1
|
Alves GDSG, de Oliveira AMP, Roseno ACB, Ribeiro NP, Alves MDS, Sampaio C, do Prado RL, Pessan JP, Monteiro DR. Interkingdom biofilm of Streptococcus pyogenes and Candida albicans: establishment of an in vitro model and dose-response validation of antimicrobials. BIOFOULING 2024; 40:580-592. [PMID: 39193785 DOI: 10.1080/08927014.2024.2395390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Although Streptococcus pyogenes and Candida albicans may colonize tonsillar tissues, the interaction between them in mixed biofilms has been poorly explored. This study established an interkingdom biofilm model of S. pyogenes and C. albicans and verified the dose-response validation of antimicrobials. Biofilms were formed on microplates, in the presence or absence of a conditioning layer of human saliva, using Brain Heart Infusion (BHI) broth or artificial saliva (AS) as a culture medium, and with variations in the microorganism inoculation sequence. Biofilms grown in AS showed higher mass than those grown in BHI broth, and an opposite trend was observed for metabolism. The number of S. pyogenes colonies was lower in AS. Amoxicillin and nystatin showed dose-dependent effects. The inoculation of the two species at the same time, without prior exposure to saliva, and using BHI broth would be the model of choice for future studies assessing the effects of antimicrobials on dual S. pyogenes/C. albicans biofilms.
Collapse
Affiliation(s)
| | | | - Ana Carolyna Becher Roseno
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Natália Pereira Ribeiro
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Maria do Socorro Alves
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente/São Paulo, Brazil
| | - Caio Sampaio
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Rosana Leal do Prado
- School of Dentistry, Department of Community and Preventive Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Juliano Pelim Pessan
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Douglas Roberto Monteiro
- School of Dentistry, Araçatuba, Department of Diagnosis and Surgery, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| |
Collapse
|
2
|
Sampaio C, Delbem ACB, Hosida TY, Fernandes AVP, do Amaral B, de Morais LA, Monteiro DR, Pessan JP. Amount of Dentifrice and Fluoride Concentration Affect the pH and Inorganic Composition of Dual-Species Biofilms of Streptococcus mutans and Candida albicans. Pharmaceutics 2024; 16:562. [PMID: 38675223 PMCID: PMC11054664 DOI: 10.3390/pharmaceutics16040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 04/28/2024] Open
Abstract
This work assessed the influence of the amount of dentifrice and fluoride (F) concentration in the product on the pH and inorganic components of Streptococcus mutans and Candida albicans dual-species biofilms. The biofilms were treated with suspensions of fluoride dentifrices containing 550 or 1100 ppm of F (550 F or 1100 F, respectively) administered at comparable intensities: (i-1) 550 F/0.08 g or 1100 F/0.04 g; (i-2) 550 F/0.16 g or 1100 F/0.08 g; and (i-3) 550 F/0.32 g or 1100 F/0.16 g. A placebo dentifrice (without NaF, 0.32 g) was used as a negative control. After the last treatment, the biofilm pH was measured and the F, calcium (Ca), and phosphorus (P) concentrations were determined. Data were subjected to an ANOVA/Kruskal-Wallis test, and a Student-Newman-Keuls test. The highest biofilm pH and F concentrations (biomass and fluid) were observed for 1100 F at i-3. Overall, 1100 F resulted in F levels similar to 550 F for i-1 and i-2. In addition, 550 F applied at i-2 and i-3 led to higher F in the biomass/fluid compared to 1100 F applied at i-1 and i-2, respectively. In biomass, the lowest Ca concentrations were observed for 1100 F at i-3. The conclusion drawn is that the treatment intensity holds greater significance as a parameter compared to the concentration of F or the amount of dentifrice when considered individually.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Ana Vitória Pereira Fernandes
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Bruna do Amaral
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Leonardo Antônio de Morais
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
- Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| |
Collapse
|
3
|
Souza JAS, do Amaral JG, Monteiro DR, Fernandes RA, Fernandes GL, Gorup LF, de Souza Neto FN, de Camargo ER, Agostinho AM, Barbosa DB, Delbem ACB. 'Green' silver nanoparticles combined with tyrosol as potential oral antimicrobial therapy. J Dent 2024; 143:104867. [PMID: 38286192 DOI: 10.1016/j.jdent.2024.104867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate silver nanoparticles (AgNPs) obtained by a 'green' route associated or not to tyrosol (TYR) against Streptococcus mutans and Candida albicans in planktonic and biofilms states. METHODS AgNPs were obtained by a 'green' route using pomegranate extract. The minimum inhibitory concentration (MIC) against S. mutans and C. albicans was determined for AgNPs and TYR combined and alone, and fractional inhibitory concentration index (FICI) was calculated. Single biofilms of C. albicans and S. mutans were cultivated for 24 h and then treated with drugs alone or in combination for 24 h. RESULTS AgNPs and TYR were effective against C. albicans and S. mutans considering planktonic cells alone and combined. The MIC values obtained for C. albicans was 312.5 µg/mL (AgNPs) and 50 mM (TYR) and for S. mutans was 78.1 µg/mL (AgNPs) and 90 mM (TYR). The combination of these antimicrobial agents was also effective against both microorganisms: 2.44 µg/mL/0.08 mM (AgNPs/TYR) for C. albicans and 39.05 µg/mL /1.25 mM (AgNPs/TYR) for S. mutans. However, synergism was observed only for C. albicans (FICI 0.008). When biofilm was evaluated, a reduction of 4.62 log10 was observed for S. mutans biofilm cells treated with AgNPs (p < 0.05, Tukey test). However, the addition of TYR to AgNPs did not improve their action against biofilm cells (p > 0.05). AgNPs combined with TYR demonstrated a synergistic effect against C. albicans biofilms. CONCLUSIONS These findings suggest the potential use of AgNPs with or without TYR against C. albicans and S. mutans, important oral pathogens. CLINICAL SIGNIFICANCE AgNPs obtained by a 'green' route combined or not with TYR can be an alternative to develop several types of oral antimicrobial therapies and biomaterials.
Collapse
Affiliation(s)
- José Antonio Santos Souza
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Jackeline Gallo do Amaral
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Renan Aparecido Fernandes
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Gabriela Lopes Fernandes
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Luiz Fernando Gorup
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil
| | | | | | | | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil.
| |
Collapse
|
4
|
Le PH, Linklater DP, Medina AA, MacLaughlin S, Crawford RJ, Ivanova EP. Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: From cell repellence to fungicidal activity. Acta Biomater 2024; 177:20-36. [PMID: 38342192 DOI: 10.1016/j.actbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: In this review we provide a systematic analysis of the role that surface characteristics, such as wettability, roughness, topography and architecture, play on the extent of C. albicans cells attachment that will occur on biomaterial surfaces. We show that exploiting bioinspired surfaces could significantly contribute to the prevention of antimicrobial resistance to antifungal and chemical-based preventive measures. By reducing the attachment and growth of C. albicans cells using surface structure approaches, we can decrease the need for antifungals, which are conventionally used to treat such infections.
Collapse
Affiliation(s)
- Phuc H Le
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia
| | - Denver P Linklater
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; Department of Biomedical Engineering, The Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Arturo Aburto Medina
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shane MacLaughlin
- ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; BlueScope Steel Research, Port Kembla, NSW 2505, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia.
| |
Collapse
|
5
|
Zen I, Delbem ACB, Martins TP, de Morais LA, Sampaio C, Hosida TY, Monteiro DR, Pessan JP. Evaluation of Solutions Containing Fluoride, Sodium Trimetaphosphate, Xylitol, and Erythritol, Alone or in Different Associations, on Dual-Species Biofilms. Int J Mol Sci 2023; 24:12910. [PMID: 37629091 PMCID: PMC10454744 DOI: 10.3390/ijms241612910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 08/27/2023] Open
Abstract
Although the association of polyols/polyphosphates/fluoride has been demonstrated to promote remarkable effects on dental enamel, little is known on their combined effects on biofilms. This study assessed the effects of solutions containing fluoride/sodium trimetaphosphate (TMP)/xylitol/erythritol on dual-species biofilms of Streptococcus mutans and Candida albicans. Biofilms were grown in the continuous presence of these actives alone or in different associations. Quantification of viable plate counts, metabolic activity, biofilm biomass, and extracellular matrix components were evaluated. Overall, fluoride and TMP were the main actives that significantly influenced most of the variables analyzed, with a synergistic effect between them for S. mutans CFUs, biofilm biomass, and protein content of the extracellular matrix (p < 0.05). A similar trend was observed for biofilm metabolic activity and carbohydrate concentrations of the extracellular matrix, although without statistical significance. Regarding the polyols, despite their modest effects on most of the parameters analyzed when administered alone, their co-administration with fluoride and TMP led to a greater reduction in S. mutans CFUs and biofilm biomass compared with fluoride alone at the same concentration. It can be concluded that fluoride and TMP act synergistically on important biofilm parameters, and their co-administration with xylitol/erythritol significantly impacts S. mutans CFUs and biomass reduction.
