1
|
Mack KL, Talbott HE, Griffin MF, Parker JBL, Guardino NJ, Spielman AF, Davitt MF, Mascharak S, Downer M, Morgan A, Valencia C, Akras D, Berger MJ, Wan DC, Fraser HB, Longaker MT. Allele-specific expression reveals genetic drivers of tissue regeneration in mice. Cell Stem Cell 2023; 30:1368-1381.e6. [PMID: 37714154 PMCID: PMC10592051 DOI: 10.1016/j.stem.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
In adult mammals, skin wounds typically heal by scarring rather than through regeneration. In contrast, "super-healer" Murphy Roths Large (MRL) mice have the unusual ability to regenerate ear punch wounds; however, the molecular basis for this regeneration remains elusive. Here, in hybrid crosses between MRL and non-regenerating mice, we used allele-specific gene expression to identify cis-regulatory variation associated with ear regeneration. Analyzing three major cell populations (immune, fibroblast, and endothelial), we found that genes with cis-regulatory differences specifically in fibroblasts were associated with wound-healing pathways and also co-localized with quantitative trait loci for ear wound-healing. Ectopic treatment with one of these proteins, complement factor H (CFH), accelerated wound repair and induced regeneration in typically fibrotic wounds. Through single-cell RNA sequencing (RNA-seq), we observed that CFH treatment dramatically reduced immune cell recruitment to wounds, suggesting a potential mechanism for CFH's effect. Overall, our results provide insights into the molecular drivers of regeneration with potential clinical implications.
Collapse
Affiliation(s)
- Katya L Mack
- Stanford University, Department of Biology, Stanford, CA, USA
| | - Heather E Talbott
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Michelle F Griffin
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Jennifer B L Parker
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Nicholas J Guardino
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Amanda F Spielman
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Michael F Davitt
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Shamik Mascharak
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Mauricio Downer
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Annah Morgan
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Caleb Valencia
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Deena Akras
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Mark J Berger
- Stanford University, Department of Computer Science, Stanford, CA 94305, USA
| | - Derrick C Wan
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Hunter B Fraser
- Stanford University, Department of Biology, Stanford, CA, USA.
| | - Michael T Longaker
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Mascharak S, desJardins-Park HE, Davitt MF, Guardino NJ, Gurtner GC, Wan DC, Longaker MT. Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration. Adv Wound Care (New Rochelle) 2022; 11:479-495. [PMID: 34465219 PMCID: PMC9245727 DOI: 10.1089/wound.2021.0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Significance: Skin scarring poses a major biomedical burden for hundreds of millions of patients annually. However, this burden could be mitigated by therapies that promote wound regeneration, with full recovery of skin's normal adnexa, matrix ultrastructure, and mechanical strength. Recent Advances: The observation of wound regeneration in several mouse models suggests a retained capacity for postnatal mammalian skin to regenerate under the right conditions. Mechanical forces are a major contributor to skin fibrosis and a prime target for devices and therapeutics that could promote skin regeneration. Critical Issues: Wound-induced hair neogenesis, Acomys "spiny" mice, Murphy Roths Large mice, and mice treated with mechanotransduction inhibitors all show various degrees of wound regeneration. Comparison of regenerating wounds in these models against scarring wounds reveals differences in extracellular matrix interactions and in mechanosensitive activation of key signaling pathways, including Wnt, Sonic hedgehog, focal adhesion kinase, and Yes-associated protein. The advent of single-cell "omics" technologies has deepened this understanding and revealed that regeneration may recapitulate development in certain contexts, although it is unknown whether these mechanisms are relevant to healing in tight-skinned animals such as humans. Future Directions: While early findings in mice are promising, comparison across model systems is needed to resolve conflicting mechanisms and to identify conserved master regulators of skin regeneration. There also remains a dire need for studies on mechanomodulation of wounds in large, tight-skinned animals, such as red Duroc pigs, which better approximate human wound healing.
Collapse
Affiliation(s)
- Shamik Mascharak
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Heather E. desJardins-Park
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Michael F. Davitt
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Nicholas J. Guardino
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Hou Y, He YX, Zhang JH, Wang SR, Zhang Y. Effects of bone morphogenetic proteins on epithelial repair. Exp Biol Med (Maywood) 2021; 246:2269-2277. [PMID: 34233522 DOI: 10.1177/15353702211028193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epithelial tissue has important functions such as protection, secretion, and sensation. Epithelial damage is involved in various pathological processes. Bone morphogenetic proteins (BMPs) are a class of growth factors with multiple functions. They play important roles in epithelial cells, including in differentiation, proliferation, and migration during the repair of the epithelium. This article reviews the functions and mechanisms of the most profoundly studied BMPs in the process of epithelial damage repair and their clinical significance.
