1
|
Developmental regulation and lateralization of GABA receptors in the rat hippocampus. Int J Dev Neurosci 2019; 76:86-94. [DOI: 10.1016/j.ijdevneu.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
2
|
Khoshdel-Sarkarizi H, Hami J, Mohammadipour A, Sadr-Nabavi A, Mahmoudi M, Kheradmand H, Peyvandi M, Nourmohammadi E, Haghir H. WITHDRAWN: Developmental regulation and lateralization of GABA receptors in the rat hippocampus. Int J Dev Neurosci 2019; 76:52-60. [PMID: 30630073 DOI: 10.1016/j.ijdevneu.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/25/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Hoda Khoshdel-Sarkarizi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Peyvandi
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmail Nourmohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Rubini P, Milosevic J, Engelhardt J, Al-Khrasani M, Franke H, Heinrich A, Sperlagh B, Schwarz SC, Schwarz J, Nörenberg W, Illes P. Increase of intracellular Ca2+ by adenine and uracil nucleotides in human midbrain-derived neuronal progenitor cells. Cell Calcium 2009; 45:485-98. [PMID: 19386359 DOI: 10.1016/j.ceca.2009.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/21/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
Nucleotides play an important role in brain development and may exert their action via ligand-gated cationic channels or G protein-coupled receptors. Patch-clamp measurements indicated that in contrast to AMPA, ATP did not induce membrane currents in human midbrain derived neuronal progenitor cells (hmNPCs). Various nucleotide agonists concentration-dependently increased [Ca(2+)](i) as measured by the Fura-2 method, with the rank order of potency ATP>ADP>UTP>UDP. A Ca(2+)-free external medium moderately decreased, whereas a depletion of the intracellular Ca(2+) storage sites by cyclopiazonic acid markedly depressed the [Ca(2+)](i) transients induced by either ATP or UTP. Further, the P2Y(1) receptor antagonistic PPADS and MRS 2179, as well as the nucleotide catalyzing enzyme apyrase, allmost abolished the effects of these two nucleotides. However, the P2Y(1,2,12) antagonistic suramin only slightly blocked the action of ATP, but strongly inhibited that of UTP. In agreement with this finding, UTP evoked the release of ATP from hmNPCs in a suramin-, but not PPADS-sensitive manner. Immunocytochemistry indicated the co-localization of P2Y(1,2,4)-immunoreactivities (IR) with nestin-IR at these cells. In conclusion, UTP may induce the release of ATP from hmNPCs via P2Y(2) receptor-activation and thereby causes [Ca(2+)](i) transients by stimulating a P2Y(1)-like receptor.
Collapse
Affiliation(s)
- Patrizia Rubini
- Rudolf-Boehm-Institute for Pharmacology und Toxicology, Haertelstrasse 16-18, University of Leipzig, D-04107 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Galanopoulou AS. GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 2008; 6:1-20. [PMID: 19305785 PMCID: PMC2645547 DOI: 10.2174/157015908783769653] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/24/2007] [Accepted: 08/05/2007] [Indexed: 12/26/2022] Open
Abstract
GABA(A) receptors have an age-adapted function in the brain. During early development, they mediate excitatory effects resulting in activation of calcium sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABA(A) receptors transmit inhibitory signals. The maturation of GABA(A) signaling follows sex-specific patterns, which appear to also be important for the sexual differentiation of the brain. The inhibitory effects of GABA(A) receptor activation have been widely exploited in the treatment of conditions where neuronal silencing is necessary. For instance, drugs that target GABA(A) receptors are the mainstay of treatment of seizures. Recent evidence suggests however that the physiology and function of GABA(A) receptors changes in the brain of a subject that has epilepsy or status epilepticus.This review will summarize the physiology of and the developmental factors regulating the signaling and function of GABA(A) receptors; how these may change in the brain that has experienced prior seizures; what are the implications for the age and sex specific treatment of seizures and status epilepticus. Finally, the implications of these changes for the treatment of certain forms of medically refractory epilepsies and status epilepticus will be discussed.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R Korey Department of Neurology & Dominick P Purpura, Department of Neuroscience, Bronx NY, USA.
