1
|
Osana S, Kitajima Y, Naoki S, Takada H, Murayama K, Kano Y, Nagatomi R. Little involvement of recycled-amino acids from proteasomal proteolysis in de novo protein synthesis. Biochem Biophys Res Commun 2022; 634:40-47. [DOI: 10.1016/j.bbrc.2022.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
2
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
3
|
Micheletto MLJ, Hermes TDA, Bertassoli BM, Petri G, Perez MM, Fonseca FLA, Carvalho AADS, Feder D. Ixazomib, an oral proteasome inhibitor, exhibits potential effect in dystrophin-deficient mdx mice. Int J Exp Pathol 2021; 102:11-21. [PMID: 33296126 PMCID: PMC7839951 DOI: 10.1111/iep.12383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Dystrophin deficiency makes the sarcolemma fragile and susceptible to degeneration in Duchenne muscular dystrophy. The proteasome is a multimeric protease complex and is central to the regulation of cellular proteins. Previous studies have shown that proteasome inhibition improved pathological changes in mdx mice. Ixazomib is the first oral proteasome inhibitor used as a therapy in multiple myeloma. This study investigated the effects of ixazomib on the dystrophic muscle of mdx mice. MDX mice were treated with ixazomib (7.5 mg/kg/wk by gavage) or 0.2 mL of saline for 12 weeks. The Kondziela test was performed to measure muscle strength. The tibialis anterior (TA) and diaphragm (DIA) muscles were used for morphological analysis, and blood samples were collected for biochemical measurement. We observed maintenance of the muscle strength in the animals treated with ixazomib. Treatment with ixazomib had no toxic effect on the mdx mouse. The morphological analysis showed a reduction in the inflammatory area and fibres with central nuclei in the TA and DIA muscles and an increase in the number of fibres with a diameter of 20 µm2 in the DIA muscle after treatment with ixazomib. There was an increase in the expression of dystrophin and utrophin in the TA and DIA muscles and a reduction in the expression of osteopontin and TGF-β in the DIA muscle of mdx mice treated with ixazomib. Ixazomib was thus shown to increase the expression of dystrophin and utrophin associated with improved pathological and functional changes in the dystrophic muscles of mdx mice.
Collapse
Affiliation(s)
| | - Tulio de Almeida Hermes
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
- Departament of AnatomyFederal University of AlfenasAlfenasBrazil
| | | | - Giuliana Petri
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| | | | | | | | - David Feder
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| |
Collapse
|
4
|
Adegoke OAJ, Beatty BE, Kimball SR, Wing SS. Interactions of the super complexes: When mTORC1 meets the proteasome. Int J Biochem Cell Biol 2019; 117:105638. [PMID: 31678320 PMCID: PMC6910232 DOI: 10.1016/j.biocel.2019.105638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/30/2022]
Abstract
Homeostatic regulation of energy and metabolic status requires that anabolic and catabolic signaling pathways be precisely regulated and coordinated. Mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is a mega protein complex that promotes energy-consuming anabolic processes of protein and nucleic acid synthesis as well lipogenesis in times of energy and nutrient abundance. However, it is best characterized as the regulator of steps leading to protein synthesis. The ubiquitin-proteasome proteolytic system (UPS) is a major intracellular proteolytic system whose activity is increased during periods of nutrient scarcity and in muscle wasting conditions such as cachexia. Recent studies have examined the impact of mTORC1 on levels and functions of the 26S proteasome, the mega protease complex of the UPS. Here we first briefly review current understanding of the regulation of mTORC1, the UPS, and the 26S proteasome complex. We then review evidence of the effect of each complex on the abundance and functions of the other. Given the fact that drugs that inhibit either complex are either in clinical trials or are approved for treatment of cancer, a muscle wasting condition, we identify studying the effect of combinatory mTORC1-proteasome inhibition on skeletal muscle mass and health as a critical area requiring investigation.
Collapse
Affiliation(s)
- Olasunkanmi A J Adegoke
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada.
| | - Brendan E Beatty
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Simon S Wing
- Department of Medicine, McGill University and the Research Institute of the McGill University Health Centre, the Montreal Diabetes Research Centre, Montréal, Quebec, H4A 3J1. Canada
| |
Collapse
|
5
|
Holeček M, Vodeničarovová M. Effects of beta-hydroxy-beta-methylbutyrate supplementation on skeletal muscle in healthy and cirrhotic rats. Int J Exp Pathol 2019; 100:175-183. [PMID: 31321841 DOI: 10.1111/iep.12322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/11/2019] [Accepted: 05/05/2019] [Indexed: 12/23/2022] Open
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with protein anabolic effects. We examined the effects of an HMB-enriched diet in healthy rats and rats with liver cirrhosis induced by multiple doses of carbon tetrachloride (CCl4). HMB increased branched-chain amino acids (BCAAs; valine, leucine and isoleucine) in blood and BCAA and ATP in muscles of healthy animals. The effect on muscle mass and protein content was insignificant. In CCl4-treated animals alterations characteristic of liver cirrhosis were found with decreased ratio of the BCAA to aromatic amino acids in blood and lower muscle mass and ATP content when compared with controls. In CCl4-treated animals consuming HMB, we observed higher mortality, lower body weight, higher BCAA levels in blood plasma, higher ATP content in muscles, and lower ATP content and higher cathepsin B and L activities in the liver when compared with CCl4-treated animals without HMB. We conclude that (1) HMB supplementation has a positive effect on muscle mitochondrial function and enhances BCAA concentrations in healthy animals and (2) the effects of HMB on the course of liver cirrhosis in CCl4-treated rats are detrimental. Further studies examining the effects of HMB in other models of hepatic injury are needed to determine pros and cons of HMB in the treatment of subjects with liver cirrhosis.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Melita Vodeničarovová
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Preau S, Ambler M, Sigurta A, Kleyman A, Dyson A, Hill NE, Boulanger E, Singer M. Protein recycling and limb muscle recovery after critical illness in slow- and fast-twitch limb muscle. Am J Physiol Regul Integr Comp Physiol 2019; 316:R584-R593. [PMID: 30789789 DOI: 10.1152/ajpregu.00221.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An impaired capacity of muscle to regenerate after critical illness results in long-term functional disability. We previously described in a long-term rat peritonitis model that gastrocnemius displays near-normal histology whereas soleus demonstrates a necrotizing phenotype. We thus investigated the link between the necrotizing phenotype of critical illness myopathy and proteasome activity in these two limb muscles. We studied male Wistar rats that underwent an intraperitoneal injection of the fungal cell wall constituent zymosan or n-saline as a sham-treated control. Rats (n = 74) were killed at 2, 7, and 14 days postintervention with gastrocnemius and soleus muscle removed and studied ex vivo. Zymosan-treated animals displayed an initial reduction of body weight but a persistent decrease in mass of both lower hindlimb muscles. Zymosan increased chymotrypsin- and trypsin-like proteasome activities in gastrocnemius at days 2 and 7 but in soleus at day 2 only. Activated caspases-3 and -9, polyubiquitin proteins, and 14-kDa fragments of myofibrillar actin (proteasome substrates) remained persistently increased from day 2 to day 14 in soleus but not in gastrocnemius. These results suggest that a relative proteasome deficiency in soleus is associated with a necrotizing phenotype during long-term critical illness. Rescuing proteasome clearance may offer a potential therapeutic option to prevent long-term functional disability in critically ill patients.