Collapse
Affiliation(s)
- Yu Hou
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China.,Norman Bethune Health Science Center of Jilin University, Changchun 130021, China
| | - Yu-Xi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| | - Jia-Hao Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China.,Norman Bethune Health Science Center of Jilin University, Changchun 130021, China
| | - Shu-Rong Wang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
4
|
Paredes J, Pekmezian A, Andarawis-Puri N. MRL/MpJ tendon matrix-derived therapeutic promotes improved healing outcomes in scar-mediated canonical tendon healing. J Orthop Res 2021; 39:1548-1560. [PMID: 32441819 PMCID: PMC7680300 DOI: 10.1002/jor.24754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 02/04/2023]
Abstract
Tendons are commonly injured connective soft tissues characterized by an ineffective healing response that results in scar formation and loss of functional and structural properties. Naturally occurring extracellular matrix (ECM) constructs have become a promising therapeutic for tendon injuries due to their capacity to harness a complex biological environment. However, in tendon, the ECM properties needed for improved healing remain unknown. Interestingly, we have determined that the improved tendon healing response of the scarless-healing MRL/MpJ is driven by intrinsic properties with therapeutic potential to modulate the proliferative and morphological behavior of cells derived from a canonically healing model in vitro. We hypothesize that a distinct composition of ECM deposited during the early healing response of the MRL/MpJ will harnesses the biological cues to stimulate improved structure and function in vivo of canonically healing B6 mice. Accordingly, MRL/MpJ and B6 patellar tendons were injured via midsubstance punch defects. Healing tendons were isolated after 3 or 7 days and encapsulated in PEG-4MAL hydrogels to develop ECM-derived therapeutic constructs. Constructs were then introduced into B6 mice as a treatment following full thickness midsubstance-punch injuries. Treatment with ECM-derived constructs from MRL/MpJ tendons after 7-days post-injury (M7) resulted in improved matrix alignment, tissue stiffness, decreased collagen III content and improved cell morphology in B6 tendons after 6 weeks post-injury. Furthermore, proteomic analysis showed that M7 contained a unique compositional profile rich in glycoproteins, thereby elucidating a valuable naturally-derived platform for the treatment of tendon injuries. Overall this work highlights promising targets for future therapeutic development and tissue engineering applications.
Collapse
Affiliation(s)
- Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Ashley Pekmezian
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York,Hospital for Special Surgery, New York, New York
| |
Collapse
|
5
|
Penaloza CG, Cruz M, Germain G, Jabeen S, Javdan M, Lockshin RA, Zakeri Z. Higher sensitivity of female cells to ethanol: methylation of DNA lowers Cyp2e1, generating more ROS. Cell Commun Signal 2020; 18:111. [PMID: 32653010 PMCID: PMC7353761 DOI: 10.1186/s12964-020-00616-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
Background Cells taken from mouse embryos before sex differentiation respond to insults according to their chromosomal sex, a difference traceable to differential methylation. We evaluated the mechanism for this difference in the controlled situation of their response to ethanol. Methods We evaluated the expression of mRNA for alcohol dehydrogenase (ADH), aldehyde dehyrogenases (ALDH), and a cytochrome P450 isoenzyme (Cyp2e1) in male and female mice, comparing the expressions to toxicity under several experimental conditions evaluating redox and other states. Results Females are more sensitive to ethanol. Disulfiram, which inhibits alcohol dehydrogenase (ADH), increases cell death in males, eliminating the sex dimorphism. The expressions ADH Class 1 to 4 and ALDH Class 1 and 2 do not differ by sex. However, females express approximately 8X more message for Cyp2e1, an enzyme in the non-canonical pathway. Female cells produce approximately 15% more ROS (reactive oxygen species) than male cells, but male cells contain approximately double the concentration of GSH, a ROS scavenger. Scavenging ROS with N-acetyl cysteine reduces cell death and eliminates sex dimorphism. Finally, since many of the differences in gene expression derive from methylation of DNA, we exposed cells to the methyltransferase inhibitor 5-aza- 2-deoxycytidine; blocking methylation eliminates both the difference in expression of Cyp2e1 and cell death. Conclusion We conclude that the sex-differential cell death caused by ethanol derives from sex dimorphic methylation of Cyp2e1 gene, resulting in generation of more ROS.
