1
|
Kase D, Zimnik AJ, Han Y, Harsch DR, Bacha S, Cox KM, Bostan AC, Richardson RM, Turner RS. Movement-related activity in the internal globus pallidus of the parkinsonian macaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610310. [PMID: 39257740 PMCID: PMC11383679 DOI: 10.1101/2024.08.29.610310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Although the basal ganglia (BG) plays a central role in the motor symptoms of Parkinson's disease, few studies have investigated the influence of parkinsonism on movement-related activity in the BG. Here, we studied the perimovement activity of neurons in globus pallidus internus (GPi) of non-human primates before and after the induction of parkinsonism by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuronal responses were equally common in the parkinsonian brain as seen prior to MPTP and the distribution of different response types was largely unchanged. The slowing of behavioral reaction times and movement durations following the induction of parkinsonism was accompanied by a prolongation of the time interval between neuronal response onset and movement initiation. Neuronal responses were also reduced in magnitude and prolonged in duration after the induction of parkinsonism. Importantly, those two effects were more pronounced among decrease-type responses, and they persisted after controlling for MPTP-induced changes in the trial-by-trial timing of neuronal responses. Following MPTP The timing of neuronal responses also became uncoupled from the time of movement onset and more variable from trial-to-trial. Overall, the effects of MPTP on temporal features of neural responses correlated most consistently with the severity of parkinsonian motor impairments whereas the changes in response magnitude and duration were either anticorrelated with symptom severity or inconsistent. These findings point to a potential previously underappreciated role for abnormalities in the timing of GPi task-related activity in the generation of parkinsonian motor signs.
Collapse
Affiliation(s)
- Daisuke Kase
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Andrew J Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, NY
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Yan Han
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Devin R Harsch
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sarah Bacha
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin M Cox
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreea C Bostan
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert S Turner
- Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
2
|
|
3
|
Veyres N, Hamadjida A, Huot P. Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey. J Pharmacol Exp Ther 2018. [DOI: 10.1124/jpet.117.247171] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
4
|
Sgambato V, Tremblay L. Pathophysiology of dyskinesia and behavioral disorders in non-human primates: the role of serotonergic fibers. J Neural Transm (Vienna) 2018; 125:1145-1156. [PMID: 29502255 DOI: 10.1007/s00702-018-1871-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/27/2018] [Indexed: 12/26/2022]
Abstract
The MPTP monkey model of Parkinson's disease (PD) has allowed huge advances regarding the understanding of the pathological mechanisms of PD and L-DOPA-induced adverse effects. Among the main findings were the imbalance between the efferent striatal pathways in opposite directions between the hypokinetic and hyperkinetic states of PD. In both normal and parkinsonian monkeys, the combination of behavioral and anatomical studies has allowed the deciphering of the cortico-basal ganglia circuits involved in both movement and behavioral disorders. A major breakthrough has then been made regarding the hypothesis of the involvement of serotonergic fibers in the conversion of L-DOPA to dopamine when dopaminergic neurons are dying and to release it, in an uncontrolled manner, as serotonergic neurons are deprived from the machinery required for buffering dopamine from the synaptic cleft. The crucial involvement of serotonergic fibers underlying L-DOPA-induced dyskinesia (LID) has been demonstrated in both rodent and monkey models of PD, in which dyskinesia induced by L-DOPA is abolished following lesion of the serotonergic system. Moreover, the role of serotonergic fibers goes well beyond dyskinesia, as lesioning of such serotonergic fibers by MDMA in the monkey also decreased other L-DOPA-induced adverse effects such as impulsive compulsive behaviors and visual hallucinations. The same pathological mechanism, i.e., an imbalance between serotonin and dopamine terminals may, therefore, favor L-DOPA-induced adverse effects according to the basal ganglia territory it inhabits. Further non-human primate studies will be needed to demonstrate the role of such a pathological mechanism in both movement and behavioral disorders driven by L-DOPA therapy but also to determine the causal link between serotonin lesions and the expression of non-motor symptoms like apathy, depression and anxiety, frequently observed in PD patients.