Collapse
Affiliation(s)
- Sebastien Preau
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom.,Université de Lille, Centre Hospitalier et Universitaire de Lille, INSERM, Lille Inflammation Research International Center, Lille, France
| | - Michael Ambler
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Anna Sigurta
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Anna Kleyman
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Neil E Hill
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Eric Boulanger
- Université de Lille, Centre Hospitalier et Universitaire de Lille, INSERM, Lille Inflammation Research International Center, Lille, France
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| |
Collapse
|
7
|
Holeček M, Vodeničarovová M. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis. Int J Exp Pathol 2019; 99:274-281. [PMID: 30637824 DOI: 10.1111/iep.12299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to examine whether a rat model of liver cirrhosis induced by carbon tetrachloride (CCl4) is a suitable model of muscle wasting and alterations in amino acid metabolism in cirrhotic humans. Rats were treated by intragastric gavage of CCl4 or vehicle for 45 days. Blood plasma and different muscle types-tibialis anterior (mostly white fibres), soleus (red muscle) and extensor digitorum longus (white muscle) - were analysed at the end of the study. Characteristic biomarkers of impaired hepatic function were found in the plasma of cirrhotic animals. The weights and protein contents of all muscles of CCl4-treated animals were lower when compared with controls. Increased concentrations of glutamine (GLN) and aromatic amino acids (phenylalanine and tyrosine) and decreased concentrations of branched-chain amino acids (BCAA), glutamate (GLU), alanine and aspartate were found in plasma and muscles. In the soleus muscle, GLN increased more and GLU and BCAA decreased less than in the extensor digitorum and tibialis muscles. Increased chymotrypsin-like activity (indicating enhanced proteolysis) and decreased α-ketoglutarate and ATP levels were found in muscles of cirrhotic animals. ATP concentration also decreased in blood plasma. It is concluded that a rat model of CCl4-induced cirrhosis is a valid model for the investigation of hepatic cachexia that exhibits alterations in line with a theory of role of ammonia in pathogenesis of BCAA depletion, citric cycle and mitochondria dysfunction, and muscle wasting in cirrhotic subjects. The findings indicate more effective ammonia detoxification to GLN in red than in white muscles.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Melita Vodeničarovová
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| |
Collapse
|
8
|
Effects of branched-chain amino acids on muscles under hyperammonemic conditions. J Physiol Biochem 2018; 74:523-530. [DOI: 10.1007/s13105-018-0646-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022]
|
9
|
Holeček M, Vodeničarovová M. Effects of beta-hydroxy-beta-methylbutyrate in partially hepatectomized rats. Physiol Res 2018; 67:741-751. [PMID: 30044108 DOI: 10.33549/physiolres.933861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with protein anabolic effects. Since HMB is synthesized in the liver, unique effects of exogenous HMB intake may be hypothesized in subjects with liver disease, in which muscle wasting is frequently found. We studied effects of HMB on the liver and soleus (SOL) and extensor digitorum longus (EDL) muscles in partially-hepatectomized (PH) rats. HMB or saline was infused using osmotic pumps to PH or sham-operated rats for 7 days. We found lower body weight and protein content in EDL of PH rats treated with saline than in sham-operated animals. These effects were insignificant in HMB treated animals. In blood plasma of PH rats treated with HMB we found lower concentrations of creatinine and higher concentrations of urea and branched-chain amino acids (BCAA; valine, leucine, and isoleucine) than in PH animals treated with saline. HMB increased BCAA concentrations in SOL and EDL of PH animals and decreased proteolysis in EDL of both sham-operated and PH animals. In the livers of PH rats treated with HMB we found higher DNA content, DNA fragmentation, and BCAA concentrations than in saline-treated animals. The results indicate that HMB affects metabolism of BCAA and has positive influence on protein balance in muscles. Further studies are needed to clarify the effect of HMB on liver regeneration.
Collapse
Affiliation(s)
- M Holeček
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic.
| | | |
Collapse
|
10
|
Crowell KT, Kelleher SL, Soybel DI, Lang CH. Marginal dietary zinc deprivation augments sepsis-induced alterations in skeletal muscle TNF-α but not protein synthesis. Physiol Rep 2017; 4:4/21/e13017. [PMID: 27811170 PMCID: PMC5112495 DOI: 10.14814/phy2.13017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Severe zinc deficiency is associated with an increased systemic inflammatory response and mortality after sepsis. However, the impact of mild zinc deficiency, which is more common in populations with chronic illnesses and sepsis, is unknown. In this study, we hypothesized that marginal dietary Zn deprivation (ZM) would amplify tissue inflammation and exacerbate the sepsis-induced decrease in muscle protein synthesis. Adult male C57BL/6 mice were fed a zinc-adequate (ZA) or ZM diet (30 or 10 mg Zn/kg, respectively) over 4 weeks, peritonitis was induced by cecal ligation and puncture (CLP), and mice were examined at either 24 h (acute) or 5 days (chronic) post-CLP Acute sepsis decreased the in vivo rate of skeletal muscle protein synthesis and the phosphorylation of the mTOR substrate 4E-BP1. Acutely, sepsis increased TNF-α and IL-6 mRNA in muscle, and the increase in TNF-α was significantly greater in ZM mice. However, muscle protein synthesis and 4E-BP1 phosphorylation returned to baseline 5 days post-CLP in both ZA and ZM mice. Protein degradation via markers of the ubiquitin proteasome pathway was increased in acute sepsis, yet only MuRF1 mRNA was increased in chronic sepsis and ZM amplified this elevation. Our data suggest that mild zinc deficiency increases TNF-α in muscle acutely after sepsis but does not significantly modulate the rate of muscle protein synthesis.