Collapse
Affiliation(s)
- Carlos G Penaloza
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA.,Present Address: Chancellor's Office, Leeward Community College, Pearl City, HI, USA
| | - Mayra Cruz
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA
| | - Gabrielle Germain
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA
| | - Sidra Jabeen
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA
| | - Mohammad Javdan
- Queensborough Community College, City College of New York, Bayside, NY, USA
| | - Richard A Lockshin
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA.
| |
Collapse
|
6
|
Paredes J, Marvin JC, Vaughn B, Andarawis-Puri N. Innate tissue properties drive improved tendon healing in MRL/MpJ and harness cues that enhance behavior of canonical healing cells. FASEB J 2020; 34:8341-8356. [PMID: 32350938 DOI: 10.1096/fj.201902825rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Development of tendon therapeutics has been hindered by the lack of informative adult mammalian models of regeneration. Murphy Roth's Large (MRL/MpJ) mice exhibit improved healing following acute tendon injuries, but the driver of this regenerative healing response remains unknown. The tissue-specific attributes of this healing response, despite a shared systemic environment within the mouse, support the hypothesis of a tissue-driven mechanism for scarless healing. Our objective was to investigate the potential of MRL/MpJ tendon extracellular matrix (ECM)-derived coatings to regulate scar-mediated healing. We found that deviations in the composition of key structural proteins within MRL/MpJ vs C57Bl/6 tendons occur synergistically to mediate the improvements in structure and mechanics following a 1-mm midsubstance injury. Improvement in mechanical properties of healing MRL/MpJ vs C57Bl/6 tendons that were isolated from systemic contributions via organ culture, highlighted the innate tendon environment as the driver of scarless healing. Finally, we established that decellularized coatings derived from early-deposited MRL/MpJ tendon provisional extracellular matrix (provisional-ECM), can modulate canonical healing B6 tendon cell behavior by inducing morphological changes and increasing proliferation in vitro. This study supports that the unique compositional cues in MRL/MpJ provisional-ECM have the therapeutic capability to motivate canonically healing cells toward improved behavior; enhancing our ability to develop effective therapeutics.
Collapse
Affiliation(s)
- Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jason C Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brenna Vaughn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
7
|
Abstract
Female/male ratios of autoimmune diseases range from 10: 1 to 1: 3, with similar severity between the sexes. Men and women respond similarly to the infection and to vaccination, arguing against intrinsic sex differences in immune response. In autoimmune-like illnesses caused by environmental agents sex discrepancy is explained by differences in exposure. Endogenous hormones could cause sex discrepancy if their effect is a threshold off-on switch rather than quantitatively variable. X-inactivation and imprinting could cause sex discrepancy. Other possibilities include chronobiologic differences and pregnancy and menstruation biologies in which men differ from women.
Collapse
Affiliation(s)
- M D Lockshin
- Barbara Volcker Center for Women and Rheumatic Disease Joan and Sanford Weill Medical College of Cornell University, Hospital for Special Surgery, New York, NY 10021, USA.
| |
Collapse
|
8
|
Kwiatkowski A, Piatkowski M, Chen M, Kan L, Meng Q, Fan H, Osman AHK, Liu Z, Ledford B, He JQ. Superior angiogenesis facilitates digit regrowth in MRL/MpJ mice compared to C57BL/6 mice. Biochem Biophys Res Commun 2016; 473:907-912. [DOI: 10.1016/j.bbrc.2016.03.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
|
9
|
Leung TH, Snyder ER, Liu Y, Wang J, Kim SK. A cellular, molecular, and pharmacological basis for appendage regeneration in mice. Genes Dev 2016; 29:2097-107. [PMID: 26494786 PMCID: PMC4617975 DOI: 10.1101/gad.267724.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1-Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine.
Collapse
Affiliation(s)
- Thomas H Leung
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Emily R Snyder
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yinghua Liu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Oncology Division, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
10
|
Guenther CA, Wang Z, Li E, Tran MC, Logan CY, Nusse R, Pantalena-Filho L, Yang GP, Kingsley DM. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury. Bone 2015; 77:31-41. [PMID: 25886903 PMCID: PMC4447581 DOI: 10.1016/j.bone.2015.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 12/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals.