Collapse
Affiliation(s)
- Véronique Sgambato
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Univ Lyon, CNRS, 69675, Bron, France.
| | - Léon Tremblay
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Univ Lyon, CNRS, 69675, Bron, France
| |
Collapse
|
5
|
Saga Y, Hoshi E, Tremblay L. Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review. Front Neuroanat 2017; 11:30. [PMID: 28442999 PMCID: PMC5385466 DOI: 10.3389/fnana.2017.00030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
The globus pallidus (GP) communicates with widespread cortical areas that support various functions, including motivation, cognition and action. Anatomical tract-tracing studies revealed that the anteroventral GP communicates with the medial prefrontal and orbitofrontal cortices, which are involved in motivational control; the anterodorsal GP communicates with the lateral prefrontal cortex, which is involved in cognitive control; and the posterior GP communicates with the frontal motor cortex, which is involved in action control. This organization suggests that distinct subdivisions within the GP play specific roles. Neurophysiological studies examining GP neurons in monkeys during behavior revealed that the types of information coding performed within these subdivisions differ greatly. The anteroventral GP is characterized by activities related to motivation, such as reward seeking and aversive avoidance; the anterodorsal GP is characterized by activity that reflects cognition, such as goal decision and action selection; and the posterior GP is characterized by activity associated with action preparation and execution. Pathophysiological studies have shown that GABA-related substances or GP lesions result in abnormal activity in the GP, which causes site-specific behavioral and motor symptoms. The present review article discusses the anatomical organization, physiology and pathophysiology of the three major GP territories in nonhuman primates and humans.
Collapse
Affiliation(s)
- Yosuke Saga
- Institute of Cognitive Science Marc Jeannerod, UMR-5229 CNRSBron, France
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical ScienceTokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Léon Tremblay
- Institute of Cognitive Science Marc Jeannerod, UMR-5229 CNRSBron, France
| |
Collapse
|
6
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
7
|
Blesa J, Trigo-Damas I, del Rey NLG, Obeso JA. The use of nonhuman primate models to understand processes in Parkinson’s disease. J Neural Transm (Vienna) 2017; 125:325-335. [DOI: 10.1007/s00702-017-1715-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
|
8
|
Wimalasena K. Current Status, Gaps, and Weaknesses of the Mechanism of Selective Dopaminergic Toxicity of MPTP/MPP +. ADVANCES IN MOLECULAR TOXICOLOGY 2017. [DOI: 10.1016/b978-0-12-812522-9.00003-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Imaging Dopamine and Serotonin Systems on MPTP Monkeys: A Longitudinal PET Investigation of Compensatory Mechanisms. J Neurosci 2016; 36:1577-89. [PMID: 26843639 DOI: 10.1523/jneurosci.2010-15.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED It is now widely accepted that compensatory mechanisms are involved during the early phase of Parkinson's disease (PD) to delay the expression of motor symptoms. However, the neurochemical mechanisms underlying this presymptomatic period are still unclear. Here, we measured in vivo longitudinal changes of both the dopaminergic and serotonergic systems in seven asymptomatic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated monkeys (when motor symptoms are less apparent) using PET. We used the progressively MPTP-intoxicated monkey model that expresses recovery from motor symptoms to study the changes in dopamine synthesis ([(18)F]DOPA), dopamine D2/D3 receptors ([(11)C]raclopride), and serotonin transporter (11)C-N,N-dimethyl-2-(-2-amino-4-cyanophenylthio) benzylamine ([(11)C]DASB) and serotonin 1A receptor ([(18)F]MPPF) levels between four different states (baseline, early symptomatic, full symptomatic and recovered). During the early symptomatic state, we observed increases of [(18)F]DOPA uptake in the anterior putamen, [(11)C]raclopride binding in the posterior striatum, and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-[(18)F]fluoro-benzamidoethylpiperazine [(18)F]MPPF uptake in the orbitofrontal cortex and dorsal ACC. After recovery from motor symptoms, the results mainly showed decreased [(11)C]raclopride binding in the anterior striatum and limbic ACC. In addition, our findings supported the importance of pallidal dopaminergic neurotransmission in both the early compensatory mechanisms and the functional recovery mechanisms, with reduced aromatic L-amino acid decarboxylase (AAAD) activity closely related to the appearance or perseveration of motor symptoms. In parallel, this study provides preliminary evidence of the role of the serotonergic system in compensatory mechanisms. Nonetheless, future studies are needed to determine whether there are changes in SERT availability in the early symptomatic state and if [(18)F]MPPF PET imaging might be a promising biomarker of early degenerative changes in PD. SIGNIFICANCE STATEMENT The present research provides evidence of the potential of combining a multitracer PET imaging technique and a longitudinal protocol applied on a progressively 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated monkey model to further elucidate the nature of the compensatory mechanisms involved in the preclinical period of Parkinson's disease (PD). In particular, by investigating the dopaminergic and serotonergic changes both presynaptically and postsynaptically at four different motor states (baseline, early symptomatic, full symptomatic, and recovered), this study has allowed us to identify putative biomarkers for future therapeutic interventions to prevent and/or delay disease expression. For example, our findings suggest that the external pallidum could be a new target for cell-based therapies to reduce PD symptoms.