Collapse
Affiliation(s)
- Kristen T Crowell
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Shannon L Kelleher
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - David I Soybel
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Charles H Lang
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania .,Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
11
|
Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle 2017; 8:529-541. [PMID: 28493406 PMCID: PMC5566641 DOI: 10.1002/jcsm.12208] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine that has been reported to have anabolic effects on protein metabolism. The aims of this article were to summarize the results of studies of the effects of HMB on skeletal muscle and to examine the evidence for the rationale to use HMB as a nutritional supplement to exert beneficial effects on muscle mass and function in various conditions of health and disease. The data presented here indicate that the beneficial effects of HMB have been well characterized in strength-power and endurance exercise. HMB attenuates exercise-induced muscle damage and enhances muscle hypertrophy and strength, aerobic performance, resistance to fatigue, and regenerative capacity. HMB is particularly effective in untrained individuals who are exposed to strenuous exercise and in trained individuals who are exposed to periods of high physical stress. The low effectiveness of HMB in strength-trained athletes could be due to the suppression of the proteolysis that is induced by the adaptation to training, which may blunt the effects of HMB. Studies performed with older people have demonstrated that HMB can attenuate the development of sarcopenia in elderly subjects and that the optimal effects of HMB on muscle growth and strength occur when it is combined with exercise. Studies performed under in vitro conditions and in various animal models suggest that HMB may be effective in treatment of muscle wasting in various forms of cachexia. However, there are few clinical reports of the effects of HMB on muscle wasting in cachexia; in addition, most of these studies evaluated the therapeutic potential of combinations of various agents. Therefore, it has not been possible to determine whether HMB was effective or if there was a synergistic effect. Although most of the endogenous HMB is produced in the liver, there are no reports regarding the levels and the effects of HMB supplementation in subjects with liver disease. Several studies have suggested that anabolic effects of HMB supplementation on skeletal muscle do not occur in healthy, non-exercising subjects. It is concluded that (i) HMB may be applied to enhance increases in the mass and strength of skeletal muscles in subjects who exercise and in the elderly and (ii) studies examining the effects of HMB administered alone are needed to obtain conclusions regarding the specific effectiveness in attenuating muscle wasting in various muscle-wasting disorders.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Holecek M, Vodenicarovova M, Siman P. Acute effects of phenylbutyrate on glutamine, branched-chain amino acid and protein metabolism in skeletal muscles of rats. Int J Exp Pathol 2017. [PMID: 28621016 DOI: 10.1111/iep.12231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phenylbutyrate (PB) acts as chemical chaperone and histone deacetylase inhibitor, which is used to decrease ammonia in urea cycle disorders and has been investigated for use in the treatment of a number of lethal illnesses. We performed in vivo and in vitro experiments to examine the effects of PB on glutamine (GLN), branched-chain amino acid (BCAA; valine, leucine and isoleucine) and protein metabolism in rats. In the first study, animals were sacrificed one hour after three injections of PB (300mg/kg b.w.) or saline. In the second study, soleus (SOL, slow twitch) and extensor digitorum longus (EDL, fast twitch) muscles were incubated in a medium with or without PB (5 mM). L-[1-14 C] leucine was used to estimate protein synthesis and leucine oxidation, and 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. PB treatment decreased GLN, BCAA and branched-chain keto acids (BCKAs) in blood plasma, decreased BCAA and increased GLN concentrations in muscles, and increased GLN synthetase activities in muscles. Addition of PB to incubation medium increased leucine oxidation (55% in EDL, 29% in SOL), decreased BCKA and increased GLN in medium of both muscles, increased GLN in muscles, decreased protein synthesis in SOL and increased proteolysis in EDL. It is concluded that PB decreases BCAA, BCKA and GLN in blood plasma, activates BCAA catabolism and GLN synthesis in muscle and exerts adverse effects on protein metabolism. The results indicate that BCAA and GLN supplementation is needed when PB is used therapeutically and that PB may be a useful prospective agent which could be effective in management of maple syrup urine disease.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Melita Vodenicarovova
- Department of Physiology, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Pavel Siman
- Department of Biochemistry, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Lamoliatte F, McManus FP, Maarifi G, Chelbi-Alix MK, Thibault P. Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat Commun 2017; 8:14109. [PMID: 28098164 PMCID: PMC5253644 DOI: 10.1038/ncomms14109] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022] Open
Abstract
Crosstalk between the SUMO and ubiquitin pathways has recently been reported. However, no approach currently exists to determine the interrelationship between these modifications. Here, we report an optimized immunoaffinity method that permits the study of both protein ubiquitylation and SUMOylation from a single sample. This method enables the unprecedented identification of 10,388 SUMO sites in HEK293 cells. The sequential use of SUMO and ubiquitin remnant immunoaffinity purification facilitates the dynamic profiling of SUMOylated and ubiquitylated proteins in HEK293 cells treated with the proteasome inhibitor MG132. Quantitative proteomic analyses reveals crosstalk between substrates that control protein degradation, and highlights co-regulation of SUMOylation and ubiquitylation levels on deubiquitinase enzymes and the SUMOylation of proteasome subunits. The SUMOylation of the proteasome affects its recruitment to promyelocytic leukemia protein (PML) nuclear bodies, and PML lacking the SUMO interacting motif fails to colocalize with SUMOylated proteasome further demonstrating that this motif is required for PML catabolism.
