1
|
Abstract
Treatment of type 1 diabetes with exogenous insulin often results in unpredictable daily glucose variability and hypoglycemia, which can be dangerous. Automated insulin delivery systems can improve glucose control while reducing burden for people with diabetes. One approach to improve treatment outcomes is to incorporate the counter-regulatory hormone glucagon into the automated delivery system to help prevent the hypoglycemia that can be induced by the slow pharmacodynamics of insulin action. This article explores the advantages and disadvantages of incorporating glucagon into dual-hormone automated hormone delivery systems.
Collapse
Affiliation(s)
- Leah M Wilson
- Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Harold Schnitzer Diabetes Health Center, 3181 Southwest Sam Jackson Park Road, L607, Portland, OR 97239-3098, USA.
| | - Peter G Jacobs
- Department of Biomedical Engineering, Oregon Health & Science University, Mail Code: CH13B, 3303 Southwest Bond Avenue, Portland, OR 97239, USA
| | - Jessica R Castle
- Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Harold Schnitzer Diabetes Health Center, 3181 Southwest Sam Jackson Park Road, L607, Portland, OR 97239-3098, USA
| |
Collapse
|
2
|
Taleb N, Haidar A, Messier V, Gingras V, Legault L, Rabasa-Lhoret R. Glucagon in artificial pancreas systems: Potential benefits and safety profile of future chronic use. Diabetes Obes Metab 2017; 19:13-23. [PMID: 27629286 DOI: 10.1111/dom.12789] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 12/17/2022]
Abstract
The role of glucagon in the pathophysiology of diabetes has long been recognized, although its approved clinical use has so far been limited to the emergency treatment of severe hypoglycaemia. A novel use of glucagon as intermittent mini-boluses is proposed in the dual-hormone version (insulin and glucagon) of the external artificial pancreas. Short-term studies suggest that the incorporation of glucagon into artificial pancreas systems has the potential to further decrease hypoglycaemic risk and improve overall glucose control; however, the potential long-term safety and benefits also need to be investigated given the recognized systemic effects of glucagon. In the present report, we review the available animal and human data on the physiological functions of glucagon, as well as its pharmacological use, according to dosing and duration (acute and chronic). Along with its main role in hepatic glucose metabolism, glucagon affects the cardiovascular, renal, pulmonary and gastrointestinal systems. It has a potential role in weight reduction through its central satiety function and its role in increasing energy expenditure. Most of the pharmacological studies investigating the effects of glucagon have used doses exceeding 1 mg, in contrast to the mini-boluses used in the artificial pancreas. The available data are reassuring but comprehensive human studies using small but chronic glucagon doses that are close to the physiological ranges are lacking. We propose a list of variables that could be monitored during long-term trials of the artificial pancreas. Such trials should address the questions about the risk-benefit ratio of chronic glucagon use.
Collapse
Affiliation(s)
- Nadine Taleb
- Metabolic diseases unit, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Édouard-Montpetit, Université de Montréal, Montréal, Québec, Canada
| | - Ahmad Haidar
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Virginie Messier
- Metabolic diseases unit, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Véronique Gingras
- Metabolic diseases unit, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Laurent Legault
- Montreal Children's Hospital, Department of Pediatrics, McGill University Health Centre, Montréal, Québec, Canada
| | - Rémi Rabasa-Lhoret
- Metabolic diseases unit, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Montreal Diabetes Research Center, Montréal, Québec, Canada
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|