Collapse
|
10
|
Tremblay L, Worbe Y, Thobois S, Sgambato-Faure V, Féger J. Selective dysfunction of basal ganglia subterritories: From movement to behavioral disorders. Mov Disord 2015; 30:1155-70. [DOI: 10.1002/mds.26199] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Léon Tremblay
- Centre de Neurosciences Cognitives-UMR 5229; CNRS-Université de Lyon 1; Bron France
| | - Yulia Worbe
- UPMC Université Paris 6, UMR-S975, CRICM-Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Paris France
| | - Stéphane Thobois
- Centre de Neurosciences Cognitives-UMR 5229; CNRS-Université de Lyon 1; Bron France
- Hospices Civils de Lyon, Hopital Neurologique Pierre Wertheimer, Neurologie C; Lyon France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux; Lyon France
| | | | - Jean Féger
- UPMC Université Paris 6, UMR-S975, CRICM-Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Paris France
| |
Collapse
|
11
|
Féger J, Hirsch E. In search of innovative therapeutics for neuropsychiatric disorders: The case of neurodegenerative diseases. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 73:3-12. [DOI: 10.1016/j.pharma.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|
12
|
McDonald MP. Methods and Models of the Nonmotor Symptoms of Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Neumane S, Mounayar S, Jan C, Epinat J, Ballanger B, Costes N, Féger J, Thobois S, François C, Sgambato-Faure V, Tremblay L. Effects of dopamine and serotonin antagonist injections into the striatopallidal complex of asymptomatic MPTP-treated monkeys. Neurobiol Dis 2012; 48:27-39. [PMID: 22728661 DOI: 10.1016/j.nbd.2012.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022] Open
Abstract
The cardinal symptoms of Parkinson's disease (PD), akinesia, rigidity and tremor, are only observed when the striatal level of dopamine (DA) is decreased by 60-80%. It is likely that compensatory mechanisms during the early phase of DA depletion delay the appearance of motor symptoms. In a previous study, we proposed a new PD monkey model with progressive MPTP intoxication. Monkeys developed all of the motor symptoms and then fully recovered despite a large DA cell loss in the substantia nigra (SN). Compensatory mechanisms certainly help to offset the dysfunction induced by the DA lesion, facilitating motor recovery in this model. Neurotransmitter measurements in the striatal sensorimotor and associative/limbic territories of these monkeys subsequently revealed that DA and serotonin (5-HT) could play a role in recovery mechanisms. To try to determine the involvement of these neurotransmitters in compensatory mechanisms, we performed local injections of DA and 5-HT antagonists (cis-flupenthixol and mianserin, respectively) into these two striatal territories and into the external segment of the globus pallidus (GPe). Injections were performed on monkeys that were in an asymptomatic state after motor recovery. Most parkinsonian motor symptoms reappeared in animals with DA antagonist injections either in sensorimotor, associative/limbic striatal territories or in the GPe. In contrast to the effects with DA antagonist, there were mild parkinsonian effects with 5-HT antagonist, especially after injections in sensorimotor territories of the striatum and the GPe. These results support a possible, but slight, involvement of 5-HT in compensatory mechanisms and highlight the possible participation of 5-HT in some behavioural disorders. Furthermore, these results support the notion that the residual DA in the different striatal territories and the GPe could be involved in important mechanisms of compensation in PD.