Collapse
Affiliation(s)
- Igor Zen
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Tamires Passadori Martins
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Leonardo Antônio de Morais
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
- Postgraduate Program in Health Sciences, University of Western Saão Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Rua José Bonifácio, 1193, Araçatuba 16015-050, SP, Brazil; (I.Z.); (A.C.B.D.); (T.P.M.); (L.A.d.M.); (C.S.); (T.Y.H.); (D.R.M.)
| |
Collapse
|
6
|
Evaluation of efficacy of new chalcone-based endodontic irrigant against dual biofilm Enterococcus faecalis and Candida albicans: a study in vitro. Odontology 2022:10.1007/s10266-022-00764-y. [DOI: 10.1007/s10266-022-00764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
|
7
|
Fernandes GL, Vieira APM, Danelon M, Emerenciano NG, Berretta AA, Buszinski AFM, Hori JI, de Lima MHF, dos Reis TF, de Lima JA, Delbem ACB, da Silva SCM, Barbosa DB. Pomegranate Extract Potentiates the Anti-Demineralizing, Anti-Biofilm, and Anti-Inflammatory Actions of Non-Alcoholic Mouthwash When Associated with Sodium-Fluoride Trimetaphosphate. Antibiotics (Basel) 2022; 11:1477. [PMID: 36358132 PMCID: PMC9686636 DOI: 10.3390/antibiotics11111477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2023] Open
Abstract
This study investigated the anti-caries and anti-inflammatory effects of mouthwash formulations containing Punica granatum (pomegranate) peel extract (PPE), sodium-trimetaphosphate, and low concentrations of fluoride. PPE was characterized using high-performance liquid chromatography (ellagic acid and punicalagin). Total phenolics were quantified among formulations, and their stability was analyzed for 28 days. The formulation effects were evaluated as follows: (1) inorganic component concentration and reduced demineralization on bovine enamel blocks subjected to pH cycling; (2) anti-biofilm effect on dual-biofilms of Streptococcus mutans ATCC 25175 and Candida albicans ATCC 10231 treated for 1 and 10 min, respectively; and (3) cytotoxicity and production of inflammatory mediators (interleukin-6 and tumor necrosis factor-alpha). The formulation containing 3% PPE, 0.3% sodium-trimetaphosphate, and 225 ppm of fluoride resulted in a 34.5% surface hardness loss; a 13% (treated for 1 min) and 36% (treated for 10 min) biofilm reduction in S. mutans; a 26% (1 min) and 36% (10 min) biofilm reduction in C. albicans; absence of cytotoxicity; and anti-inflammatory activity confirmed by decreased interleukin-6 production in mouse macrophages. Thus, our results provide a promising prospect for the development of an alcohol-free commercial dental product with the health benefits of P. granatum that have been recognized for a millennium.
Collapse
Affiliation(s)
- Gabriela Lopes Fernandes
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Ana Paula Miranda Vieira
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Marcelle Danelon
- School of Dentistry, University of Ribeirão Preto—UNAERP, Ribeirão Preto 14096-039, São Paulo, Brazil
- Department of Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Nayara Gonçalves Emerenciano
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | | | - Juliana Issa Hori
- Apis Flora Industrial and Comercial Ltd. Ribeirão Preto 14020-670, São Paulo, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | - Alberto Carlos Botazzo Delbem
- Department of Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| |
Collapse
|
8
|
Buffering Capacity and Effects of Sodium Hexametaphosphate Nanoparticles and Fluoride on the Inorganic Components of Cariogenic-Related Biofilms In Vitro. Antibiotics (Basel) 2022; 11:antibiotics11091173. [PMID: 36139952 PMCID: PMC9494953 DOI: 10.3390/antibiotics11091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the remarkable effects of sodium hexametaphosphate nanoparticles (HMPnano) on dental enamel de-/re-mineralization processes, information on the effects of these nanoparticles on biofilms is scarce. This study assessed the effects of HMPnano, with or without fluoride (F), on the inorganic components and pH of Streptococcus mutans and Candida albicans dual-species biofilms. Solutions containing conventional/micro-sized HMP (HMPmicro) or HMPnano were prepared at 0.5% and 1%, with or without 1100 ppm F. A 1100 ppm F solution and pure artificial saliva were tested as positive and negative controls, respectively. The biofilms were treated three times and had their pH analyzed, and the concentrations of F, calcium, phosphorus, and HMP in the biofilm biomass and fluid were determined. In another set of experiments, after the last treatment, the biofilms were exposed to a 20% sucrose solution, and the biofilm pH and inorganic components were evaluated. The 1% HMPnano solution with F led to the highest biofilm pH, even after exposure to sucrose. The 1% HMPnano solution without F led to significantly higher phosphorus concentrations in comparison to all other groups. It can be concluded that 1% HMPnano and F influenced the biofilm pH, besides affecting most of the inorganic components of the dual-species biofilms.
Collapse
|
9
|
Effects of Sodium Hexametaphosphate and Fluoride on the pH and Inorganic Components of Streptococcus mutans and Candida albicans Biofilm after Sucrose Exposure. Antibiotics (Basel) 2022; 11:antibiotics11081044. [PMID: 36009913 PMCID: PMC9405115 DOI: 10.3390/antibiotics11081044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
In order to improve the anticaries effects of fluoridated products, the supplementation of these products has been considered a promising alternative for caries control. This study evaluated the effects of sodium hexametaphosphate (HMP) and/or fluoride (F) on the inorganic components and pH of Streptococcus mutans and Candida albicans dual-species biofilms. The biofilms were treated 72, 78, and 96 h after the beginning of their formation with 0.25, 0.5, or 1% HMP-containing solutions with or without F (500 ppm, as sodium fluoride). F-containing solutions (500 ppm and 1100 ppm) and artificial saliva were used as controls. The biofilms were exposed to a 20% sucrose solution after the third treatment. Along with the biofilm pH, the concentrations of F, calcium, phosphorus (P), and HMP were determined. HMP, combined with F, increased F levels and decreased P levels in the biofilm fluid compared to that of the solution with 500 ppm F. Exposure to sucrose decreased the concentrations of all ions in the biomass, except for HMP; 1% HMP, combined with F, promoted the highest pH. It can be concluded that HMP affected the inorganic composition of the biofilm and exerted a buffering effect on the biofilm pH.
Collapse
|
10
|
Mendes-Gouvêa CC, Danelon M, Vieira APM, do Amaral JG, de Souza-Neto FN, Gorup LF, Camargo ER, Delbem ACB, Barbosa DB. Silver nanoparticles associated with a polyphosphate and fluoride enhance the prevention of enamel demineralization and impact on dual-biofilm adhesion. J Dent 2022; 125:104245. [PMID: 35914572 DOI: 10.1016/j.jdent.2022.104245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The aim of this study were to produce a multifunctional nanocomposite combining silver nanoaparticles (Ag), sodium trimetaphosphate (TMP) and fluoride (F), to investigate its effect on dental enamel demineralization and on biofilms of Streptococcus mutans and Candida albicans. METHODS Bovine enamel blocks were submitted to five pH cycles and treated 2x/day with 100ppm F, 225ppm F, 100ppm F+0.2%TMP or 100ppm F+0.2%TMP+10% Ag (100F/TMP/Ag). Next, surface hardness loss (%SH), integrated loss of subsurface hardness (ΔKHN), enamel fluoride (F) and calcium (Ca) concentration were determined. Biofilms from single and dual species of S. mutans and C. albicans were treated with 100F/TMP/Ag, Ag or chlorhexidine gluconate for 24h. The antibiofilm effect was evaluated by colony-forming unit counting and Scanning Electron Microscopy. RESULTS The nanocomposite reduced 43.0% of %SH and was similar with samples treated with 225F, 100F/TMP and 100/TMP/Ag. The attribute of F and/or TMP in reducing ΔKHN in 5-20 μm was not affected by the addiction of Ag (110F = 225F = 100F/TMP = 100F/TMP/Ag > Negative Control). Further, 100F/TMP/Ag strongly reduced viable cells of S. mutans in dual biofilms (∼5 log10cm2) and structurally affected the biofilms. CONCLUSION The 100F/TMP/F promoted a protective effect against enamel demineralization and was able to significantly inhibit the growth of biofilms of S. mutans and C. albicans. CLINICAL SIGNIFICANCE The focus on prevention and non-invasive dental treatment is the most effective and least costly way to improve the population's oral health conditions. We present a nanocomposite for a multiple approach in prevention of caries.
Collapse
Affiliation(s)
- Carla Corrêa Mendes-Gouvêa
- Graduate Program of Dental Science, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 16015-050, Brazil
| | - Marcelle Danelon
- School of Dentistry, University of Ribeirão Preto - UNAERP, Ribeirão Preto, São Paulo, 14096-900, Brazil
| | - Ana Paula Miranda Vieira
- Graduate Program of Dental Science, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 16015-050, Brazil
| | - Jackeline Gallo do Amaral
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 16015-050, Brazil
| | - Francisco Nunes de Souza-Neto
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 16015-050, Brazil
| | - Luiz Fernando Gorup
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565- 905, Brazil
| | - Emerson Rodrigues Camargo
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565- 905, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 16015-050, Brazil
| | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, 16015-050, Brazil.