Collapse
Affiliation(s)
- Catherine A Guenther
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhen Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Li
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Misha C Tran
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Catriona Y Logan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Roel Nusse
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Luiz Pantalena-Filho
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - George P Yang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Heber-Katz E. From Immunity and Vaccines to Mammalian Regeneration. J Infect Dis 2015; 212 Suppl 1:S52-8. [PMID: 26116734 DOI: 10.1093/infdis/jiu637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our current understanding of major histocompatibility complex (MHC)-mediated antigen presentation in self and nonself immune recognition was derived from immunological studies of autoimmunity and virus-host interactions, respectively. The trimolecular complex of the MHC molecule, antigen, and T-cell receptor accounts for the phenomena of immunodominance and MHC degeneracy in both types of responses and constrains vaccine development. Out of such considerations, we developed a simple peptide vaccine construct that obviates immunodominance, resulting in a broadly protective T-cell response in the absence of antibody. In the course of autoimmunity studies, we identified the MRL mouse strain as a mammalian model of amphibian-like regeneration. A significant level of DNA damage in the cells from this mouse pointed to the role of the cell cycle checkpoint gene CDKN1a, or p21(cip1/waf1). The MRL mouse has highly reduced levels of this molecule, and a genetic knockout of this single gene in otherwise nonregenerating strains led to an MRL-type regenerative response, indicating that the ability to regenerate has not been lost during evolution.
Collapse
|
12
|
Canhamero T, Garcia LV, De Franco M. Acute Inflammation Loci Are Involved in Wound Healing in the Mouse Ear Punch Model. Adv Wound Care (New Rochelle) 2014; 3:582-591. [PMID: 25207201 PMCID: PMC4152789 DOI: 10.1089/wound.2013.0494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/18/2013] [Indexed: 11/12/2022] Open
Abstract
Significance: Molecular biology techniques are being used to aid in determining the mechanisms responsible for tissue repair without scar formation. Wound healing is genetically determined, but there have been few studies that examine the genes responsible for tissue regeneration in mammals. Research using genetic mapping is extremely important for understanding the molecular mechanisms involved in the different phases of tissue regeneration. This process is complex, but an early inflammatory phase appears to influence lesion closure, and the present study demonstrates that acute inflammation loci influence tissue regeneration in mice in a positive manner. Recent Advances: Mapping studies of quantitative trait loci (QTL) have been undertaken in recent years to examine candidate genes that participate in the regeneration phenotype. Our laboratory has identified inflammation modifier QTL for wound healing. Mouse lines selected for the maximum (AIRmax) or minimum (AIRmin) acute inflammatory reactivity (AIR) have been used to study not only the tissue repair but also the impact of the genetic control of inflammation on susceptibility to autoimmune, neoplasic, and infectious diseases. Murphy Roths Large and AIRmax mice are exclusive in their complete epimorphic regeneration, although middle-aged inbred mice may also be capable of healing. Critical Issues: Inflammatory reactions have traditionally been described in the literature as negative factors in the process of skin injury closure. Inflammation is exacerbated due to the early release of mediators or the intense release of factors that cause cell proliferation after injury. The initial release of these factors as well as the clean-up of the lesion microenvironment are both crucial for following events. In addition, the activation and repression of some genes related to the regeneration phenotype may modulate lesion closure, demonstrating the significance of genetic studies to better understand the mechanisms involved in the initiation of wound repair processes. Future Directions: The pleiotropic effects of the QTL are important in the identification of the genes responsible for tissue repair processes, especially when combined with global gene expression research. Microarray analysis complements the biological information obtained in QTL mapping, making this tool essential for gene identification. This approach will allow the investigation of future targets for therapeutic wound healing treatments.
Collapse
Affiliation(s)
- Tatiane Canhamero
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, São Paulo, Brazil
| | - Ludmila Valino Garcia
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, São Paulo, Brazil
| | - Marcelo De Franco
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Morales K, Rowehl L, Smith J, Cole R, Liu F, Beyer B, Herron BJ. Mapping Novel Subcutaneous Angiogenesis Quantitative Trait Loci in [B6×MRL]F2 Mice. Adv Wound Care (New Rochelle) 2014; 3:563-572. [PMID: 25207199 DOI: 10.1089/wound.2013.0501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/30/2013] [Indexed: 12/14/2022] Open
Abstract
Objective: MRL/MpJ mice are known for enhanced healing, but mechanistic details or how specific aspects of wounding (e.g., angiogenesis) contribute to healing are unknown. While previous studies investigated the systemic effects of immunity in MRL/MpJ healing, few have focused on tissue-intrinsic effects. Approach:Ex vivo skin biopsies from MRL/MpJ and C57BL/6J mice were cultured in ex vivo conditions that favor endothelial cell growth to compare their angiogenic potential. We localized enhanced angiogenesis quantitative trait loci (QTL) in an F2 intercross. We then performed an expression analysis in cultured skin biopsies from MRL/MpJ and C57BL/6J mice to determine the pathways that are associated with the capacity for differential growth. Results: MRL/MpJ biopsies have a two- to threefold greater growth potential than C57BL/6J mice, supporting the hypothesis that angiogenesis may contribute to enhanced healing in MRL/MpJ skin. We mapped two QTLs that are unique from previously mapped MRL/MpJ wound healing QTLs and detected interactions between wound healing QTLs and loci in this cross. Additionally, we found that pathways previously implicated in MRL/MpJ healing are also enriched in skin biopsies. Innovation: We have developed a novel approach to determine how specific aspects of tissue development contribute to wound healing that will ultimately lead to the discovery of unidentified genes that contribute to enhanced healing. Conclusion: We have shown that, consistent with previous studies following wound closure in MRL/MpJ mice, vessel growth during healing is also influenced by genetic background. Our ongoing work will identify the genetic factors that should be useful biomarkers or as therapeutic targets for enhanced wound healing.