Collapse
Affiliation(s)
- Frédéric Lamoliatte
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7.,Department of Chemistry, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Francis P McManus
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Ghizlane Maarifi
- INSERM UMR-S1124, Université Paris Descartes, 75006 Paris, France
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7.,Department of Chemistry, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7.,Department of Biochemistry, Université de Montréal, P.O. Box 6128, Station, Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
14
|
Holecek M, Muthny T, Kovarik M, Sispera L. Simultaneous Infusion of Glutamine and Branched-Chain Amino Acids (BCAA) to Septic Rats Does Not Have More Favorable Effect on Protein Synthesis in Muscle, Liver, and Small Intestine Than Separate Infusions. JPEN J Parenter Enteral Nutr 2017; 30:467-73. [PMID: 17047169 DOI: 10.1177/0148607106030006467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glutamine and branched-chain amino acids (BCAA; valine, leucine, and isoleucine) are used as nutrition supplements in the treatment of proteocatabolic illness. We hypothesized that simultaneous administration of BCAA and glutamine affects protein metabolism more significantly than separate administration. In the present study, we evaluated their effect on protein synthesis in skeletal muscle, liver, and jejunum of septic rats. METHODS Twenty-four hours after induction of sepsis by subcutaneous injection of turpentine, the rats were infused for 6 hours with 5 mL of 1.75% glutamine, 1.75% BCAA, 1.75% glutamine+BCAA, or saline solution. The control group consisted of intact rats infused with saline. Protein synthesis was measured at the end of infusion by a "flooding method" with [3,4,5-(3)H]phenylalanine. RESULTS In turpentine-treated animals, we observed a decrease in glutamine concentration in blood plasma and skeletal muscle, a decrease in BCAA concentration in liver and jejunum, and a decrease in protein synthesis in all tissues. Glutamine or glutamine+BCAA infusion increased glutamine concentration in plasma and muscle and stimulated protein synthesis in the liver. The BCAA infusion enhanced concentrations of BCAA in plasma and tissues, but the effect of BCAA on protein synthesis was insignificant. Synergistic effect of simultaneous infusion of glutamine and BCAA on protein synthesis was not observed. CONCLUSIONS We conclude that glutamine infusion to rats with septic injury may significantly improve impaired protein synthesis in the liver and that there is no synergistic effect of glutamine and BCAA infusion on protein synthesis in skeletal muscle, liver, and jejunum.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Charles University, Medical Faculty, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Ghosh C, Gupta N, More P, Sengupta P, Mallick A, Santra MK, Basu S. Engineering and In VitroEvaluation of Acid Labile Cholesterol Tethered MG132 Nanoparticle for Targeting Ubiquitin-Proteasome System in Cancer. ChemistrySelect 2016. [DOI: 10.1002/slct.201601117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chandramouli Ghosh
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Neha Gupta
- Cancer and Epigenetics Lab; National Center for Cell Science (NCCS), Ganeshkhind; Pune 411007, Maharashtra India
| | - Piyush More
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Poulomi Sengupta
- Physical Chemistry Division; CSIR National Chemical Laboratory; Academy of Scientific & Innovative Research (AcSIR); Dr. Homi Bhaba Road Pune 411008, Maharashtra India
| | - Abhik Mallick
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Manas Kumar Santra
- Cancer and Epigenetics Lab; National Center for Cell Science (NCCS), Ganeshkhind; Pune 411007, Maharashtra India
| | - Sudipta Basu
- Department of Chemistry; Indian Institute of Science Education and Research (IISER)-Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| |
Collapse
|
16
|
Vishwanatha KS, Bäck N, Lam TT, Mains RE, Eipper BA. O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking. J Biol Chem 2016; 291:9835-50. [PMID: 26961877 DOI: 10.1074/jbc.m115.711838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 01/08/2023] Open
Abstract
Peptidylglycine α-amidating monooxygenase (PAM) (EC 1.14.17.3) catalyzes peptide amidation, a crucial post-translational modification, through the sequential actions of its monooxygenase (peptidylglycine α-hydroxylating monooxygenase) and lyase (peptidyl-α-hydroxyglycine α-amidating lyase (PAL)) domains. Alternative splicing generates two different regions that connect the protease-resistant catalytic domains. Inclusion of exon 16 introduces a pair of Lys residues, providing a site for controlled endoproteolytic cleavage of PAM and the separation of soluble peptidylglycine α-hydroxylating monooxygenase from membrane-associated PAL. Exon 16 also includes two O-glycosylation sites. PAM-1 lacking both glycosylation sites (PAM-1/OSX; where OSX is O-glycan-depleted mutant of PAM-1) was stably expressed in AtT-20 corticotrope tumor cells. In PAM-1/OSX, a cleavage site for furin-like convertases was exposed, generating a shorter form of membrane-associated PAL. The endocytic trafficking of PAM-1/OSX differed dramatically from that of PAM-1. A soluble fragment of the cytosolic domain of PAM-1 was produced in the endocytic pathway and entered the nucleus; very little soluble fragment of the cytosolic domain was produced from PAM-1/OSX. Internalized PAM-1/OSX was rapidly degraded; unlike PAM-1, very little internalized PAM-1/OSX was detected in multivesicular bodies. Blue native PAGE analysis identified high molecular weight complexes containing PAM-1; the ability of PAM-1/OSX to form similar complexes was markedly diminished. By promoting the formation of high molecular weight complexes, O-glycans may facilitate the recycling of PAM-1 through the endocytic compartment.