| |
Collapse
|
11
|
Sampaio C, Botazzo Delbem AC, Hosida TY, de Morais LA, Fernandes AVP, Souza Neto FN, de Camargo ER, Monteiro DR, Pessan JP. Effects of nano-sized sodium hexametaphosphate on the viability, metabolism, matrix composition, and structure of dual-species biofilms of Streptococcus mutans and Candida albicans. BIOFOULING 2022; 38:321-330. [PMID: 35535502 DOI: 10.1080/08927014.2022.2064220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the effects of micrometric or nano-sized sodium hexametaphosphate (HMPnano), combined or not with fluoride (NaF, 1100 ppm), on dual-species biofilms of Streptococcus mutans and Candida albicans. Biofilms were treated with solutions containing the polyphosphates at 0.5% or 1.0%, with/without fluoride (F), in addition to positive and negative controls. Biofilms were analysed by colony-forming units (CFU) counting, metabolic activity, production of biomass, composition of extracellular matrix, and structure. 1% HMPnano + F led to the lowest S. mutans CFU, while C. albicans CFU counts were not affected by any solution. 1% HMPnano led to the lowest metabolic activity, except for 1% HMPnano + F. All solutions promoted reductions in biofilm biomass compared to controls. Also, 1% HMPnano + F promoted the lowest concentrations of carbohydrates in the biofilm matrix, besides substantially affecting biofilms' structure. In conclusion, HMPnano and F promoted higher antibiofilm effects compared with its micrometric counterpart for most of the parameters assessed.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Leonardo Antônio de Morais
- Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Ana Vitória Pereira Fernandes
- Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Francisco Nunes Souza Neto
- Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Douglas Roberto Monteiro
- Postgraduate Program in Health Sciences, University of Western São Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| |
Collapse
|
12
|
Calcium glycerophosphate and fluoride affect the pH and inorganic composition of dual-species biofilms of Streptococcus mutans and Candida albicans. J Dent 2021; 115:103844. [PMID: 34637893 DOI: 10.1016/j.jdent.2021.103844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study evaluated the influence of calcium glycerophosphate (CaGP), combined with or without fluoride (F), on the pH and concentrations of F, Ca, and P of dual-species biofilms of Streptococcus mutans and Candida albicans, with or without exposure to sucrose. METHODS The biofilms (n = 9) received three treatments (72, 78, and 96 h after the start of their formation) at three CaGP concentrations (0.125, 0.25, or 0.5%), with or without F at 500 ppm (as NaF). Solutions containing 500 and 1100 ppm F and artificial saliva were also tested as controls. Biofilm pH was measured, and the concentrations of F, Ca, P, and CaGP were determined (solid and fluid phases). In a parallel experiment, after the third treatment, the treated biofilms were exposed to a sucrose solution, and the pH of the medium, F, Ca, P, and CaGP was determined. Data were subjected to two-way ANOVA, followed by Fisher's LSD test (p < 0.05). RESULTS Treatment with CaGP and 500 ppm F led to the highest pH values and F and Ca concentrations in the biofilm biomass, both with and without sucrose exposure. CaGP without F led to higher Ca and P concentrations in the biofilm fluid. CONCLUSIONS CaGP increased F, Ca, and P concentrations in the biofilm, and its presence promoted an increase in the pH of the medium, even after exposure to sucrose. CLINICAL SIGNIFICANCE The present results elucidate the mechanism by which CaGP and F act on biofilms, further interfering with dental caries dynamics.
Collapse
|
13
|
Antifungal Activity of Denture Base Resin Containing Nanozirconia: In Vitro Assessment of Candida albicans Biofilm. ScientificWorldJournal 2021; 2021:5556413. [PMID: 34381318 PMCID: PMC8352684 DOI: 10.1155/2021/5556413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate the antimicrobial effects of different concentrations of zirconium dioxide nanoparticles (nano-ZrO2) reinforcement of poly(methyl) methacrylate (PMMA) on surface roughness and C. albicans biofilm. Methods 20 heat-polymerized acrylic resin discs were conventionally made and divided into 4 groups (n = 5) according to nano-ZrO2 concentration: control (0% filler) and 3 experimental groups (2.5% (Z2.5), 5.0% (Z5.0), and 7.5% (Z7.5)). An optical profilometer was used for surface roughness evaluation, followed by Candida adherence assay. Specimens were sterilized, then immersed in cultured yeast (C. albicans), and incubated at 37°C for 48 hours. After that, discs were rinsed before extracting the clustered pellets of Candida. The attached C. albicans was counted using the direct method after spreading on agar media and incubating for 48 hours. Statistical analysis was performed using one-way ANOVA and Tukey's post hoc test at α = 0.05. Results Surface roughness was significantly increased with all modified groups compared with control (P < 0.01), which showed the lowest roughness value (0.027 ± 0.004 μm). There was no significant difference in the roughness value among reinforced groups (2.5, 5.0, and 7.5%) (P > 0.05), with Z7.5 showing the highest roughness value (0.042 ± 0.004 μm). Candida count was reduced as the nano-ZrO2 increased but not significantly (P=0.15). Conclusions The addition of different concentrations of nano-ZrO2 particles to PMMA increased the surface roughness compared with control; in contrast, insignificant reduction of C. albicans biofilm was detected.
Collapse
|
14
|
Caldeirão ACM, Araujo HC, Arias LS, Ramírez Carmona W, Miranda GP, Oliveira SHP, Pessan JP, Monteiro DR. Nanocarriers of Miconazole or Fluconazole: Effects on Three-Species Candida Biofilms and Cytotoxic Effects In Vitro. J Fungi (Basel) 2021; 7:jof7070500. [PMID: 34201635 PMCID: PMC8305882 DOI: 10.3390/jof7070500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
The contribution of different Candida species in oral fungal infections has stimulated the search for more effective therapies. This study assessed the antibiofilm effects of nanocarriers of miconazole (MCZ) or fluconazole (FLZ) on Candida biofilms, and their cytotoxic effects on murine fibroblasts. Three-species biofilms (Candida albicans/Candida glabrata/Candida tropicalis) were formed on 96-well plates, and they were treated with nanocarriers (iron oxide nanoparticles coated with chitosan—“IONPs-CS”) of MCZ or FLZ at 39/78/156 µg/mL; antifungals alone at 156 µg/mL and artificial saliva were tested as positive and negative controls, respectively. Biofilms were analyzed by colony forming units (CFU), biomass, metabolic activity, and structure/viability. The cytotoxicity (L929 cells) of all treatments was determined via 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Data were submitted to one- or two-way ANOVA, followed by Tukey’s or Fisher LSD’s tests (p < 0.05). IONPs-CS-MCZ at 78 µg/mL promoted similar antibiofilm and cytotoxic effects compared with MCZ at 156 µg/mL. In turn, IONPs-CS-FLZ at 156 µg/mL was overall the most effective FLZ antibiofilm treatment, surpassing the effects of FLZ alone; this nanocarrier was also less cytotoxic compared with FLZ alone. It can be concluded that both nanocarriers are more effective alternatives to fight Candida biofilms compared with their respective positive controls in vitro, being a promising alternative for the treatment of oral fungal infections.
Collapse
Affiliation(s)
| | - Heitor Ceolin Araujo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
| | - Laís Salomão Arias
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
| | - Wilmer Ramírez Carmona
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
| | - Gustavo Porangaba Miranda
- School of Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil;
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil;
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil;
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, SP, Brazil; (H.C.A.); (L.S.A.); (W.R.C.); (J.P.P.)
- School of Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil;
- Correspondence: or ; Tel.: +55-18-3229-1000
| |
Collapse
|
15
|
Pezzotti G, Asai T, Adachi T, Ohgitani E, Yamamoto T, Kanamura N, Boschetto F, Zhu W, Zanocco M, Marin E, Bal BS, McEntire BJ, Makimura K, Mazda O, Nishimura I. Antifungal activity of polymethyl methacrylate/Si 3N 4 composites against Candida albicans. Acta Biomater 2021; 126:259-276. [PMID: 33727194 DOI: 10.1016/j.actbio.2021.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Previous studies using gram-positive and -negative bacteria demonstrated that hydrolysis of silicon nitride (Si3N4) in aqueous suspensions elutes nitrogen and produces gaseous ammonia while buffering pH. According to immunochemistry assays, fluorescence imaging, and in situ Raman spectroscopy, we demonstrate here that the antipathogenic surface chemistry of Si3N4 can be extended to polymethylmethacrylate (PMMA) by compounding it with a minor fraction (~8 vol.%) of Si3N4 particles without any tangible loss in bulk properties. The hydrolytic products, which were eluted from partly exposed Si3N4 particles at the composite surface, exhibited fungicidal action against Candida albicans. Using a specific nitrative stress sensing dye and highly resolved fluorescence micrographs, we observed in situ congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while these radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. These in situ observations suggest that the surface chemistry of Si3N4 mimics the antifungal activity of macrophages, which concurrently produce NO radicals and superoxide anions (O2•-) resulting in the formation of candidacidal ONOO-. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit the uncontrolled growth of Candida albicans and ensuing candidiasis while being synergic with chemoprophylaxis. STATEMENT OF SIGNIFICANCE: In a follow-up of previous studies of gram-positive and gram-negative bacteria, we demonstrate here that the antipathogenic surface chemistry of Si3N4 could be extended to polymethylmethacrylate (PMMA) containing a minor fraction (~8 vol.%) of Si3N4 particles without tangible loss in bulk properties. Hydrolytic products eluted from Si3N4 particles at the composite surface exhibited fungicidal action against Candida albicans. Highly resolved fluorescence microscopy revealed congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit uncontrolled growth of Candida albicans and ensuing candidiasis in synergy with chemoprophylaxis.
Collapse
|
16
|
Linossier AG, Martinez B, Valenzuela CY. Quantitative interactions between Candida albicans and the mutans streptococci in patients with Down Syndrome. Med Oral Patol Oral Cir Bucal 2021; 26:e1-e7. [PMID: 33247579 PMCID: PMC7806344 DOI: 10.4317/medoral.23162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/28/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Oral microorganisms produce damage through the transfer to bloodstream, colonizing other tissues or direct damage in the oral cavity. Aim to study the quantitative interactions between C. albicans and the mutans streptococci and ms serotypes in the saliva of the oral cavity of patients with Down syndrome (DS). MATERIAL AND METHODS Included 120 patients of both genders, 60 patients with Down syndrome (DS) and 60 pa- tients as a control group (CG). Samples of saliva were taken, and bacteria and fungi were grown on TYCSB and Saboureaud agar. Microbiological, serological and quantitative analyses were performed to determine the kind of isolated of microorganisms corresponding to the ms c, e, f and k for species S. mutans and d and g for S. sobrinus and C. albicans. Electronic scanning microscopy was employed to visualize and confirm the colonies under study. Statistics analysis included t-test proofs for matched data test, Scheffé and ANOVA. RESULTS Forming units (CFU) per mL of saliva of C. albicans a significant difference was observed among DS CONCLUSIONS These results show a significant non-random association between these two commensal microorganisms in different patient groups.