Collapse
Affiliation(s)
- Krista Morales
- Wadsworth Center, NYS Department of Health, Albany, New York
| | - Leahana Rowehl
- Forensic Biology, State University of New York at Albany, Albany, New York
| | - Jason Smith
- Wadsworth Center, NYS Department of Health, Albany, New York
| | - Rich Cole
- Wadsworth Center, NYS Department of Health, Albany, New York
- School of Public Health, State University of New York at Albany, Albany, New York
| | - Fang Liu
- School of Public Health, State University of New York at Albany, Albany, New York
| | - Barb Beyer
- Wadsworth Center, NYS Department of Health, Albany, New York
| | - Bruce J. Herron
- Wadsworth Center, NYS Department of Health, Albany, New York
- School of Public Health, State University of New York at Albany, Albany, New York
| |
Collapse
|
14
|
Gourevitch D, Kossenkov AV, Zhang Y, Clark L, Chang C, Showe LC, Heber-Katz E. Inflammation and Its Correlates in Regenerative Wound Healing: An Alternate Perspective. Adv Wound Care (New Rochelle) 2014; 3:592-603. [PMID: 25207202 DOI: 10.1089/wound.2014.0528] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Abstract
Objective: The wound healing response may be viewed as partially overlapping sets of two physiological processes, regeneration and wound repair with the former overrepresented in some lower species such as newts and the latter more typical of mammals. A robust and quantitative model of regenerative healing has been described in Murphy Roths Large (MRL) mice in which through-and-through ear hole wounds in the ear pinna leads to scarless healing and replacement of all tissue through blastema formation and including cartilage. Since these mice are naturally autoimmune and display many aspects of an enhanced inflammatory response, we chose to examine the inflammatory status during regenerative ear hole closure and observed that inflammation has a clear positive effect on regenerative healing. Approach: The inflammatory gene expression patterns (Illumina microarrays) of early healing ear tissue from regenerative MRL and nonregenerative C57BL/6 (B6) strains are presented along with a survey of innate inflammatory cells found in this tissue type pre and postinjury. The role of inflammation on healing is tested using a COX-2 inhibitor. Innovation and Conclusion: We conclude that (1) enhanced inflammation is consistent with, and probably necessary, for a full regenerative response and (2) the inflammatory gene expression and cell distribution patterns suggest a novel mast cell population with markers found in both immature and mature mast cells that may be a key component of regeneration.
Collapse
Affiliation(s)
| | | | - Yong Zhang
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Lise Clark
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Celia Chang
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
15
|
Cheverud JM, Lawson HA, Bouckaert K, Kossenkov AV, Showe LC, Cort L, Blankenhorn EP, Bedelbaeva K, Gourevitch D, Zhang Y, Heber-Katz E. Fine-mapping quantitative trait loci affecting murine external ear tissue regeneration in the LG/J by SM/J advanced intercross line. Heredity (Edinb) 2014; 112:508-18. [PMID: 24569637 PMCID: PMC3998788 DOI: 10.1038/hdy.2013.133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/08/2022] Open
Abstract
External ear hole closure in LG/J mice represents a model of regenerative response. It is accompanied by the formation of a blastema-like structure and the re-growth of multiple tissues, including cartilage. The ability to regenerate tissue is heritable. An F34 advanced intercross line of mice (Wustl:LG,SM-G34) was generated to identify genomic loci involved in ear hole closure over a 30-day healing period. We mapped 19 quantitative trait loci (QTL) for ear hole closure. Individual gene effects are relatively small (0.08 mm), and most loci have co-dominant effects with phenotypically intermediate heterozygotes. QTL support regions were limited to a median size of 2 Mb containing a median of 19 genes. Positional candidate genes were evaluated using differential transcript expression between LG/J and SM/J healing tissue, function analysis and bioinformatic analysis of single-nucleotide polymorphisms in and around positional candidate genes of interest. Analysis of the set of 34 positional candidate genes and those displaying expression differences revealed over-representation of genes involved in cell cycle regulation/DNA damage, cell migration and adhesion, developmentally related genes and metabolism. This indicates that the healing phenotype in LG/J mice involves multiple physiological mechanisms.