Collapse
Affiliation(s)
| | - Nils Bäck
- the Department of Anatomy, Faculty of Medicine, University of Helsinki, Fin-00014, Helsinki, Finland, and
| | - TuKiet T Lam
- the W. M. Keck Foundation Biotechnology Resource Laboratory, Yale/Keck MS and Proteomics Resource, Yale/NIDA Neuroproteomics Center, Yale University, New Haven, Connecticut 06511
| | | | - Betty A Eipper
- From the Departments of Neuroscience and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030,
| |
Collapse
|
17
|
Holecek M, Siman P, Vodenicarovova M, Kandar R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr Metab (Lond) 2016; 13:12. [PMID: 26877757 PMCID: PMC4751732 DOI: 10.1186/s12986-016-0072-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/05/2016] [Indexed: 11/26/2022] Open
Abstract
Background Many people believe in favourable effects of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine), especially leucine, on muscle protein balance and consume BCAAs for many years. We determined the effects of the chronic intake of a BCAA- or leucine-enriched diet on protein and amino acid metabolism in fed and postabsorptive states. Methods Rats were fed a standard diet, a diet with a high content of valine, leucine, and isoleucine (HVLID), or a high content of leucine (HLD) for 2 months. Half of the animals in each group were sacrificed in the fed state on the last day, and the other half were sacrificed after overnight fast. Protein synthesis was assessed using the flooding dose method (L-[3,4,5-3H]phenylalanine), proteolysis on the basis of chymotrypsin-like activity (CHTLA) of proteasome and cathepsin B and L activities. Results Chronic intake of HVLID or HLD enhanced plasma levels of urea, alanine and glutamine. HVLID also increased levels of all three BCAA and branched-chain keto acids (BCKA), HLD increased leucine, ketoisocaproate and alanine aminotransferase and decreased valine, ketovaline, isoleucine, ketoisoleucine, and LDL cholesterol. Tissue weight and protein content were lower in extensor digitorum longus muscles in the HLD group and higher in kidneys in the HVLID and HLD groups. Muscle protein synthesis in postprandial state was higher in the HVLID group, and CHTLA was lower in muscles of the HVLID and HLD groups compared to controls. Overnight starvation enhanced alanine aminotransferase activity in muscles, and decreased protein synthesis in gastrocnemius (in HVLID group) and extensor digitorum longus (in HLD group) muscles more than in controls. Effect of HVLID and HLD on CHTLA in muscles in postabsorptive state was insignificant. Conclusions The results failed to demonstrate positive effects of the chronic consumption of a BCAA-enriched diet on protein balance in skeletal muscle and indicate rather negative effects from a leucine-enriched diet. The primary effects of both diets are an activated catabolism of BCAAs, which leads to an enhanced production of BCKA, alanine and glutamine and their utilization in visceral tissues and an impaired protein synthesis in postabsorptive state, particularly in fast-twitch (white) muscles.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove, 500 38 Czech Republic
| | - Pavel Siman
- Department of Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University Prague, Hradec Kralove, Czech Republic
| | - Melita Vodenicarovova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove, 500 38 Czech Republic
| | - Roman Kandar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| |
Collapse
|
18
|
Schweinberger BM, Turcatel E, Rodrigues AF, Wyse ATS. Gestational hypermethioninaemia alters oxidative/nitrative status in skeletal muscle and biomarkers of muscular injury and inflammation in serum of rat offspring. Int J Exp Pathol 2015; 96:277-84. [PMID: 26303039 PMCID: PMC4693554 DOI: 10.1111/iep.12136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/31/2015] [Indexed: 12/25/2022] Open
Abstract
In this study we evaluated oxidative/nitrative stress parameters (reactive oxygen species production, lipid peroxidation, sulfhydryl content, superoxide dismutase, catalase and nitrite levels), as well as total protein content in the gastrocnemius skeletal muscle of the offspring of rats that had been subjected to gestational hypermethioninaemia. The occurrence of muscular injury and inflammation was also measured by creatine kinase activity, levels of creatinine, urea and C-reactive protein and the presence of cardiac troponin I in serum. Wistar female rats (70-90 days of age) received methionine (2.68 μmol/g body weight) or saline (control) twice a day by subcutaneous injections during the gestational period (21 days). After the rats gave birth, pups were killed at the twenty-first day of life for removal of muscle and serum. Methionine treatment increased reactive oxygen species production and lipid peroxidation and decreased sulfhydryl content, antioxidant enzymes activities and nitrite levels, as well as total protein content in skeletal muscle of the offspring. Creatine kinase activity was reduced and urea and C-reactive protein levels were increased in serum of pups. These results were accompanied by reduced muscle mass. Our findings showed that maternal gestational hypermethioninaemia induced changes in oxidative/nitrative status in gastrocnemius skeletal muscle of the offspring. This may represent a mechanism which can contribute to the myopathies and loss of muscular mass that is found in some hypermethioninaemic patients. In addition, we believe that these results may be relevant as gestational hypermethioninaemia could cause damage to the skeletal muscle during intrauterine life.
Collapse
Affiliation(s)
- Bruna M. Schweinberger
- Laboratório de Neuroproteção e Doenças NeurometabólicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduação em Ciências Biológicas – Bioquímica. Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Elias Turcatel
- Laboratório de Neuroproteção e Doenças NeurometabólicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduação em Ciências Biológicas – Bioquímica. Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - André F. Rodrigues
- Laboratório de Neuroproteção e Doenças NeurometabólicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduação em Ciências Biológicas – Bioquímica. Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Angela T. S. Wyse
- Laboratório de Neuroproteção e Doenças NeurometabólicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduação em Ciências Biológicas – Bioquímica. Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| |
Collapse
|
19
|
The PERKs of damage-associated molecular patterns mediating cancer immunogenicity: From sensor to the plasma membrane and beyond. Semin Cancer Biol 2015; 33:74-85. [PMID: 25882379 DOI: 10.1016/j.semcancer.2015.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are emerging as key adaptation mechanisms in response to loss of proteostasis, with major cell autonomous and non-autonomous functions impacting cancer progression and therapeutic responses. In recent years, vital physiological roles of the ER in maintenance of proteostasis, Ca(2+) signaling and trafficking through the secretory pathway have emerged. Some of these functions have been shown to be decisive for mobilizing certain signals from injured/dying cancer cells in response to certain anticancer treatments, toward the plasma membrane and ultimately emit them into the extracellular environment, where they may act as danger signals. The spatiotemporally defined emission of these signals, better known as damage-associated molecular patterns (DAMPs), distinguishes this type of cancer cell death from physiological apoptosis, which is tolerogenic in nature, thereby enabling these dying cancer cells to alert the immune system and "re-activate" antitumor immunity. The emission of DAMPs, decisive for immunogenic cell death (ICD) and which include the ER chaperone calreticulin and ATP, is reliant on a danger signaling module induced by certain assorted anticancer treatments through oxidative-ER stress. The main focus of this review is to discuss the emerging role of ER-stress regulated pathways and processes in danger signaling thereby regulating the cancer cell-immune cell interface by the extracellular emission of DAMPs. In particular, we discuss signaling contexts existing upstream and around PERK, a major ER-stress sensor in ICD context, which have not been emphatically discussed in the context of antitumor immunity and ICD up until now. Finally, we briefly discuss the pros and cons of targeting PERK in the context of ICD.