Collapse
|
17
|
Le PH, Nguyen DHK, Aburto-Medina A, Linklater DP, Crawford RJ, MacLaughlin S, Ivanova EP. Nanoscale Surface Roughness Influences Candida albicans Biofilm Formation. ACS APPLIED BIO MATERIALS 2020; 3:8581-8591. [PMID: 35019629 DOI: 10.1021/acsabm.0c00985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The microbial contamination of surfaces presents a significant challenge due to the adverse effects associated with biofilm formation, particularly on implantable devices. Here, the attachment and biofilm formation of the opportunistic human pathogen, Candida albicans ATCC 10231, were studied on surfaces with decreasing magnitudes of nanoscale roughness. The nanoscale surface roughness of nonpolished titanium, polished titanium, and glass was characterized according to average surface roughness, skewness, and kurtosis. Nonpolished titanium, polished titanium, and glass possessed average surface roughness (Sa) values of 350, 20, and 2.5 nm; skewness (Sskw) values of 1.0, 4.0, and 1.0; and (Skur) values of 3.5, 16, and 4, respectively. These unique characteristics of the surface nanoarchitecture were found to play a key role in limiting C. albicans attachment and modulating the functional phenotypic changes associated with biofilm formation. Our results suggest that surfaces with a specific combination of surface topographical parameters could prevent the attachment and biofilm formation of C. albicans. After 7 days, the density of attached C. albicans cells was recorded to be 230, 70, and 220 cells mm-2 on nonpolished titanium, polished titanium, and glass surfaces, respectively. Despite achieving a very low attachment density, C. albicanscells were only observed to produce hyphae associated with biofilm formation on nonpolished titanium surfaces, possessing the highest degree of surface roughness (Sa = 350 nm). This study provides a more comprehensive picture of the impact of surface architectures on C. albicans attachment, which is beneficial for the design of antifungal surfaces.
Collapse
Affiliation(s)
- Phuc H Le
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia.,Australian Research Council Research Hub for Australian Steel Manufacturing, Wollongong, New South Wales 2500, Australia
| | - Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Arturo Aburto-Medina
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia.,Australian Research Council Research Hub for Australian Steel Manufacturing, Wollongong, New South Wales 2500, Australia
| | - Denver P Linklater
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Antifungal and Surface Properties of Chitosan-Salts Modified PMMA Denture Base Material. Molecules 2020; 25:molecules25245899. [PMID: 33322112 PMCID: PMC7763281 DOI: 10.3390/molecules25245899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan (CS) and its derivatives show antimicrobial properties. This is of interest in preventing and treating denture stomatitis, which can be caused by fungi. Therefore, the aim of this study was the development of a novel antifungal denture base material by modifying polymethyl methacrylate (PMMA) with CS-salt and characterizing its antifungal and surface properties in vitro. For this purpose, the antifungal effect of chitosan-hydrochloride (CS-HCl) or chitosan-glutamate (CS-G) as solutions in different concentrations was determined. To obtain modified PMMA resin specimens, the CS-salts were added to the PMMA before polymerization. The roughness of these specimens was measured by contact profilometry. For the evaluation of the antifungal properties of the CS-salt modified resins, a C. albicans biofilm assay on the specimens was performed. As solutions, both the CS-G and CS-HCl-salt had an antifungal effect and inhibited C. albicans growth in a dose-dependent manner. In contrast, CS-salt modified PMMA resins showed no significant reduced C. albicans biofilm formation. Furthermore, the addition of CS-salts to PMMA significantly increased the surface roughness of the specimens. This study shows that despite the antifungal effect of CS-salts in solution, a modification of PMMA resin with these CS-salts does not improve the antifungal properties of PMMA denture base material.
Collapse
|
19
|
Antagonistic effect of isolated and commercially available probiotics on the growth of Candida albicans on acrylic resin denture surfaces. J Prosthet Dent 2020; 127:338-344. [PMID: 33250196 DOI: 10.1016/j.prosdent.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
STATEMENT OF PROBLEM Biofilms can be retained on dental prostheses leading to the development of infections. The indiscriminate use of antifungal drugs can result in the development of microorganisms that are resistant to these antimicrobial agents. Whether probiotics are a suitable alternative for reducing the prevalence of oral candidiasis is unclear. PURPOSE The purpose of this in vitro study was to evaluate the influence of 6 different live strains of probiotics and 2 commercially available probiotic supplements used for inhibiting the growth of Candida albicans biofilm in heat-polymerized acrylic resin denture base material and to determine whether biofilm byproducts modify the surface of specimens. MATERIAL AND METHODS Biofilms of C. albicans were formed on acrylic resin specimens in the presence of probiotics and quantified by colony-forming units (CFUs), and the surface roughness (Ra) of the specimens was assessed before and after the formation of biofilms. The CFU and roughness data were analyzed by analysis of variance and the Tukey HSD test (α=.05). RESULTS A significant decrease in the number (CFU/mL) of C. albicans cells was found when they were cultured with 4 probiotics: B. lactis (P=.045), B. longum (P<.001), L. casei (P<.001), and L. helveticus (P<.001) and with the commercially available probiotic Prolive (P=.05). The Ra of specimens decreased after exposure to different microbial biofilms (P≤.05) except in 3 experimental groups. CONCLUSIONS In general, the tested probiotics had an antagonistic effect on the growth of C. albicans, and the surface of acrylic resin was altered after exposure to biofilm byproducts.
Collapse
|
20
|
Araujo HC, Arias LS, Caldeirão ACM, Assumpção LCDF, Morceli MG, de Souza Neto FN, de Camargo ER, Oliveira SHP, Pessan JP, Monteiro DR. Novel Colloidal Nanocarrier of Cetylpyridinium Chloride: Antifungal Activities on Candida Species and Cytotoxic Potential on Murine Fibroblasts. J Fungi (Basel) 2020; 6:jof6040218. [PMID: 33053629 PMCID: PMC7712500 DOI: 10.3390/jof6040218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Nanocarriers have been used as alternative tools to overcome the resistance of Candida species to conventional treatments. This study prepared a nanocarrier of cetylpyridinium chloride (CPC) using iron oxide nanoparticles (IONPs) conjugated with chitosan (CS), and assessed its antifungal and cytotoxic effects. CPC was immobilized on CS-coated IONPs, and the nanocarrier was physico-chemically characterized. Antifungal effects were determined on planktonic cells of Candida albicans and Candida glabrata (by minimum inhibitory concentration (MIC) assays) and on single- and dual-species biofilms of these strains (by quantification of cultivable cells, total biomass and metabolic activity). Murine fibroblasts were exposed to different concentrations of the nanocarrier, and the cytotoxic effect was evaluated by MTT reduction assay. Characterization methods confirmed the presence of a nanocarrier smaller than 313 nm. IONPs-CS-CPC and free CPC showed the same MIC values (0.78 µg mL−1). CPC-containing nanocarrier at 78 µg mL−1 significantly reduced the number of cultivable cells for all biofilms, surpassing the effect promoted by free CPC. For total biomass, metabolic activity, and cytotoxic effects, the nanocarrier and free CPC produced statistically similar outcomes. In conclusion, the IONPs-CS-CPC nanocarrier was more effective than CPC in reducing the cultivable cells of Candida biofilms without increasing the cytotoxic effects of CPC, and may be a useful tool for the treatment of oral fungal infections.
Collapse
Affiliation(s)
- Heitor Ceolin Araujo
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Laís Salomão Arias
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Anne Caroline Morais Caldeirão
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
| | - Lanay Caroline de Freitas Assumpção
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Marcela Grigoletto Morceli
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Francisco Nunes de Souza Neto
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | | | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil;
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
- Correspondence: or ; Tel.: +55-18-3229-1000
| |
Collapse
|
21
|
Cavazana TP, Pessan JP, Hosida TY, Sampaio C, Amarante VDOZ, Monteiro DR, Delbem ACB. Effects of Sodium Trimetaphosphate, Associated or Not with Fluoride, on the Composition and pH of Mixed Biofilms, before and after Exposure to Sucrose. Caries Res 2020; 54:358-368. [PMID: 32998137 DOI: 10.1159/000501262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/31/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study was to evaluate the influence of sodium trimetaphosphate (TMP), associated or not with fluoride (F), on the concentrations of F, calcium (Ca), and phosphorus (P) and on the pH of mixed biofilms of Streptococcus mutans and Candida albicans, before and after exposure to sucrose. The biofilms received three treatments (72, 78, and 96 h after the beginning of their formation), at three TMP concentrations (0.25, 0.5, or 1%), with or without F at 500 ppm. Solutions containing 500 and 1,100 ppm F as well as artificial saliva were also tested as controls. Biofilm pH was measured and the concentrations of F, Ca, and P were determined (solid and fluid phases). In a parallel experiment, after the third treatment (96 h), the biofilms were exposed to a 20% sucrose solution to simulate a cariogenic challenge and the pH of the medium, F, Ca, P, and TMP were determined. The data were submitted by two-way ANOVA, followed by Fisher's least significant difference test (p < 0.05). Treatment with TMP and 500 ppm F led to higher F concentration in the biofilm fluid. Although TMP did not affect Ca concentrations, biofilms treated with TMP alone presented higher P concentrations. Treatment with 1% TMP and F led to the highest pH values of the biofilm, both before and after the cariogenic challenge. It was concluded that TMP increases F and P in the biofilm and that its presence promotes an increase in the pH of the medium, even after the cariogenic challenge.