Collapse
Affiliation(s)
- J M Cheverud
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - H A Lawson
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - K Bouckaert
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - A V Kossenkov
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - L C Showe
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - L Cort
- Department of Microbiology and Immunology,
Drexel University College of Medicine, Philadelphia,
PA, USA
| | - E P Blankenhorn
- Department of Microbiology and Immunology,
Drexel University College of Medicine, Philadelphia,
PA, USA
| | - K Bedelbaeva
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - D Gourevitch
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - Y Zhang
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - E Heber-Katz
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
16
|
Perez CJ, Dumas A, Vallières L, Guénet JL, Benavides F. Several classical mouse inbred strains, including DBA/2, NOD/Lt, FVB/N, and SJL/J, carry a putative loss-of-function allele of Gpr84. J Hered 2013; 104:565-71. [PMID: 23616478 DOI: 10.1093/jhered/est023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptor 84 (GPR84) is a 7-transmembrane protein expressed on myeloid cells that can bind to medium-chain free fatty acids in vitro. Here, we report the discovery of a 2-bp frameshift deletion in the second exon of the Gpr84 gene in several classical mouse inbred strains. This deletion generates a premature stop codon predicted to result in a truncated protein lacking the transmembrane domains 4-7. We sequenced Gpr84 exon 2 from 58 strains representing different groups in the mouse family tree and found that 14 strains are homozygous for the deletion. Some of these strains are DBA/1J, DBA/2J, FVB/NJ, LG/J, MRL/MpJ, NOD/LtJ, and SJL/J. However, the deletion was not found in any of the wild-derived inbred strains analyzed. Haplotype analysis suggested that the deletion originates from a unique mutation event that occurred more than 100 years ago, preceding the development of the first inbred strain (DBA), from a Mus musculus domesticus source. As GPR84 ostensibly plays a role in the biology of myeloid cells, it could be relevant 1) to consider the existence of this Gpr84 nonsense mutation in several mouse strains when choosing a mouse model to study immune processes and 2) to consider reevaluating data obtained using such strains.
Collapse
Affiliation(s)
- Carlos J Perez
- e Department of Molecular Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Smithville, TX, USA
| | | | | | | | | |
Collapse
|
17
|
Cheng CH, Leferovich J, Zhang XM, Bedelbaeva K, Gourevitch D, Hatcher CJ, Basson CT, Heber-Katz E, Marx KA. Keratin gene expression profiles after digit amputation in C57BL/6 vs. regenerative MRL mice imply an early regenerative keratinocyte activated-like state. Physiol Genomics 2013; 45:409-21. [PMID: 23512742 DOI: 10.1152/physiolgenomics.00142.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse strains C57BL/6 (B6) and MRL were studied by whole mouse genome chip microarray analyses of RNA isolated from amputation sites at different times pre- and postamputation at the midsecond phalange of the middle digit. Many keratin genes were highly differentially expressed. All keratin genes were placed into three temporal response classes determined by injury/preinjury ratios. One class, containing only Krt6 and Krt16, were uniquely expressed relative to the other two classes and exhibited different temporal responses in MRL vs. B6. Immunohistochemical staining for Krt6 and Krt16 in tissue sections, including normal digit, flank skin, and small intestine, and from normal and injured ear pinna tissue exhibited staining differences in B6 (low) and MRL (high) that were consistent with the microarray results. Krt10 staining showed no injury-induced differences, consistent with microarray expression. We analyzed Krt6 and Krt16 gene association networks and observed in uninjured tissue several genes with higher expression levels in MRL, but not B6, that were associated with the keratinocyte activated state: Krt6, Krt16, S100a8, S100a9, and Il1b; these data suggest that keratinocytes in the MRL strain, but not in B6, are in an activated state prior to wounding. These expression levels decreased in MRL at all times postwounding but rose in the B6, peaking at day 3. Other keratins significantly expressed in the normal basal keratinocyte state showed no significant strain differences. These data suggest that normal MRL skin is in a keratinocyte activated state, which may provide it with superior responses to wounding.