Collapse
Affiliation(s)
- Sara Neumane
- Centre Nationale de la Recherche Scientifique, Centre de Neurosciences Cognitives, UMR 5229, Bron, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Brooks SP, Dunnett SB. Cognitive deficits in animal models of basal ganglia disorders. Brain Res Bull 2012; 92:29-40. [PMID: 22588013 DOI: 10.1016/j.brainresbull.2012.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/01/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
The two most common neurological disorders of the basal ganglia are Parkinson's disease (PD) and Huntington's disease (HD). The most overt symptoms of these diseases are motoric, reflecting the loss of the striatal medium spiny neurons in HD and ascending substantia nigra dopaminergic cells in PD. However, both disease processes induce insidious psychiatric and cognitive syndromes that can manifest well in advance of the onset of motor deficits. These early deficits provide an opportunity for prophylactic therapeutic intervention in order to retard disease progression from the earliest possible point. In order to exploit this opportunity, animal models of HD and PD are being probed for the specific cognitive deficits represented in the disease states. At the neuronal level, these deficits are typically, but not exclusively, mediated by disruption of parallel corticostriatal loops that integrate motor information with sensory and higher order, "executive" cognitive functions. Dysfunction in these systems can be probed with sensitive behavioural tests that selectively probe these cognitive functions in mouse models with focal lesions of striatal or cortical regions, or of specific neurotransmitter systems. Typically these tests were designed and validated in rats. With the advent of genetically modified mouse models of disease, validated tests provide an opportunity to screen mouse models of disease for early onset cognitive deficits. This review seeks to draw together the literature on cognitive deficits in HD and PD, to determine the extent to which these deficits are represented in the current animal models of disease, and to evaluate the viability of selecting cognitive deficits as potential therapeutic targets. This article is part of a Special Issue entitled 'Animal Models'.
Collapse
Affiliation(s)
- Simon P Brooks
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| | | |
Collapse
|
15
|
Classic and new animal models of Parkinson's disease. J Biomed Biotechnol 2012; 2012:845618. [PMID: 22536024 PMCID: PMC3321500 DOI: 10.1155/2012/845618] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/23/2012] [Indexed: 12/21/2022] Open
Abstract
Neurological disorders can be modeled in animals so as to recreate specific pathogenic events and behavioral outcomes. Parkinson's Disease (PD) is the second most common neurodegenerative disease of an aging population, and although there have been several significant findings about the PD disease process, much of this process still remains a mystery. Breakthroughs in the last two decades using animal models have offered insights into the understanding of the PD disease process, its etiology, pathology, and molecular mechanisms. Furthermore, while cellular models have helped to identify specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are useful for testing new neuroprotective or neurorestorative strategies. Moreover, significant advances in the modeling of additional PD features have come to light in both classic and newer models. In this review, we try to provide an updated summary of the main characteristics of these models as well as the strengths and weaknesses of what we believe to be the most popular PD animal models. These models include those produced by 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydropiridine (MPTP), rotenone, and paraquat, as well as several genetic models like those related to alpha-synuclein, PINK1, Parkin and LRRK2 alterations.
Collapse
|
16
|
Vezoli J, Fifel K, Leviel V, Dehay C, Kennedy H, Cooper HM, Gronfier C, Procyk E. Early presymptomatic and long-term changes of rest activity cycles and cognitive behavior in a MPTP-monkey model of Parkinson's disease. PLoS One 2011; 6:e23952. [PMID: 21887350 PMCID: PMC3161087 DOI: 10.1371/journal.pone.0023952] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022] Open
Abstract
Background It is increasingly recognized that non-motor symptoms are a prominent feature of Parkinson's disease and in the case of cognitive deficits can precede onset of the characteristic motor symptoms. Here, we examine in 4 monkeys chronically treated with low doses of the neurotoxin MPTP the early and long-term alterations of rest-activity rhythms in relationship to the appearance of motor and cognitive symptoms. Methodology/Principal Findings Behavioral activity recordings as well as motor and cognitive assessments were carried out continuously and in parallel before, during and for several months following MPTP-treatment (12–56 weeks). Cognitive abilities were assessed using a task that is dependent on the functional integrity of the fronto-striatal axis. Rest-activity cycles were monitored continuously using infrared movement detectors of locomotor activity. Motor impairment was evaluated using standardized scales for primates. Results show that MPTP treatment led to an immediate alteration (within one week) of rest-activity cycles and cognitive deficits. Parkinsonian motor deficits only became apparent 3 to 5 weeks after initiating chronic MPTP administration. In three of the four animals studied, clinical scores returned to control levels 5–7 weeks following cessation of MPTP treatment. In contrast, both cognitive deficits and chronobiological alterations persisted for many months. Levodopa treatment led to an improvement of cognitive performance but did not affect rest-activity rhythms in the two cases tested. Conclusions/Significance Present results show that i) changes in the rest activity cycles constituted early detectable consequences of MPTP treatment and, along with cognitive alterations, characterize the presymptomatic stage; ii) following motor recovery there is a long-term persistence of non-motor symptoms that could reflect differential underlying compensatory mechanisms in these domains; iii) the progressive MPTP-monkey model of presymptomatic ongoing parkinsonism offers possibilities for in-depth studies of early non-motor symptoms including sleep alterations and cognitive deficits.