Collapse
Affiliation(s)
- Thamires Priscila Cavazana
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), Presidente Prudente, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil,
| |
Collapse
|
22
|
Araujo HC, da Silva ACG, Paião LI, Magario MKW, Frasnelli SCT, Oliveira SHP, Pessan JP, Monteiro DR. Antimicrobial, antibiofilm and cytotoxic effects of a colloidal nanocarrier composed by chitosan-coated iron oxide nanoparticles loaded with chlorhexidine. J Dent 2020; 101:103453. [PMID: 32827599 DOI: 10.1016/j.jdent.2020.103453] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study evaluated the antimicrobial and antibiofilm effects of a colloidal nanocarrier for chlorhexidine (CHX) on Candida glabrata and Enterococcus faecalis, as well as tested its cytotoxic effect on murine fibroblasts. METHODS Iron oxide nanoparticles (IONPs) were coated with chitosan (CS) and loaded with CHX at 31.2, 78 and 156 μg/mL. Antimicrobial effects were assessed by determining the minimum inhibitory concentration (MIC), using the broth microdilution method, and fractional inhibitory concentration index (FICI). Preformed biofilms (48 h) were treated with different concentrations of the nanocarrier (24 h) and quantified by colony-forming units (CFUs), total biomass and metabolic activity. For cytotoxicity, the viability of L929 cells was evaluated by MTT assay after 24 and 48 h of exposure to the nanocarrier. Data were submitted to ANOVA and Fisher LSD or Tukey post-hoc tests (α = 0.05). RESULTS MIC and FICI results showed an indifferent interaction among the components of the nanocarrier for all strains evaluated. CHX alone and nanocarrier containing 156 μg/mL CHX did not differ from each other in reducing the number of CFUs. However, the nanocarrier containing 156 μg/mL CHX promoted the highest reductions in total biofilm biomass and metabolism, surpassing the effect of CHX alone. After 24 and 48 h of exposure, the nanocarrier reduced CHX toxicity to the L929 cell at low concentrations. CONCLUSION These findings suggest that the CHX nanocarrier has potential to be used in the control of oral diseases associated with C. glabrata and E. faecalis. CLINICAL RELEVANCE CHX has improved the antibiofilm effect and reduced the cytotoxicity (at low concentrations) when conjugated to CS-coated IONPs. This new colloidal formulation has potential as an alternative antimicrobial agent to pure CHX for the control of biofilm-related oral diseases, such as oral candidiasis and endodontic infections.
Collapse
Affiliation(s)
- Heitor Ceolin Araujo
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | - Ana Carolina Gomes da Silva
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente, São Paulo, Brazil
| | - Luana Isabel Paião
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente, São Paulo, Brazil
| | - Mychelle Keiko Watanabe Magario
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente, São Paulo, Brazil
| | - Sabrina Cruz Tfaile Frasnelli
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Basic Sciences, 16015-050 Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Basic Sciences, 16015-050 Araçatuba, São Paulo, Brazil
| | - Juliano Pelim Pessan
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente, São Paulo, Brazil.
| |
Collapse
|
23
|
Arias LS, Pessan JP, de Souza Neto FN, Lima BHR, de Camargo ER, Ramage G, Delbem ACB, Monteiro DR. Novel nanocarrier of miconazole based on chitosan-coated iron oxide nanoparticles as a nanotherapy to fight Candida biofilms. Colloids Surf B Biointerfaces 2020; 192:111080. [PMID: 32361504 DOI: 10.1016/j.colsurfb.2020.111080] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/09/2023]
Abstract
Overexposure of microorganisms to conventional drugs has led to resistant species that require new treatment strategies. This study prepared and characterized a nanocarrier of miconazole (MCZ) based on iron oxide nanoparticles (IONPs) functionalized with chitosan (CS), and tested its antifungal activity against biofilms of Candida albicans and Candida glabrata. IONPs-CS-MCZ nanocarrier was prepared by loading MCZ on CS-covered IONPs and characterized by physicochemical methods. Minimum inhibitory concentration (MIC) of the nanocarrier was determined by the microdilution method. Biofilms were developed (48 h) in microtiter plates and treated with MCZ-carrying nanocarrier at 31.2 and 78 μg/mL, in both the presence and absence of an external magnetic field (EMF). Biofilms were evaluated by total biomass, metabolic activity, cultivable cells (CFU), extracellular matrix components, scanning electron microscopy and confocal microscopy. Data were analyzed by two-way ANOVA and Holm-Sidak test (p < 0.05). A nanocarrier with diameter lower than 50 nm was obtained, presenting MIC values lower than those found for MCZ, and showing synergism for C. albicans and indifference for C. glabrata (fractional inhibitory concentration indexes of <0.12 and <0.53, respectively). IONPs-CS-MCZ did not affect total biomass and extracellular matrix. IONPs-CS-MCZ containing 78 μg/mL MCZ showed a superior antibiofilm effect to MCZ in reducing CFU and metabolism for single biofilms of C. albicans and dual-species biofilms. The EMF did not improve the nanocarrier effects. Microscopy confirmed the antibiofilm effect of the nanocarrier. In conclusion, IONPs-CS-MCZ was more effective than MCZ mainly against C. albicans planktonic cells and number of CFU and metabolism of the biofilms.
Collapse
Affiliation(s)
- Laís Salomão Arias
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | - Juliano Pelim Pessan
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | - Francisco Nunes de Souza Neto
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | | | | | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G2 3JZ, UK
| | - Alberto Carlos Botazzo Delbem
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil
| | - Douglas Roberto Monteiro
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba, São Paulo, Brazil; Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente, São Paulo, Brazil.
| |
Collapse
|
24
|
Keleştemur S, Çobandede Z, Çulha M. Biofilm formation of clinically important microorganisms on 2D and 3D poly (methyl methacrylate) substrates: A surface-enhanced Raman scattering study. Colloids Surf B Biointerfaces 2020; 188:110765. [DOI: 10.1016/j.colsurfb.2019.110765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/05/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
|
25
|
Cavazana TP, Hosida TY, Pessan JP, Sampaio C, Monteiro DR, Delbem ACB. Activity of sodium trimetaphosphate, associated or not with fluoride, on dual-species biofilms. BIOFOULING 2019; 35:710-718. [PMID: 31455115 DOI: 10.1080/08927014.2019.1653455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to evaluate the effect of sodium trimetaphosphate (TMP), either with fluoride (F) or without fluoride, on dual-species biofilms of Streptococcus mutans and Candida albicans. The 72 h biofilms were treated with 0.25%, 0.5%, or 1% TMP solutions, combined or not with 500 ppm F, and analysed by quantification of viable plate counts, metabolic activity, biomass, and extracellular matrix components. Biofilm structure was evaluated by scanning electron microscopy (SEM). TMP significantly reduced the number of S. mutans cells and biomass only when associated to F. Furthermore, fluoride-free TMP promoted significant reductions in biofilm metabolism, while all the tested solutions decreased the contents of the biofilm matrix compared to untreated groups. Regarding biofilm structure, TMP associated with F led to the formation of a less compact biofilm. It was concluded that TMP alone had a reducing effect, mainly on the metabolism and the extracellular matrix components of the biofilms.
Collapse
Affiliation(s)
- Thamires Priscila Cavazana
- Department of Pediatric Dentistry and Public Health, São Paulo State University (Unesp), School of Dentistry Araçatuba, SP, Brazil
| | - Thayse Yumi Hosida
- Department of Pediatric Dentistry and Public Health, São Paulo State University (Unesp), School of Dentistry Araçatuba, SP, Brazil
| | - Juliano Pelim Pessan
- Department of Pediatric Dentistry and Public Health, São Paulo State University (Unesp), School of Dentistry Araçatuba, SP, Brazil
| | - Caio Sampaio
- Department of Pediatric Dentistry and Public Health, São Paulo State University (Unesp), School of Dentistry Araçatuba, SP, Brazil
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Pediatric Dentistry and Public Health, São Paulo State University (Unesp), School of Dentistry Araçatuba, SP, Brazil
| |
Collapse
|
26
|
Vieira APM, Arias LS, de Souza Neto FN, Kubo AM, Lima BHR, de Camargo ER, Pessan JP, Delbem ACB, Monteiro DR. Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids Surf B Biointerfaces 2018; 174:224-231. [PMID: 30465997 DOI: 10.1016/j.colsurfb.2018.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023]
Abstract
This study synthesized and characterized a chlorhexidine (CHX)-carrier nanosystem based on iron oxide magnetic nanoparticles (IONPs) and chitosan (CS), and evaluated its antimicrobial effect on mono- and dual-species biofilms of Candida albicans and Streptococcus mutans. CHX was directly solubilized in CS-coated IONPs and maintained under magnetic stirring for obtaining the IONPs-CS-CHX nanosystem. Antimicrobial susceptibility testing for planktonic cells was performed by determining the minimum inhibitory concentration (MIC) of the nanosystem and controls. The effects of the IONPs-CS-CHX nanosystem on the formation of mono- and dual-species biofilms, as well as on pre-formed biofilms were assessed by quantification of total biomass, metabolic activity and colony-forming units. Data were analyzed by the Kruskal-Wallis' test or one-way analysis of variance, followed by the Student-Newman-Keuls' or Holm-Sidak's tests (α = 0.05), respectively. Physico-chemical results confirmed the formation of a nanosystem with a size smaller than 40 nm. The IONPs-CS-CHX nanosystem and free CHX showed similar MIC values for both species analyzed. In general, biofilm quantification assays revealed that the CHX nanosystem at 78 μg/mL promoted similar or superior antibiofilm effects compared to its counterpart at 39 μg/mL and free CHX at 78 μg/mL. These findings highlight the potential of CS-coated IONPs as preventive or therapeutic agents carrying CHX to fight biofilm-associated oral diseases.