Collapse
Affiliation(s)
- Chia-Ho Cheng
- Center for Intelligent Biomaterials, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rai MF, Hashimoto S, Johnson EE, Janiszak KL, Fitzgerald J, Heber-Katz E, Cheverud JM, Sandell LJ. Heritability of articular cartilage regeneration and its association with ear wound healing in mice. ARTHRITIS AND RHEUMATISM 2012; 64:2300-10. [PMID: 22275233 PMCID: PMC3360138 DOI: 10.1002/art.34396] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Emerging evidence suggests that genetic components contribute significantly to cartilage degeneration in osteoarthritis pathophysiology, but little information is available on the genetics of cartilage regeneration. Therefore, this study was undertaken to investigate cartilage regeneration in genetic murine models using common inbred strains and a set of recombinant inbred (RI) lines generated from LG/J (healer of ear wounds) and SM/J (nonhealer) inbred mouse strains. METHODS An acute full-thickness cartilage injury was introduced in the trochlear groove of 8-week-old mice (n=265) through microsurgery. Mouse knee joints were sagittally sectioned and stained with toluidine blue to evaluate regeneration. For the ear wound phenotype, a bilateral 2-mm through-and-through puncture was created in 6-week-old mice (n=229), and healing outcomes were measured after 30 days. Broad-sense heritability and genetic correlations were calculated for both phenotypes. RESULTS Time-course analysis of the RI mouse lines showed no significant regeneration until 16 weeks after surgery; at that time, the strains could be segregated into 3 categories: good, intermediate, and poor healers. Analysis of heritability (H2) showed that both cartilage regeneration (H2=26%; P=0.006) and ear wound closure (H2=53%; P<0.00001) were significantly heritable. The genetic correlations between the two healing phenotypes for common inbred mouse strains (r=0.92) and RI mouse lines (r=0.86) were found to be extremely high. CONCLUSION Our findings indicate that articular cartilage regeneration in mice is heritable, the differences between the mouse lines are due to genetic differences, and a strong genetic correlation between the two phenotypes exists, indicating that they plausibly share a common genetic basis. We therefore surmise that LG/J by SM/J intercross mice can be used to dissect the genetic basis of variation in cartilage regeneration.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Shingo Hashimoto
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Eric E. Johnson
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Kara L. Janiszak
- Anatomy and Neurobiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Jamie Fitzgerald
- Department of Orthopaedics and Rehabilitation, Mail code OP31, Oregon Health and Science University, Portland, OR, 97239 United States
| | - Ellen Heber-Katz
- Cellular and Molecular Oncogenesis and Gene Expression, Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104 United States
| | - James M. Cheverud
- Anatomy and Neurobiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
- Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave. MS 8233, St. Louis MO 63110 United States
| |
Collapse
|
19
|
Hodes GE, Brookshire BR, Hill-Smith TE, Teegarden SL, Berton O, Lucki I. Strain differences in the effects of chronic corticosterone exposure in the hippocampus. Neuroscience 2012; 222:269-80. [PMID: 22735575 DOI: 10.1016/j.neuroscience.2012.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/18/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Stress hormones are thought to be involved in the etiology of depression, in part, because animal models show they cause morphological damage to the brain, an effect that can be reversed by chronic antidepressant treatment. The current study examined two mouse strains selected for naturalistic variation of tissue regeneration after injury for resistance to the effects of chronic corticosterone (CORT) exposure on cell proliferation and neurotrophin mobilization. The wound healer MRL/MpJ and control C57BL/6J mice were implanted subcutaneously with pellets that released CORT for 7 days. MRL/MpJ mice were resistant to reductions of hippocampal cell proliferation by chronic exposure to CORT when compared to vulnerable C57BL/6J mice. Chronic CORT exposure also reduced protein levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of C57BL/6J but not MRL/MpJ mice. CORT pellet exposure increased circulating levels of CORT in the plasma of both strains in a dose-dependent manner although MRL/MpJ mice may have larger changes from baseline. The strains did not differ in circulating levels of corticosterone binding globulin (CBG). There were also no strain differences in CORT levels in the hippocampus, nor did CORT exposure alter glucocorticoid receptor or mineralocorticoid receptor expression in a strain-dependent manner. Strain differences were found in the N-methyl-D-aspartate (NMDA) receptor, and BDNF I and IV promoters. Strain and CORT exposure interacted to alter tropomyosine-receptor-kinase B (TrkB) expression and this may be a potential mechanism protecting MRL/MpJ mice. In addition, differences in the inflammatory response of matrix metalloproteinases (MMPs) may also contribute to these strain differences in resistance to the deleterious effects of CORT to the brain.
Collapse
Affiliation(s)
- G E Hodes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr /J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr /J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Thuret S, Thallmair M, Horky LL, Gage FH. Enhanced functional recovery in MRL/MpJ mice after spinal cord dorsal hemisection. PLoS One 2012; 7:e30904. [PMID: 22348029 PMCID: PMC3278405 DOI: 10.1371/journal.pone.0030904] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/29/2011] [Indexed: 11/20/2022] Open
Abstract
Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice.