Collapse
|
20
|
Brodskii VY, Sharova NP, Mal’chenko LA, Konchenko DS, Dubovaya TK, Zvezdina ND. Blockade of proteasome activity disturbs the rhythm of synthesis of the protein marker of direct cell-cell interactions. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Holecek M, Sispera L, Skalska H. Enhanced Glutamine Availability Exerts Different Effects on Protein and Amino Acid Metabolism in Skeletal Muscle From Healthy and Septic Rats. JPEN J Parenter Enteral Nutr 2014; 39:847-54. [DOI: 10.1177/0148607114537832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Milan Holecek
- Department of Physiology, Charles University Prague, Faculty of Medicine Hradec Kralove, Czech Republic
| | - Ludek Sispera
- Department of Physiology, Charles University Prague, Faculty of Medicine Hradec Kralove, Czech Republic
| | - Hana Skalska
- Department of Informatics and Quantitative Methods, Faculty of Informatics and Management, University Hradec Kralove, Czech Republic
| |
Collapse
|
22
|
Holecek M, Sispera L. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Amino Acids 2014; 46:1377-84. [PMID: 24609272 DOI: 10.1007/s00726-014-1701-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 12/31/2022]
Abstract
Characteristic feature of critical illness, such as trauma and sepsis, is muscle wasting associated with activated oxidation of branched-chain amino acids (valine, leucine, isoleucine) and enhanced release of glutamine (GLN) to the blood. GLN consumption in visceral tissues frequently exceeds its release from muscle resulting in GLN deficiency that may exert adverse effects on the course of the disease. In the present study, we investigated the effects of GLN depletion in extracellular fluid on GLN production and protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Cecal ligation and puncture (CLP) was used as a model of sepsis. After 24 h, soleus muscle (SOL, slow-twitch, red muscle) and extensor digitorum longus (EDL, fast-twitch, white muscle) were isolated and incubated in a medium containing 0.5 mM GLN or without GLN. L-[1-(14)C]leucine was used to estimate protein synthesis and leucine oxidation, 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. CLP increased GLN release from muscle, protein breakdown and leucine oxidation, and decreased protein synthesis. The effects were more pronounced in EDL. Alterations induced by laparotomy were similar to those observed in sepsis, but of a lower extent. GLN deficiency in medium enhanced GLN release and decreased intramuscular GLN concentration, decreased protein synthesis in muscles of intact and laparotomized rats, and enhanced leucine oxidation in SOL of intact and protein breakdown in SOL of laparotomized rats. It is concluded that (1) fast-twitch fibers are more sensitive to septic stimuli than slow-twitch fibers, (2) extracellular GLN deficiency may exert adverse effects on protein and amino acid metabolism in skeletal muscle, and (3) muscles of healthy and laparotomized animals are more sensitive to GLN deficiency than muscles of septic animals.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38, Hradec Kralove, Czech Republic,
| | | |
Collapse
|
23
|
Abstract
Muscle wasting is a serious complication of various clinical conditions that significantly worsens the prognosis of the illnesses. Clinically relevant models of muscle wasting are essential for understanding its pathogenesis and for selective preclinical testing of potential therapeutic agents. The data presented here indicate that muscle wasting has been well characterized in rat models of sepsis (endotoxaemia, and caecal ligation and puncture), in rat models of chronic renal failure (partial nephrectomy), in animal models of intensive care unit patients (corticosteroid treatment combined with peripheral denervation or with administration of neuromuscular blocking drugs) and in murine and rat models of cancer (tumour cell transplantation). There is a need to explore genetically engineered mouse models of cancer. The degree of protein degradation in skeletal muscle is not well characterized in animal models of liver cirrhosis, chronic heart failure and chronic obstructive pulmonary disease. The major difficulties with all models are standardization and high variation in disease progression and a lack of reflection of clinical reality in some of the models. The translation of the information obtained by using these models to clinical practice may be problematic.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
24
|
Bergantin LB, Figueiredo LB, Godinho RO. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes. J Appl Physiol (1985) 2011; 111:1710-8. [PMID: 21921242 DOI: 10.1152/japplphysiol.00586.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Div. of Cellular Pharmacology, Dept. of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio, 100, São Paulo, SP, Brazil
| | | | | |
Collapse
|
25
|
Jamart C, Raymackers JM, Li An G, Deldicque L, Francaux M. Prevention of muscle disuse atrophy by MG132 proteasome inhibitor. Muscle Nerve 2011; 43:708-16. [PMID: 21462205 DOI: 10.1002/mus.21949] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2010] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Our goal was to determine whether in vivo administration of the proteasome inhibitor MG132 can prevent muscle atrophy caused by hindlimb unloading (HU). METHODS Twenty-seven NMRI mice were assigned to a weight-bearing control, a 6-day HU, or a HU+MG132 (1 mg/kg/48 h) treatment group. RESULTS Gastrocnemius wasting was significantly less in HU+MG132 mice (-6.7 ± 2.0%) compared with HU animals (-12.6 ± 1.1%, P = 0.011). HU was also associated with an increased expression of MuRF-1 (P = 0.006), MAFbx (P = 0.001), and USP28 (P = 0.027) mRNA, whereas Nedd4, E3α, USP19, and UBP45 mRNA did not change significantly. Increases in MuRF-1, MAFbx, and USP28 mRNA were largely repressed after MG132 administration. β5 proteasome activity tended to increase in HU (+16.7 ± 6.1%, P = 0.086). Neither β1 and β2 proteasome activities nor ubiquitin-conjugated proteins were changed by HU. CONCLUSIONS Our results indicate that in vivo administration of MG132 partially prevents muscle atrophy associated with disuse and highlight an unexpected regulation of MG132 proteasome inhibitor on ubiquitin-ligases.