Collapse
Affiliation(s)
- Ana Paula Miranda Vieira
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Pediatric Dentistry and Public Health, 16015-050 Araçatuba, São Paulo, Brazil
| | - Laís Salomão Arias
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Pediatric Dentistry and Public Health, 16015-050 Araçatuba, São Paulo, Brazil
| | - Francisco Nunes de Souza Neto
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Pediatric Dentistry and Public Health, 16015-050 Araçatuba, São Paulo, Brazil
| | - Andressa Mayumi Kubo
- Federal University of São Carlos, Department of Chemistry, 13565-905 São Carlos, São Paulo, Brazil
| | | | | | - Juliano Pelim Pessan
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Pediatric Dentistry and Public Health, 16015-050 Araçatuba, São Paulo, Brazil
| | - Alberto Carlos Botazzo Delbem
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Pediatric Dentistry and Public Health, 16015-050 Araçatuba, São Paulo, Brazil
| | - Douglas Roberto Monteiro
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Pediatric Dentistry and Public Health, 16015-050 Araçatuba, São Paulo, Brazil; Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente, São Paulo, Brazil.
| |
Collapse
|
27
|
D-Cateslytin: a new antifungal agent for the treatment of oral Candida albicans associated infections. Sci Rep 2018; 8:9235. [PMID: 29915284 PMCID: PMC6006364 DOI: 10.1038/s41598-018-27417-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023] Open
Abstract
The excessive use of antifungal agents, compounded by the shortage of new drugs being introduced into the market, is causing the accumulation of multi-resistance phenotypes in many fungal strains. Consequently, new alternative molecules to conventional antifungal agents are urgently needed to prevent the emergence of fungal resistance. In this context, Cateslytin (Ctl), a natural peptide derived from the processing of Chromogranin A, has already been described as an effective antimicrobial agent against several pathogens including Candida albicans. In the present study, we compared the antimicrobial activity of two conformations of Ctl, L-Ctl and D-Ctl against Candida albicans. Our results show that both D-Ctl and L-Ctl were potent and safe antifungal agents. However, in contrast to L-Ctl, D-Ctl was not degraded by proteases secreted by Candida albicans and was also stable in saliva. Using video microscopy, we also demonstrated that D-Ctl can rapidly enter C. albicans, but is unable to spread within a yeast colony unless from a mother cell to a daughter cell during cellular division. Besides, we revealed that the antifungal activity of D-Ctl could be synergized by voriconazole, an antifungal of reference in the treatment of Candida albicans related infections. In conclusion, D-Ctl can be considered as an effective, safe and stable antifungal and could be used alone or in a combination therapy with voriconazole to treat Candida albicans related diseases including oral candidosis.
Collapse
|
28
|
Cavazana TP, Pessan JP, Hosida TY, Monteiro DR, Botazzo Delbem AC. pH changes of mixed biofilms of Streptococcus mutans and Candida albicans after exposure to sucrose solutions in vitro. Arch Oral Biol 2018. [PMID: 29524789 DOI: 10.1016/j.archoralbio.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study aimed to standardize an in vitro experimental model able to reproduce the pH changes that occur in dental biofilm under in vivo conditions, using a mixed biofilm of Streptococcus mutans and Candida albicans. DESIGN Biofilms were developed for 96 h, and exposed to three different concentrations of sucrose (10, 20 or 30%) during 1, 3 or 5 min. The pH was measured before exposure to sucrose, immediately after its removal from the biofilms, and at 1, 3, 5 and 10 min after removal. RESULTS Sucrose solutions at 10 and 20% required 1 min to significantly reduce the biofilm pH, while for 30% sucrose a significant reduction was already seen immediately after its removal, even for the shortest exposure time. For an exposure of 3 min to 20% sucrose, the biofilm pH attained the critical value for hydroxyapatite dissolution when measured 1 min after sucrose removal, followed by a recovery phase. CONCLUSIONS A mixed biofilm of S. mutans and C. albicans exposed to a 20% sucrose solution for 3 min exhibited a pattern of pH change similar to that observed in vivo, despite at a higher speed when compared to in vivo conditions.
Collapse
Affiliation(s)
- Thamires Priscila Cavazana
- São Paulo State University (Unesp), School of Dentistry, Department of Pediatric Dentistry and Public Health, 16015-050, Araçatuba, São Paulo, Brazil
| | - Juliano Pelim Pessan
- São Paulo State University (Unesp), School of Dentistry, Department of Pediatric Dentistry and Public Health, 16015-050, Araçatuba, São Paulo, Brazil
| | - Thayse Yumi Hosida
- São Paulo State University (Unesp), School of Dentistry, Department of Pediatric Dentistry and Public Health, 16015-050, Araçatuba, São Paulo, Brazil
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), 19050-920, Presidente Prudente, São Paulo, Brazil
| | - Alberto Carlos Botazzo Delbem
- São Paulo State University (Unesp), School of Dentistry, Department of Pediatric Dentistry and Public Health, 16015-050, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
29
|
Müller S. Oral epithelial dysplasia, atypical verrucous lesions and oral potentially malignant disorders: focus on histopathology. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:591-602. [PMID: 29606637 DOI: 10.1016/j.oooo.2018.02.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/28/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
The term oral potentially malignant disorders (OPMDs) describes a recognizable group of mucosal diseases that have a risk of progressing to squamous cell carcinoma. Oral leukoplakia, the most common OPMD, has a 1% prevalence and reported malignant transformation rates of 2% to 5%. Other OPMDs include erythroplakia, erythroleukoplakia, submucous fibrosis, lesions of reverse smokers, and inherited genetic disorders, such as Fanconi anemia. The histopathologic assessment of OPMDs is an area of subjectivity, and oral epithelial dysplasia (OED) is fraught with both interrater variability and intrarater variability. Both architectural and cytologic changes are utilized when developing criteria for grading OED. However, the concept of atypical verrucous lesions, particularly as it pertains to proliferative verrucous leukoplakia, suffers from lack of histopathologic diagnostic criteria. Histopathologic mimics of OPMDs, including reactive/regenerative epithelium, frictional keratosis, and infection, can result in patient mismanagement. This review will focus specifically on the histologic features of OED, including human papillomavirus-associated dysplasia, as well as the histologic features of atypical verrucous keratoses/hyperplasia, particularly those that arise in the setting of proliferative verrucous leukoplakia along with OPMD mimics.
Collapse
Affiliation(s)
- Susan Müller
- Emory University School of Medicine, Atlanta Oral Pathology, Decatur, GA, USA.
| |
Collapse
|
30
|
Virulence Factors in Candida albicans and Streptococcus mutans Biofilms Mediated by Farnesol. Indian J Microbiol 2018; 58:138-145. [PMID: 29651172 DOI: 10.1007/s12088-018-0714-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to evaluate the effect of farnesol on the production of acids and hydrolytic enzymes by biofilms of Streptococcus mutans and Candida albicans. The present study also evaluated the time-kill curve and the effect of farnesol on matrix composition and structure of single-species and dual-species biofilms. Farnesol, at subinhibitory concentrations, showed a significant reduction in S. mutans biofilm acid production, but did not alter C. albicans hydrolytic enzyme production. The number of cultivable cells of both microorganisms was significantly reduced after 8 h of contact with farnesol. Extracellular matrix protein content was reduced for biofilms formed in the presence of farnesol. In addition, confocal laser scanning and scanning electron microscopy displayed structural alterations in all biofilms treated with farnesol, which included reduction in viable cells and extracellular matrix. In conclusion, farnesol showed favorable properties controlling some virulence factors of S. mutans and C. albicans biofilms. These findings should stimulate further studies using this quorum-sensing molecule, combined with other drugs, to prevent or treat biofilm-associated oral diseases.
Collapse
|
31
|
Presence of different Candida species at denture wearers with type 2 diabetes and clinically healthy oral mucosa: Pilot study. BALKAN JOURNAL OF DENTAL MEDICINE 2018. [DOI: 10.2478/bjdm-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background/Aim: The aim of this study was to examine prevalence of different Candida spp. at diabetics and nondiabetics wearing dentures without clinical signs of Denture Stomatitis (DS) and to study if some local and systematic factors are confounders for harboring Candida at these subjects. Material and Methods: Total of 60 subjects wearing partial or complete upper acrylic denture having at least half of palatal mucosa covered by denture were selected and stratified into three experimental groups: systematically health subjects; patients with diagnosed Type 2 Diabetes (T2D) and good glycoregulation; and T2D subjects with poorly regulated blood sugar level. Cotton swab samples were obtained from each patient from hard palate mucosa and denture surface. Swab cultures were made on Sabouraud dextrose agar and ChromAgar Media for distinciton of various Candida spp. Density growth was also measured. Results: Frequency of Candida spp. findings were similar between groups. At healthy subjects, only C.albicans was detected. At diabetics, C.albicans was the most common isolated species, followed by C.glabrata and C.tropicalis. Negative finding of yeasts on palatal mucosa, but positive on denture surface were detected at all groups, with the highest frequency (33.4%) at diabetics with poor glycoregulation. Denture surface was heavier colonized than hard palate mucosa. Duration of diabetes in years were only independent predictors for harboring Candida spp. at denture surface (Exp B=1.186, CI=1.047-1.344, p=0.007). Conclusions: Prosthesis of denture wearers without DS may serve as reservoir of Candida spp. Presence of more pathogenic and resistant non-albicans species are related to diabetics, even without clinical signs of DS.