| |
Collapse
|
5
|
Parga JA, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Effects of GABA and GABA receptor inhibition on differentiation of mesencephalic precursors into dopaminergic neurons in vitro. Dev Neurobiol 2007; 67:1549-59. [PMID: 17525990 DOI: 10.1002/dneu.20531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters have been shown to control CNS neurogenesis, and GABA-mediated signaling is thought to be involved in the regulation of nearly all key developmental stages. Generation of dopaminergic (DA) neurons from stem/precursor cells for cell therapy in Parkinson's disease has become a major focus of research. However, the possible effects of GABA on generation of DA neurons from proliferating neurospheres of mesencephalic precursors have not been studied. In the present study, GABA(A), and GABA(B) receptors were found to be located in DA cells. Treatment of cultures with GABA did not cause significant changes in generation of DA cells from precursors. However, treatment with the GABA(A) receptor antagonist bicuculline (10(-5) M) led to a significant increase in the number DA cells, and treatment with the GABA(B) receptor antagonist CGP 55845 (10(-5) M) to a significant decrease. Simultaneous treatment with bicuculline and CGP 55845 did not induce significant changes. Apoptotic cell death studies and bromodeoxyuridine immunohistochemistry indicated that the aforementioned differences in generation of DA neurons are not due to changes in survival or proliferation of DA cells, but rather to increased or decreased differentiation of mesencephalic precursors towards the DA phenotype. The results suggest that these effects are exerted via GABA receptors located on DA precursors, and are not an indirect consequence of effects on the serotonergic or glial cell population. Administration of GABA(A) receptor antagonists in the differentiation medium may help to obtain higher rates of DA neurons for potential use in cell therapy for Parkinson's disease.
Collapse
Affiliation(s)
- J A Parga
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
6
|
Galanopoulou AS. Sex- and cell-type-specific patterns of GABAAreceptor and estradiol-mediated signaling in the immature rat substantia nigra. Eur J Neurosci 2006; 23:2423-30. [PMID: 16706849 DOI: 10.1111/j.1460-9568.2006.04778.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The substantia nigra pars reticulata (SNR) is involved in movement and seizure control. In male but not female postnatal day 15 (PN15) rats, GABAA receptor agonists depolarize the SNR neurons and increase the expression of the calcium-regulated gene KCC2 (potassium/chloride cotransporter). Moreover, in PN15 rat SNR, 7beta-estradiol down-regulates KCC2 expression only in the presence of depolarizing GABAA receptor responses. The hypothesis tested here was that GABAA receptors and estradiol also regulate the expression of the phosphorylated form of the transcription factor cAMP responsive element binding protein (phosphoCREB), in PN15 rat SNR and substantia nigra pars compacta (SNC). Rats were injected with muscimol or 17beta-estradiol or their vehicles, and killed 1 h later. Sections were stained with an antibody specific for phosphoCREB alone or counterstained with either tyrosine hydroxylase (TH)- or parvalbumin (PRV)-specific antibodies. Muscimol increased phosphoCREB-ir in male but not in female SN neurons. Using gramicidin perforated patch clamp of PN14-15 SNC neuron, it was shown that muscimol bath application depolarized male SNC neurons but did not significantly alter membrane potential in females. In males, 17beta-estradiol decreased phosphoCREB expression in all studied cell types. In females, 17beta-estradiol did not influence phosphoCREB expression in PRV-ir SNR cells, but increased it in the dopaminergic SN neurons. These data suggest that GABAA receptor activation and estradiol promote the sexual differentiation of the SN in a cell-type-specific manner, by influencing calcium-regulated gene transcription, and therefore promoting the acquisition of sex-specific roles of the SN in movement and seizure control.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Department of Neurology and Einstein/Montefiore Comprehensive Epilepsy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Rm 311, Bronx, NY 10461, USA.