Collapse
Affiliation(s)
- Cecile Jamart
- Research Group in Muscle and Exercise Physiology, Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin 1, Louvain-la-Neuve B-1348, Belgium
| | | | | | | | | |
Collapse
|
26
|
Muthny T, Kovarik M, Sispera L, de Meijere A, Larionov OV, Tilser I, Holecek M. The effect of new proteasome inhibitors, belactosin A and C, on protein metabolism in isolated rat skeletal muscle. J Physiol Biochem 2009; 65:137-46. [PMID: 19886392 DOI: 10.1007/bf03179064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The proteasome inhibitors are used as research tools to study of the ATP-dependent ubiquitin-proteasome system. Some of them are at present undergoing clinical trials to be used as therapeutic agents for cancer or inflammation. These diseases are often accompanied by muscle wasting. We herein demonstrate findings about new proteasome inhibitors, belactosin A and C, and their direct effect on protein metabolism in rat skeletal muscle. M. soleus (SOL) and m. extensor digitorum longus (EDL) were dissected from both legs of male rats (40-60 g) and incubated in a buffer containing belactosin A or C (30 microM) or no inhibitor. The release of amino acids into the medium was estimated using high performance liquid chromatography to calculate total and myofibrillar proteolysis. Chymotrypsin-like activity (CTLA) of proteasome and cathepsin B, L activity were determined by fluorometric assay. Protein synthesis and leucine oxidation were detected using specific activity of L-[1-14C] leucine added to medium. Inhibited and control muscles from the same rat were compared using paired t-test. The results indicate that after incubation with both belactosin A and C total proteolysis and CTLA of proteasome decreased while cathepsin B, L activity did not change in both SOL and EDL. Leucine oxidation was significantly enhanced in SOL, protein synthesis decreased in EDL. Myofibrillar proteolysis was reduced in both muscles in the presence of belactosin A only. In summary, belactosin A and C affected basic parameters of protein metabolism in rat skeletal muscle. The response was both muscle- and belactosin-type-dependent.
Collapse
Affiliation(s)
- T Muthny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
27
|
Supinski GS, Vanags J, Callahan LA. Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2009; 296:L994-L1001. [PMID: 19376888 DOI: 10.1152/ajplung.90404.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infections produce severe respiratory muscle dysfunction. It is known that the proteasome proteolytic system is activated in skeletal muscle in sepsis, and it has been postulated that this degradative pathway is responsible for inducing skeletal muscle weakness and wasting. The objective of this study was to determine if administration of proteasomal inhibitors (MG132, epoxomicin, bortezomib) can prevent sepsis-induced diaphragm weakness. Rats were given either 1) saline (0.5 ml ip), 2) endotoxin (12 mg/kg ip), 3) endotoxin plus MG132 (2.5 mg/kg), 4) endotoxin plus epoxomicin (1 micromol/kg), or 5) endotoxin plus bortezomib (0.05 mg/kg). Animals were killed either 48 or 96 h after injections, and assessments were made of diaphragm proteolysis, force-frequency relationships, mass, protein content, and caspase activation. Endotoxin increased proteolysis (P <0.001). MG132, epoxomicin, and bortezomib each prevented the endotoxin-induced increase in proteolysis (P <0.01). Endotoxin induced severe reductions in diaphragm force generation by 48 h (P <0.01); none of the proteasomal inhibitors prevented loss of force. Endotoxin induced significant reductions in diaphragm mass and protein content by 96 h (P <0.01); neither MG132 nor epoxomicin prevented loss of mass or protein, but bortezomib attenuated the reduction in protein content (P <0.05). Endotoxin increased diaphragm caspase-3 activity (P <0.01); caspase-3 activity remained high when either MG132, epoxomicin, or bortezomib were given. These data suggest proteasomal inhibitors are not an adequate treatment to prevent endotoxin-induced diaphragmatic dysfunction.
Collapse
Affiliation(s)
- G S Supinski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0284, USA.
| | | | | |
Collapse
|
28
|
Muthny T, Kovarik M, Sispera L, Tilser I, Holecek M. Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation. Int J Exp Pathol 2008; 89:64-71. [PMID: 18197871 DOI: 10.1111/j.1365-2613.2007.00553.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of our study was to evaluate the differences in protein and amino acid metabolism after subcutaneous turpentine administration in the soleus muscle (SOL), predominantly composed of red fibres, and the extensor digitorum longus muscle (EDL) composed of white fibres. Young rats (40-60 g) were injected subcutaneously with 0.2 ml of turpentine oil/100 g body weight (inflammation) or with the same volume of saline solution (control). Twenty-four hours later SOL and EDL were dissected and incubated in modified Krebs-Heinseleit buffer to estimate total and myofibrillar proteolysis, chymotrypsin-like activity of proteasome (CHTLA), leucine oxidation, protein synthesis and amino acid release into the medium. The data obtained demonstrate that in intact rats, all parameters measured except protein synthesis are significantly higher in SOL than in EDL. In turpentine treated animals, CHTLA increased and protein synthesis decreased significantly more in EDL. Release of leucine was inhibited significantly more in SOL. We conclude that turpentine-induced inflammation affects more CHTLA, protein synthesis and leucine release in EDL compared to SOL.
Collapse
Affiliation(s)
- Tomas Muthny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic.
| | | | | | | | | |
Collapse
|
29
|
Lin Y, Stevens C, Hupp T. Identification of a dominant negative functional domain on DAPK-1 that degrades DAPK-1 protein and stimulates TNFR-1-mediated apoptosis. J Biol Chem 2007; 282:16792-802. [PMID: 17324927 DOI: 10.1074/jbc.m611559200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DAPK-1 is a stress-activated tumor suppressor protein that plays a role in both proapoptotic or antiapoptotic signal transduction pathways. To define mechanisms of DAPK-1 protein regulation, we have determined that DAPK-1 protein has a long half-life, and therefore its activity is primarily regulated at the protein level. Changes in DAPK-1 protein levels occur by a cathepsin B-dependent pathway, prompting us to evaluate whether cathepsin B plays positive or negative role in DAPK-1 function. The transfection of p55-TNFR-1 induced complex formation between DAPK-1 and cathepsin B. Depletion of cathepsin B protein using small interfering RNA stimulated TNFR-1 dependent apoptosis. The minimal binding region on DAPK-1 for cathepsin B was mapped to amino acids 836-947. The transfection of the DAPK-1-(836-947) miniprotein acted in a dominant negative manner inducing endogenous DAPK-1 protein degradation in a TNFR-1-dependent manner. These data suggest that DAPK-1 forms a multiprotein survival complex with cathepsin B countering the rate of TNFR-1-dependent apoptosis and highlights the importance of developing DAPK-1 inhibitors as agents to sensitize cells to stress-induced apoptosis.