Collapse
|
32
|
Monteiro D, Arias L, Fernandes R, Deszo da Silva L, de Castilho M, da Rosa T, Vieira A, Straioto F, Barbosa D, Delbem A. Antifungal activity of tyrosol and farnesol used in combination against Candida
species in the planktonic state or forming biofilms. J Appl Microbiol 2017. [DOI: 10.1111/jam.13513] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D.R. Monteiro
- Graduate Program in Dentistry (GPD-Master's Degree); University of Western São Paulo (UNOESTE); Presidente Prudente São Paulo Brazil
- Department of Pediatric Dentistry and Public Health; São Paulo State University (Unesp); School of Dentistry; Araçatuba São Paulo Brazil
| | - L.S. Arias
- Department of Pediatric Dentistry and Public Health; São Paulo State University (Unesp); School of Dentistry; Araçatuba São Paulo Brazil
| | - R.A. Fernandes
- Department of Pediatric Dentistry and Public Health; São Paulo State University (Unesp); School of Dentistry; Araçatuba São Paulo Brazil
- Department of Dental Materials and Prosthodontics; São Paulo State University (Unesp); School of Dentistry; Araçatuba São Paulo Brazil
| | - L.F. Deszo da Silva
- Graduate Program in Dentistry (GPD-Master's Degree); University of Western São Paulo (UNOESTE); Presidente Prudente São Paulo Brazil
| | - M.O.V.F. de Castilho
- Graduate Program in Dentistry (GPD-Master's Degree); University of Western São Paulo (UNOESTE); Presidente Prudente São Paulo Brazil
| | - T.O. da Rosa
- Graduate Program in Dentistry (GPD-Master's Degree); University of Western São Paulo (UNOESTE); Presidente Prudente São Paulo Brazil
| | - A.P.M. Vieira
- Department of Pediatric Dentistry and Public Health; São Paulo State University (Unesp); School of Dentistry; Araçatuba São Paulo Brazil
| | - F.G. Straioto
- Graduate Program in Dentistry (GPD-Master's Degree); University of Western São Paulo (UNOESTE); Presidente Prudente São Paulo Brazil
| | - D.B. Barbosa
- Department of Dental Materials and Prosthodontics; São Paulo State University (Unesp); School of Dentistry; Araçatuba São Paulo Brazil
| | - A.C.B. Delbem
- Department of Pediatric Dentistry and Public Health; São Paulo State University (Unesp); School of Dentistry; Araçatuba São Paulo Brazil
| |
Collapse
|
33
|
Arias LS, Delbem ACB, Fernandes RA, Barbosa DB, Monteiro DR. Activity of tyrosol against single and mixed-species oral biofilms. J Appl Microbiol 2016; 120:1240-9. [PMID: 26801208 DOI: 10.1111/jam.13070] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/24/2015] [Accepted: 01/18/2016] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to evaluate the effect of tyrosol on the formation of single and mixed biofilms of Candida albicans ATCC 10231, Candida glabrata ATCC 90030 and Streptococcus mutans ATCC 25175 formed on acrylic resin (AR) and hydroxyapatite (HA) surfaces. METHODS AND RESULTS Single and mixed biofilms were formed on AR and HA in the presence of tyrosol at 50, 100 and 200 mmol l(-1), during 48 h. Next, antimicrobial activity was assessed through metabolic activity (XTT reduction assay) and the number of colony-forming units (CFUs). Scanning electron microscopy observations were performed in order to analyse biofilm structure. Tyrosol, mainly at 200 mmol l(-1), significantly decreased the metabolic activity and number of CFUs for all single and mixed-species biofilms formed on both surfaces. SEM images suggested cell damage caused by tyrosol. CONCLUSION Tyrosol showed inhibitory effects against biofilms formed by important oral pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study showing the antibiofilm effect of tyrosol on Candida species and Strep. mutans in single and mixed cultures. These results may be useful in the development of topical therapies focused on preventing biofilm-associated oral diseases, such as denture stomatitis and dental caries.
Collapse
Affiliation(s)
- L S Arias
- Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| | - A C B Delbem
- Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| | - R A Fernandes
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| | - D B Barbosa
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| | - D R Monteiro
- Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, SP, Brazil
| |
Collapse
|
34
|
Sedigh-Shams M, Badiee P, Adl A, Sarab MD, Abbaszadegan A, Nabavizadeh M. In vitro comparison of antimicrobial effect of sodium hypochlorite solution and Zataria multiflora essential oil as irrigants in root canals contaminated with Candida albicans. J Conserv Dent 2016; 19:101-5. [PMID: 26957804 PMCID: PMC4760003 DOI: 10.4103/0972-0707.173212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION This study compared the antifungal effect of Zataria multiflora essential oil (EO) with that of sodium hypochlorite (NaOCl) as an irrigant for root canals infected with Candida albicans. MATERIALS AND METHODS Sixty mandibular premolars were infected with C. albicans suspension. After 72 h of incubation, the samples were divided into four groups. Teeth in Group 1 were irrigated with minimum fungicidal concentration (MFC) of Z. multiflora EO, in Group 2 with twice the MFC of Z. multiflora, in Group 3 with MFC of NaOCl, and in Group 4 with distilled water (DW). Pre- and post-operative samples were cultured, and fungal colony count of each specimen was obtained. Data were analyzed using Kruskal-Wallis and Mann-Whitney tests (P < 0.05). RESULTS NaOCl at MFC and Z. multiflora EO at twice the MFC showed the highest antifungal efficacy, with no significant difference (P > 0.05). However, antifungal efficacies of these irrigants were significantly different from those of Z. multiflora EO at MFC and DW (P < 0.05). CONCLUSION Our results showed that Z. multiflora EO at twice the MFC had the same antifungal efficacy as NaOCl at MFC.
Collapse
Affiliation(s)
- Mahdi Sedigh-Shams
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Badiee
- Department of Mycology, Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Adl
- Department of Endodontics, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Dadollahi Sarab
- Student Research Committee, International Branch, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Abbaszadegan
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Nabavizadeh
- Department of Endodontics, Prevention of Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Brambilla E, Ionescu AC, Cazzaniga G, Ottobelli M, Samaranayake LP. Levorotatory carbohydrates and xylitol subdueStreptococcus mutansandCandida albicansadhesion and biofilm formation. J Basic Microbiol 2015; 56:480-92. [DOI: 10.1002/jobm.201500329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 09/13/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Eugenio Brambilla
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute; University of Milan; Milan Italy
| | - Andrei C. Ionescu
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute; University of Milan; Milan Italy
| | - Gloria Cazzaniga
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute; University of Milan; Milan Italy
| | - Marco Ottobelli
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Institute; University of Milan; Milan Italy
| | | |
Collapse
|
36
|
de Foggi CC, Machado AL, Zamperini CA, Fernandes D, Wady AF, Vergani CE. Effect of surface roughness on the hydrophobicity of a denture-base acrylic resin and Candida albicans
colonization. ACTA ACUST UNITED AC 2014; 7:141-8. [DOI: 10.1111/jicd.12125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Camila C. de Foggi
- Araraquara Dental School; Department of Dental Materials and Prosthodontics; São Paulo State University; São Paulo Brazil
| | - Ana L. Machado
- Araraquara Dental School; Department of Dental Materials and Prosthodontics; São Paulo State University; São Paulo Brazil
| | - Camila A. Zamperini
- Araraquara Dental School; Department of Dental Materials and Prosthodontics; São Paulo State University; São Paulo Brazil
| | - Darcy Fernandes
- Araraquara Dental School; Department of Dental Materials and Prosthodontics; São Paulo State University; São Paulo Brazil
| | - Amanda F. Wady
- Araraquara Dental School; Department of Dental Materials and Prosthodontics; São Paulo State University; São Paulo Brazil
| | - Carlos E. Vergani
- Araraquara Dental School; Department of Dental Materials and Prosthodontics; São Paulo State University; São Paulo Brazil
| |
Collapse
|
37
|
Monteiro DR, Takamiya AS, Feresin LP, Gorup LF, de Camargo ER, Delbem ACB, Henriques M, Barbosa DB. Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic. Med Mycol 2014; 52:627-35. [DOI: 10.1093/mmy/myu021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
38
|
Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses 2013; 56:672-80. [PMID: 23773119 DOI: 10.1111/myc.12093] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/29/2013] [Accepted: 05/05/2013] [Indexed: 11/26/2022]
Abstract
Although silver nanoparticles (SN) have been investigated as an alternative to conventional antifungal drugs in the control of Candida-associated denture stomatitis, the antifungal activity of SN in combination with antifungal drugs against Candida biofilms remains unknown. Therefore, the aim of this study was to evaluate the antifungal efficacy of SN in combination with nystatin (NYT) or chlorhexidine digluconate (CHG) against Candida albicans and Candida glabrata biofilms. The drugs alone or combined with SN were applied on mature Candida biofilms (48 h), and after 24 h of treatment their antibiofilm activities were assessed by total biomass quantification (by crystal violet staining) and colony forming units enumeration. The structure of Candida biofilms was analysed by scanning electron microscopy (SEM) images. The data indicated that SN combined with either NYT or CHG demonstrated synergistic antibiofilm activity, and this activity was dependent on the species and on the drug concentrations used. SEM images showed that some drug combinations were able to disrupt Candida biofilms. The results of this study suggest that the combination of SN with NYT or CHG may have clinical implications in the treatment of denture stomatitis. However, further studies are needed before recommending the use of these drugs safely in clinical situations.
Collapse
Affiliation(s)
- Douglas R Monteiro
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil; Department of Biological Engineering, Institute for Biotechnology and Bioengineering, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Seabra CL, Botelho CM, Henriques M, Oliveira R. Differential Adherence and Expression of Virulence Traits by Candida albicans and Candida parapsilosis in Mono- and Dual-Species Cultures in Artificial Saliva. Mycopathologia 2013; 176:33-40. [DOI: 10.1007/s11046-013-9661-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/27/2013] [Indexed: 01/12/2023]
|
40
|
Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms. J Appl Microbiol 2013; 114:1175-83. [PMID: 23231706 DOI: 10.1111/jam.12102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/13/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. METHODS AND RESULTS Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13.5 or 54 μg SN ml(-1) for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. CONCLUSIONS In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. SIGNIFICANCE AND IMPACT OF THE STUDY This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections.