| |
Collapse
|
7
|
Timmer M, Grosskreutz J, Schlesinger F, Krampfl K, Wesemann M, Just L, Bufler J, Grothe C. Dopaminergic properties and function after grafting of attached neural precursor cultures. Neurobiol Dis 2006; 21:587-606. [PMID: 16256357 DOI: 10.1016/j.nbd.2005.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/29/2005] [Accepted: 09/08/2005] [Indexed: 12/06/2022] Open
Abstract
Generation of dopaminergic (DA) neurons from multipotent embryonic progenitors represents a promising therapeutical strategy for Parkinson's disease (PD). Aim of the present study was the establishment of enhanced cell culture conditions, which optimize the use of midbrain progenitor cells in animal models of PD. In addition, the progenitor cells were characterized during expansion and differentiation according to morphological and electrophysiological criteria and compared to primary tissue. Here, we report that CNS precursors can be expanded in vitro up to 40-fold and afterwards be efficiently differentiated into DA neurons. After 4-5 days under differentiation conditions, more than 70% of the neurons were TH+, equivalent to 30% of the total cell population. Calcium imaging revealed the presence of calcium-permeable AMPA receptors in the differentiated precursors which are capable to contribute to many developmental processes. The overall survival rate, degree of reinnervation and the behavioral performance after transplantation of 4 days in-vitro-differentiated cells were similar to results after direct grafting of E14 ventral mesencephalic cells, whereas after shorter or longer differentiation periods, respectively, less effects were achieved. Compared to the amount of in-vitro-generated DA neurons, the survival rate was only 0.8%, indicating that these cells are very vulnerable. Our results suggest that expanded and differentiated DA precursors from attached cultures can survive microtransplantation and integrate within the striatum in terms of behavioral recovery. However, there is only a short time window during in vitro differentiation, in which enough cells are already differentiated towards a DA phenotype and simultaneously not too mature for implantation. However, additional factors and/or genetical manipulation of these expanded progenitors will be required to increase their in vivo survival in order to improve both the ethical and the technical outlook for the use of fetal tissue in clinical transplantation.
Collapse
Affiliation(s)
- Marco Timmer
- Department of Neuroanatomy, Center of Anatomy, OE 4140, Hannover Medical School, Carl-Neuberg-Str. 1, 30623 Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Schlesinger F, Tammena D, Krampfl K, Bufler J. Two mechanisms of action of the adamantane derivative IEM-1460 at human AMPA-type glutamate receptors. Br J Pharmacol 2005; 145:656-63. [PMID: 15834439 PMCID: PMC1576181 DOI: 10.1038/sj.bjp.0706233] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Antagonizing glutamatergic neurotransmission by blockade of AMPA-type glutamate receptors (GluR) is a promising pharmacological strategy for neuroprotection in neurodegenerative diseases and acute treatment of stroke. 2. We investigated the interaction of the adamantane derivative IEM-1460 with human wild-type and mutant AMPA-type GluR channels. Different recombinant homooligomeric human AMPA-type GluR channels and a rat nondesensitizing mutant GluR (GluR2 L504Y) channel were expressed in HEK293 cells and investigated using the patch-clamp technique in combination with ultrafast agonist application. 3. When IEM-1460 was coapplied with glutamate, an open channel block mechanism was observed at slow desensitizing GluR2 flip (>/=0.1 mM IEM-1460) and nondesensitizing GluR2 L504Y channels (>/=1 microM IEM-1460). 4. A competitive block of AMPA-type channels was observed with IC(50) values for the dose block curves of 0.1 mM IEM-1460 at human unmutated and 10 microM IEM-1460 at mutant GluR channels. 5. Nondesensitizing GluR2 L504Y channels were used to further characterize the block mechanism. After equilibration with the agonist, a current decay upon coapplication of glutamate and IEM-1460 was observed. The recovery from block was independent of the glutamate and IEM-1460 concentration. The extent of current inhibition as well as the time constant of current decay upon addition of the blocker to the test solution were dependent on agonist concentration; this strongly points to an additional competitive-like block mechanism of IEM-1460 at human AMPA-type GluR channels. 6. The data were interpreted in the frame of a molecular scheme with two binding sites of IEM-1460 at the receptor, one at the unliganded resting and the other at the fully liganded open state of the channels.
