary perpetrators of T-cell-mediated lung injury, with TNF as the major contributor. It is not entirely clear at present the degree to which injury is a necessary consequence of host defense to respiratory virus infection, though there are tantalizing bits of evidence to the contrary. In murine models, TNF plays only a minor role in antiviral activity and clearance of laboratory strains of RSV and influenza. In the event of a pandemic with a highly virulent virus, intervention directed at TNF-alpha should be given consideration, as this may be most likely to provide protection against severe lung injury at the lowest cost to viral clearance.
Collapse
Affiliation(s)
- Dunja Bruder
- German Research Centre for Biotechnology, Braunschweig, Germany
| | | | | |
Collapse
|
24
|
Hegde NR, Johnson DC. A seek-and-hide game between Cd1-restricted T cells and herpesviruses. J Clin Invest 2005; 115:1146-9. [PMID: 15864346 PMCID: PMC1087182 DOI: 10.1172/jci25000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
T and NK cells collaborate to control viral infections, discerning minute differences between infected and uninfected cells. At the same time, viruses have evolved to escape this discovery. In this issue of the JCI, Ganem and colleagues show that Kaposi sarcoma-associated herpesvirus (KSHV) inhibits CD1d presentation to T cells. This novel immune evasion strategy highlights the importance of CD1d-restricted T cells in controlling viral infection and raises an interesting question: how do T cells recognize viruses in the context of CD1 molecules that bind lipids? In the case of herpesviruses, alterations in endosomal trafficking might trigger redistribution of CD1/lipid complexes to cell surfaces, thereby promoting recognition by CD1d-restricted T cells.
Collapse
Affiliation(s)
- Nagendra R Hegde
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, 97239, USA
| | | |
Collapse
|