Collapse
Affiliation(s)
- D R Monteiro
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Univ Estadual Paulista (UNESP), Araçatuba/São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kabir MA, Hussain MA, Ahmad Z. Candida albicans: A Model Organism for Studying Fungal Pathogens. ISRN MICROBIOLOGY 2012; 2012:538694. [PMID: 23762753 PMCID: PMC3671685 DOI: 10.5402/2012/538694] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 08/30/2012] [Indexed: 01/12/2023]
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes candidiasis. As healthcare has been improved worldwide, the number of immunocompromised patients has been increased to a greater extent and they are highly susceptible to various pathogenic microbes and C. albicans has been prominent among the fungal pathogens. The complete genome sequence of this pathogen is now available and has been extremely useful for the identification of repertoire of genes present in this pathogen. The major challenge is now to assign the functions to these genes of which 13% are specific to C. albicans. Due to its close relationship with yeast Saccharomyces cerevisiae, an edge over other fungal pathogens because most of the technologies can be directly transferred to C. albicans from S. cerevisiae and it is amenable to mutation, gene disruption, and transformation. The last two decades have witnessed enormous amount of research activities on this pathogen that leads to the understanding of host-parasite interaction, infections, and disease propagation. Clearly, C. albicans has emerged as a model organism for studying fungal pathogens along with other two fungi Aspergillus fumigatus and Cryptococcus neoformans. Understanding its complete life style of C. albicans will undoubtedly be useful for developing potential antifungal drugs and tackling Candida infections. This will also shed light on the functioning of other fungal pathogens.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| | | | | |
Collapse
|
42
|
Manfredi M, Polonelli L, Aguirre-Urizar JM, Carrozzo M, McCullough MJ. Urban legends series: oral candidosis. Oral Dis 2012; 19:245-61. [PMID: 22998462 DOI: 10.1111/odi.12013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/10/2023]
Abstract
Candida species (spp) are commensal yeast that can only instigate oral infection (oral candidosis - OC) when there is an underlying predisposing condition in the host. We investigated four controversial topics on OC: (i) How can a microbiological determination of OC be made as Candida spp. are commensal yeasts and not all of them form hyphae or pseudohyphae during infection? (ii) Is median rhomboid glossitis (MRG) a manifestation of candidal infection? (iii) Can candidal infection cause palate papillary hyperplasia (PPH)? (iv) What is the best therapeutic treatment for denture-associated erythematous stomatitis (DAES)? Results from extensive literature searches, including a systematic review, suggested the following: (i) the diagnosis of OC merely on the basis of the presence of yeasts is an oversimplification of a complex process. No convincing evidence of a single test or method better able to discriminate the transition from candidal saprophytism to pathogenicity has been reported in the literature; (ii-iii) conclusive evidence of a direct aetiopathogenic relationship between MRG and PPH and candidal infection has not been found; and (iv) only limited evidence is available for any DAES treatment, thus making it impossible to make strong therapeutic recommendations.
Collapse
Affiliation(s)
- M Manfredi
- Oral Medicine, Pathology and Laser-assisted Surgery Unit, University of Parma, Parma, Italy
| | | | | | | | | |
Collapse
|
43
|
Wady A, Machado A, Zucolotto V, Zamperini C, Berni E, Vergani C. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. J Appl Microbiol 2012; 112:1163-72. [DOI: 10.1111/j.1365-2672.2012.05293.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Lett Appl Microbiol 2012; 54:383-91. [PMID: 22313289 DOI: 10.1111/j.1472-765x.2012.03219.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The purpose of this work was to evaluate the size-dependent antifungal activity of different silver nanoparticles (SN) colloidal suspensions against Candida albicans and Candida glabrata mature biofilms. METHODS AND RESULTS The research presented herein used SN of three different average sizes (5, 10 and 60 nm), which were synthesized by the reduction of silver nitrate through sodium citrate and which were stabilized with ammonia or polyvinylpyrrolidone. Minimal inhibitory concentration (MIC) assays were performed using the microdilution methodology. The antibiofilm activity of SN was determined by total biomass quantification (by crystal violet staining) and colony forming units enumeration. MIC results showed that all SN colloidal suspensions were fungicidal against the tested strains at very low concentrations (0·4-3·3 μg ml(-1) ). With regard to biomass quantification, SN colloidal suspensions were very effective only against C. glabrata biofilms, achieving biomass reductions around 90% at a silver concentration of 108 μg ml(-1) . In general, all SN suspensions promoted significant log(10) reduction of the mean number of cultivable biofilm cells after exposure to silver concentrations at or higher than 108 μg ml(-1) . Moreover, the results showed that the particle size and the type of stabilizing agent used did not interfere in the antifungal activity of SN against Candida biofilms. CONCLUSIONS This study suggests that SN have antifungal therapeutic potential, but further studies are still required namely regarding formulation and delivery means. SIGNIFICANCE AND IMPACT OF THE STUDY SN may contribute to the development of new strategies for the improvement of oral health and quality of life particularly of the complete denture wearers.
Collapse
Affiliation(s)
- D R Monteiro
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Fungal biofilm infections have become increasingly recognised as a significant clinical problem. One of the major reasons behind this is the impact that these have upon treatment, as antifungal therapy often fails and surgical intervention is required. This places a large financial burden on health care providers. This paper aims to illustrate the importance of fungal biofilms, particularly Candida albicans, and discusses some of the key fungal biofilm resistance mechanisms that include, extracellular matrix (ECM), efflux pump activity, persisters, cell density, overexpression of drug targets, stress responses, and the general physiology of the cell. The paper demonstrates the multifaceted nature of fungal biofilm resistance, which encompasses some of the newest data and ideas in the field.
Collapse
|
46
|
Monteiro DR, Gorup LF, Silva S, Negri M, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. BIOFOULING 2011; 27:711-9. [PMID: 21756192 DOI: 10.1080/08927014.2011.599101] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.
Collapse
Affiliation(s)
- D R Monteiro
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School , Univ Estadual Paulista, Araçatuba/São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zamperini CA, Machado AL, Vergani CE, Pavarina AC, Giampaolo ET, da Cruz NC. Adherence in vitro of Candida albicans to plasma treated acrylic resin. Effect of plasma parameters, surface roughness and salivary pellicle. Arch Oral Biol 2010; 55:763-70. [DOI: 10.1016/j.archoralbio.2010.06.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 05/05/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
|
48
|
Gusmão JMR, Ferreira dos Santos SS, Neisser MP, Jorge AOC, Faria MI. Correlation between factors associated with the removable partial dentures use and Candida spp. in saliva. Gerodontology 2010; 28:283-8. [PMID: 20662943 DOI: 10.1111/j.1741-2358.2010.00390.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To correlate the presence and number of Candida spp. in the saliva of wearers of removable partial dentures retained with precision attachments with the proportion of metal/acrylic resin present in the dentures. METHODS Saliva samples from 40 removable partial denture wearers (test) and one paired sample of individuals, non-wearers of any type of removable denture (control) were collected, seeded, and the colony forming units of Candida counted and identified. The metal/acrylic resin proportion of each denture was quantified, using silicone plates pressed over each denture. RESULTS Candida spp. was found in the saliva of 80% of the individuals in the test group and 65% of the control, with C. albicans being the most prevalent species. The test group presented with the highest number of colony forming units of Candida per ml of saliva, and there was weak correlation between this number and the metal and resin area of the denture (Pearson's coefficient of correlation). Greater prevalence and a higher number of colony forming units of Candida per ml of saliva occurred in removable partial denture wearers (p = 0.04) with a weak positive correlation between the metal and resin area and the number of colony forming units of Candida per ml of saliva. However, this correlation was more significant for the area of resin.
Collapse
|
49
|
Rodger G, Taylor RL, Pearson GJ, Verran J. In vitro colonization of an experimental silicone by Candida albicans. J Biomed Mater Res B Appl Biomater 2010; 92:226-35. [PMID: 19921746 DOI: 10.1002/jbm.b.31509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Denture soft-lining materials are exposed to the oral cavity for long periods and are in continuous contact with saliva, subject to inhibition of liquid molecules, and susceptible to colonization by microorganisms. The opportunist yeast Candida albicans is of particular concern in this context, being associated with denture plaque and denture-related stomatitis. In this study, penetration of C. albicans into an experimental silicone elastomer soft-lining material was investigated under batch and continuous culture conditions. A model "denture plaque" microcosm was also used. Increasing the filler concentration within the elastomer decreased penetration under both batch and continuous culture conditions. In continuous culture, C. albicans penetration was significantly greater in pure culture than in the presence of bacteria after 72-h incubation (p < 0.05).
Collapse
Affiliation(s)
- Gillian Rodger
- Department of Infection, Centre for Infectious Diseases and International Health, Windeyer Institute of Medical Research, University College London, London, UK
| | | | | | | |
Collapse
|
50
|
Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol 2010; 35:340-55. [PMID: 19863383 DOI: 10.3109/10408410903241436] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fungal biofilms are an escalating clinical problem associated with significant rates of mortality. Candida albicans is the most notorious of all fungal biofilm formers. However, non-Candida species, yeasts such as Cryptococcus neoformans, and filamentous moulds such as Aspergillus fumigatus, have been shown to be implicated in biofilm-associated infections. Fungal biofilms have distinct developmental phases, including adhesion, colonisation, maturation and dispersal, which are governed by complex molecular events. Recalcitrance to antifungal therapy remains the greatest threat to patients with fungal biofilms. This review discusses our current understanding of the basic biology and clinical implications associated with fungal biofilms.
Collapse
Affiliation(s)
- Gordon Ramage
- Section of Infection and Immunity, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, UK.
| | | | | | | | | |
Collapse
|