Collapse
Affiliation(s)
- Yao Lin
- University of Edinburgh, CRUK p53 Signal Transduction Group, South Crewe Road, Edinburgh EH4 2XR, Scotland, United Kingdom
| | | | | |
Collapse
|
30
|
Supinski GS, Callahan LA. Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. J Appl Physiol (1985) 2007; 102:2056-63. [PMID: 17218425 DOI: 10.1152/japplphysiol.01138.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Loss of functional capacity of skeletal muscle is a major cause of morbidity in patients with a number of acute and chronic clinical disorders, including sepsis, chronic obstructive pulmonary disease, heart failure, uremia, and cancer. Weakness in these patients can manifest as either severe limb muscle weakness (even to the point of virtual paralysis), respiratory muscle weakness requiring mechanical ventilatory support, and/or some combination of these phenomena. While factors such as nutritional deficiency and disuse may contribute to the development of muscle weakness in these conditions, systemic inflammation may be the major factor producing skeletal muscle dysfunction in these disorders. Importantly, studies conducted over the past 15 years indicate that free radical species (superoxide, hydroxyl radicals, nitric oxide, peroxynitrite, and the free radical-derived product hydrogen peroxide) play an key role in modulating inflammation and/or infection-induced alterations in skeletal muscle function. Substantial evidence exists indicating that several free radical species can directly alter contractile protein function, and evidence suggests that free radicals also have important effects on sarcoplasmic reticulum function, on mitochondrial function, and on sarcolemmal integrity. Free radicals also modulate activation of several proteolytic pathways, including proteosomally mediated protein degradation and, at least theoretically, may also influence pathways of protein synthesis. As a result, free radicals appear to play an important role in regulating a number of downstream processes that collectively act to impair muscle function and lead to reductions in muscle strength and mass in inflammatory conditions.
Collapse
Affiliation(s)
- Gerald S Supinski
- Chandler Medical Center, University of Kentucky, Lexington, KY 40536, USA.
| | | |
Collapse
|
31
|
Safránek R, Ishibashi N, Oka Y, Ozasa H, Shirouzu K, Holecek M. Modulation of inflammatory response in sepsis by proteasome inhibition. Int J Exp Pathol 2006; 87:369-72. [PMID: 16965564 PMCID: PMC2517382 DOI: 10.1111/j.1365-2613.2006.00490.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Ubiquitin-proteasome system has recently been shown to be involved in the regulation of cytokine expression. We tested the hypothesis of whether the in vivo administration of proteasome inhibitor MG-132 can modulate cytokine response and mortality in sepsis. Sepsis was induced in mice by caecal ligation and puncture (CLP). Animals were divided into four groups: control, CLP, CLP and 1 microg MG-132/g of b.w. intraperitoneally, and CLP and 10 microg MG-132/g of b.w. Plasma levels of interleukin (IL)-1, tumour necrosis factor-alpha (TNF-alpha, IL-6 and IL-10 were determined by ELISA 6 h after the induction of sepsis. CLP induced significant increase in plasma levels of all measured cytokines. MG-132 treatment resulted in lower increase in IL-1, TNF-alpha and IL-10 levels. IL-6 was not significantly affected. A mortality study revealed prolonged survival in MG-132 treated mice. We conclude that MG-132 treatment decreases inflammatory response and prolongs survival in the CLP model of sepsis.
Collapse
Affiliation(s)
- Roman Safránek
- Department of Surgery, School of Medicine, Kurume University, Kurume, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Holecek M, Muthny T, Kovarik M, Sispera L. Proteasome inhibitor MG-132 enhances whole-body protein turnover in rat. Biochem Biophys Res Commun 2006; 345:38-42. [PMID: 16674919 DOI: 10.1016/j.bbrc.2006.04.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 04/13/2006] [Indexed: 11/18/2022]
Abstract
Proteasome inhibitors are novel therapeutic agents which may be used in treatment of cancer and other severe disorders. We studied the effect of proteasome inhibitor MG-132 on protein and amino acid metabolism. In MG-132-treated rats we observed a significant decrease in proteasome-dependent proteolysis in skeletal muscle and an increase in whole-body protein turnover (i.e., increase in whole-body proteolysis and protein synthesis). Proteasome-dependent proteolysis was activated in the liver and kidney, protein synthesis increased in skeletal muscle, liver, and kidney. Insignificant changes were found in jejunum and colon. MG-132 administration induced a significant increase in concentration of several amino acids in blood plasma and their decrease in jejunum and colon. We conclude that administration of MG-132 affects both protein anabolic and protein catabolic pathways via the direct effect on proteasome-dependent proteolysis and indirect effect on proteolysis and protein synthesis via unidentified mediators.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Charles University, Medical Faculty, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
33
|
Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 2005; 19:857-64. [PMID: 16140033 DOI: 10.1016/j.molcel.2005.08.027] [Citation(s) in RCA: 680] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 11/23/2022]
Abstract
LSD1 is a recently identified human lysine (K)-specific histone demethylase. LSD1 is associated with HDAC1/2; CoREST, a SANT domain-containing corepressor; and BHC80, a PHD domain-containing protein, among others. We show that CoREST endows LSD1 with the ability to demethylate nucleosomal substrates and that it protects LSD1 from proteasomal degradation in vivo. We find hyperacetylated nucleosomes less susceptible to CoREST/LSD1-mediated demethylation, suggesting that hypoacetylated nucleosomes may be the preferred physiological substrates. This raises the possibility that histone deacetylases and LSD1 may collaborate to generate a repressive chromatin environment. Consistent with this model, TSA treatment results in derepression of LSD1 target genes. While CoREST positively regulates LSD1 function, BHC80 inhibits CoREST/LSD1-mediated demethylation in vitro and may therefore confer negative regulation. Taken together, these findings suggest that LSD1-mediated histone demethylation is regulated dynamically in vivo. This is expected to have profound effects on gene expression under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Yu-Jiang Shi
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|