Collapse
Affiliation(s)
- Friedrich Schlesinger
- Neurological Department of the Medical School of Hannover, Karl-Neuberg Str. 1, 30623 Hannover, Germany.
| | | | | | | |
Collapse
|
9
|
Krampfl K, Maljevic S, Cossette P, Ziegler E, Rouleau GA, Lerche H, Bufler J. Molecular analysis of the A322D mutation in the GABAAreceptor α1-subunit causing juvenile myoclonic epilepsy. Eur J Neurosci 2005; 22:10-20. [PMID: 16029191 DOI: 10.1111/j.1460-9568.2005.04168.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Juvenile myoclonic epilepsy (JME) belongs to the most common forms of hereditary epilepsy, the idiopathic generalized epilepsies. Although the mode of inheritance is usually complex, mutations in single genes have been shown to cause the disease in some families with autosomal dominant inheritance. The first mutation in a multigeneration JME family has been recently found in the alpha1-subunit of the GABAA receptor (GABRA1), predicting the single amino acid substitution A322D. We further characterized the functional consequences of this mutation by coexpressing alpha1-, beta2- and gamma2-subunits in human embryonic kidney (HEK293) cells. By using an ultrafast application system, mutant receptors have shown reduced macroscopic current amplitudes at saturating GABA concentrations and a highly reduced affinity to GABA compared to the wild-type (WT). Dose-response curves for current amplitudes, activation kinetics, and GABA-dependent desensitization parameters showed a parallel shift towards 30- to 40-fold higher GABA concentrations. Both deactivation and resensitization kinetics were considerably accelerated in mutant channels. In addition, mutant receptors labelled with enhanced green fluorescent protein (EGFP) were not integrated in the cell membrane, in contrast to WT receptors. Therefore, the A322D mutation leads to a severe loss-of-function of the human GABAA receptor by several mechanisms, including reduced surface expression, reduced GABA-sensitivity, and accelerated deactivation. These molecular defects could decrease and shorten the resulting inhibitory postsynaptic currents (IPSCs) in vivo, which can induce a hyperexcitability of the postsynaptic membrane and explain the occurrence of epileptic seizures.
Collapse
Affiliation(s)
- Klaus Krampfl
- Neurologische Klinik, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Schlesinger F, Tammena D, Krampfl K, Bufler J. Desensitization and resensitization are independently regulated in human recombinant GluR subunit coassemblies. Synapse 2005; 55:176-82. [PMID: 15635696 DOI: 10.1002/syn.20110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AMPA-type glutamate receptor (GluR) channels are the most abundant excitatory transmitter receptors of the central nervous system. Four subunits with different posttranscriptional modifications and flip/flop splice variants are known. In vivo they occur as tetrameric heteromeric receptors. In the present study we analyzed the time course of desensitization (tau(D)) and resensitization (tau(rec)) kinetics of different homomeric (coassembly of splice or editing variants of one subunit) and heteromeric (coassembly of different subunits) GluR channels. We found that tau(D) had intermediate values depending on the amount of cDNA of the respective subunit at all heteromeric and homomeric GluR channels tested. The same holds true for tau(rec) except GluR2 flip channels were coexpressed with GluR1 channels. In this case, tau(rec) had values close to that of fast resensitizing GluR2 flip channels, even in the case of an abundance of GluR1 cDNA.
Collapse
|