Collapse
Affiliation(s)
- Julien Vezoli
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
- Ernst Strüngmann Institute (ESI) in Cooperation with Max Planck Society, Frankfurt, Germany
- * E-mail: (JV); (HMC)
| | - Karim Fifel
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Vincent Leviel
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Colette Dehay
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Henry Kennedy
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Howard M. Cooper
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
- * E-mail: (JV); (HMC)
| | - Claude Gronfier
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Emmanuel Procyk
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| |
Collapse
|
17
|
Gale JT, Amirnovin R, Williams ZM, Flaherty AW, Eskandar EN. From symphony to cacophony: Pathophysiology of the human basal ganglia in Parkinson disease. Neurosci Biobehav Rev 2008; 32:378-87. [PMID: 17466375 DOI: 10.1016/j.neubiorev.2006.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 10/06/2006] [Accepted: 11/12/2006] [Indexed: 10/23/2022]
Abstract
Despite remarkable advances, the relationship between abnormal neuronal activity and the clinical manifestations of Parkinson disease (PD) remains unclear. Numerous hypotheses have emerged to explain the relationship between neuronal activity and symptoms such as tremor, rigidity and akinesia. Among these are the antagonist balance hypothesis wherein increased firing rates in the indirect pathway inhibits movement; the selectivity hypothesis wherein loss of neuronal selectivity leads to an inability to select or initiate movements; the firing pattern hypothesis wherein increased oscillation and synchronization contribute to tremor and disrupt information flow; and the learning hypothesis, wherein the basal ganglia are conceived as playing an important role in learning sensory-motor associations which is disrupted by the loss of dopamine. Deep brain stimulation (DBS) surgery provides a unique opportunity to assess these different ideas since neuronal activity can be directly recorded from PD patients. The emerging data suggest that the pathophysiologic changes include derangements in the overall firing rates, decreased neuronal selectivity, and increased neuronal oscillation and synchronization. Thus, elements of all hypotheses are present, emphasizing that the loss of dopamine results in a profound and multifaceted disruption of normal information flow through the basal ganglia that ultimately leads to the signs and symptoms of PD.
Collapse
Affiliation(s)
- John T Gale
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- J Yelnik
- INSERM U679, Hôpital de la Salpêtrière, Paris.
| |
Collapse
|
19
|
Pessiglione M, Czernecki V, Pillon B, Dubois B, Schüpbach M, Agid Y, Tremblay L. An effect of dopamine depletion on decision-making: the temporal coupling of deliberation and execution. J Cogn Neurosci 2006; 17:1886-96. [PMID: 16356326 DOI: 10.1162/089892905775008661] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
When a decision between alternative actions has to be made, the primate brain is able to uncouple motor execution from mental deliberation, providing time for higher cognitive processes such as remembering and reasoning. The mental deliberation leading to the decision and the motor execution applying the decision are likely to involve different neuronal circuits linking the basal ganglia and the frontal cortex. Behavioral and physiological studies in monkeys indicate that dopamine depletion may result in a loss of functional segregation between these circuits, hence, in interference between the deliberation and execution processes. To test this hypothesis in humans, we analyzed the movements of parkinsonian patients in a go/no-go task, contrasting periods of uncertainty with periods of knowledge about the rule to be applied. Two groups of patients were compared to healthy subjects: one group was treated with dopaminergic medication and the other with deep brain stimulation; both groups were also tested without any treatment. In healthy subjects, the movement time was unaffected by uncertainty. In untreated patients, the movement time increased with uncertainty, reflecting interference between deliberation and execution processes. This interference was fully corrected with dopaminergic medication but was unchanged with deep brain stimulation. Moreover, decision-related hesitations were detectable in the movements of dopamine-depleted patients, revealing a temporal coupling of deliberation and execution. We suggest that such coupling may be related to the loss of dopamine-mediated functional segregation between basal ganglia circuits processing different stages of goal-directed behavior.
Collapse
|
20
|
Pessiglione M, Guehl D, Rolland AS, François C, Hirsch EC, Féger J, Tremblay L. Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci 2005; 25:1523-31. [PMID: 15703406 PMCID: PMC6725984 DOI: 10.1523/jneurosci.4056-04.2005] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different analyses of neuronal activity in primate models of Parkinson's disease (PD) have resulted in two different views on the effects of dopamine depletion. The first is based on the higher firing rate and bursty firing pattern, and assumes that dopamine depletion results in a hyperactivity of basal ganglia (BG) output structures. The second is based on the less-specific responses to passive joint manipulation and the excessive correlations between neuronal discharges, and assumes that dopamine depletion results in a loss of functional segregation in cortico-BG circuits. The aim of the present study was to test out the predictions of these two different views on thalamic neuronal activity. Three male vervet monkeys (Cercopithecus aethiops) were progressively intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuronal activities were characterized using standard analyses (firing rates and patterns, receptive fields, and cross-correlations) and compared between the normal, asymptomatic (before the stabilization of motor symptoms), and parkinsonian (with persistent akinesia and rigidity) stages of MPTP intoxication. The pallidonigral thalamus (receiving projections from the BG) was characterized in both the asymptomatic and parkinsonian states by (1) an unchanged firing rate and pattern and (2) a proliferation of nonspecific neurons and correlated pairs. In contrast, the cerebellar thalamus (receiving projections from the cerebellum), was characterized by no change (asymptomatic state) or minor changes (symptomatic state). Thus the major dysfunction after dopamine depletion appeared to be the loss of functional segregation within cortico-BG circuits, which could also be at the heart of parkinsonian pathophysiology.
Collapse
Affiliation(s)
- Mathias Pessiglione
- Laboratoire de Neurologie et Thérapeutique Expérimentale, Institut National de la Santé et de la Recherche Médicale Unité 679, Hôpital de la Salpêtrière, 75651 Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Pessiglione M, Guehl D, Jan C, François C, Hirsch EC, Féger J, Tremblay L. Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism: II. Effects of reward preference. Eur J Neurosci 2004; 19:437-46. [PMID: 14725638 DOI: 10.1111/j.0953-816x.2003.03089.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The motor and cognitive symptoms of Parkinson's disease (PD) are well documented, but little is known about the functionality of motivational processes mediated by the limbic circuits of basal ganglia. The aim of this study was to test the ability of motivational processes to direct and to urge behaviour, in four vervet monkeys (Cercopithecus aethiops) progressively intoxicated with systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injections (0.3-0.4 mg/kg every 4-7 days). In the food preference task, the monkeys had to retrieve two types of directly visible food, simultaneously available in the wells of a reward board. At all stages of MPTP-induced parkinsonism, the monkeys continued to take their favourite food first. In the symbol discrimination task, the wells were covered with sliding plaques cued by symbols indicating the absence or presence of a reward, and the different types of food were blocked in separate sessions. Monkeys with mild or moderate parkinsonism made fewer attempts and took longer to retrieve non-preferred compared with preferred rewards. These results indicate that motivational processes are still able to direct (food preference task) and to urge (symbol discrimination task) behaviour in MPTP-lesioned monkeys. Such a functional preservation may be related to the relatively spared dopaminergic innervation of the limbic circuits that we found in our monkeys, in agreement with the literature on humans. Furthermore, the frequency of executive disorders (such as hesitations and freezing) appeared to be much lower with the preferred rewards. Thus, the preserved motivational processes may help to overcome executive dysfunction in the early stages of human PD.
Collapse
Affiliation(s)
- Mathias Pessiglione
- Neurologie et Thérapeutique expérimentale (INSERM U289), Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|