Collapse
Affiliation(s)
- Sandrine Thuret
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (ST); (FHG)
| | - Michaela Thallmair
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Laura L. Horky
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (ST); (FHG)
| |
Collapse
|
22
|
Canhamero T, Reines B, Peters LC, Borrego A, Carneiro PS, Albuquerque LL, Cabrera WH, Ribeiro OG, Jensen JR, Starobinas N, Ibañez OM, De Franco M. Distinct early inflammatory events during ear tissue regeneration in mice selected for high inflammation bearing Slc11a1 R and S alleles. Inflammation 2012; 34:303-13. [PMID: 20665098 DOI: 10.1007/s10753-010-9235-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High inflammatory AIRmax mice homozygous for Slc11a1 R and S alleles were produced. AIRmax(SS) mice showed faster ear tissue regeneration than AIRmax(RR) mice, suggesting that the S allele favored tissue restoration. Here, we investigated the gene expression profiles and the inflammatory reactions of AIRmax(RR) and AIRmax(SS) mice during the initial phase of ear tissue regeneration. We observed superior levels of analysis of wound myeloperoxidase and edema in AIRmax(SS) mice, although similar cell influx was verified in both lines. Of the genes, 794 were up- and 674 down-regulated in AIRmax(RR), while 735 genes were found to be up- and 1616 down-regulated in AIRmax(SS) mice 48 h after punch. Both mouse lines showed significant over-represented genes related to cell proliferation; however AIRmax(SS) displayed up-regulation of inflammatory response genes. Quantitative PCR experiments showed higher expressions of Tgfb1, Dap12 and Trem1 genes in AIRmax(SS) mice. These results indicate that Slc11a1 gene modulated the early inflammatory events of ear tissue regeneration.
Collapse
Affiliation(s)
- Tatiane Canhamero
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cheverud JM, Lawson HA, Funk R, Zhou J, Blankenhorn EP, Heber-Katz E. Healing quantitative trait loci in a combined cross analysis using related mouse strain crosses. Heredity (Edinb) 2011; 108:441-6. [PMID: 22126848 DOI: 10.1038/hdy.2011.94] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Inbred mouse strains MRL and LG share the ability to fully heal ear hole punches with the full range of appropriate tissues without scarring. They also share a common ancestry, MRL being formed from a multi-strain cross with two final backcrosses to LG before being inbred by brother-sister mating. Many gene-mapping studies for healing ability have been performed using these two strains, resulting in the location of about 20 quantitative trait loci (QTLs). Here, we combine two of these crosses (N = 638), MRL/lpr × C57BL/6NTac and LG/J × SM/J, in a single combined cross analysis to increase the mapping power, decrease QTL support intervals, separate multiple QTLs and establish allelic states at individual QTL. The combined cross analysis located 11 QTLs, 6 affecting only one cross (5 LG × SM and 1 MRL × B6) and 5 affecting both crosses, approximately the number of common QTLs expected given strain SNP similarity. Amongst the five QTLs mapped in both crosses, three had significantly different genetic effects, additive in one cross and over or underdominant in the other. It is possible that allelic states at these three loci are different in SM and B6 because they lead to differences in dominance interactions with the LG and MRL alleles. QTL support intervals are 40% smaller in the combined cross analysis than in either of the single crosses. Combined cross analysis was successful in enhancing the interpretation of earlier QTL results for these strains.
Collapse
Affiliation(s)
- J M Cheverud
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Regenerative phenotype in mice with a point mutation in transforming growth factor beta type I receptor (TGFBR1). Proc Natl Acad Sci U S A 2011; 108:14560-5. [PMID: 21841138 DOI: 10.1073/pnas.1111056108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regeneration of peripheral differentiated tissue in mammals is rare, and regulators of this process are largely unknown. We carried out a forward genetic screen in mice using N-ethyl-N-nitrosourea mutagenesis to identify genetic mutations that affect regenerative healing in vivo. More than 400 pedigrees were screened for closure of a through-and-through punch wound in the mouse ear. This led to the identification of a single pedigree with a heritable, fast, and regenerative wound-healing phenotype. Within 5 wk after ear-punch, a threefold decrease in the diameter of the wound was observed in the mutant mice compared with the wild-type mice. At 22 wk, new cartilage, hair follicles, and sebaceous glands were observed in the newly generated tissue. This trait was mapped to a point mutation in a receptor for TGF-β, TGFBR1. Mouse embryonic fibroblasts from the affected mice had increased expression of a subset of TGF-β target genes, suggesting that the mutation caused partial activation of the receptor. Further, bone marrow stromal cells from the mutant mice more readily differentiated to chondrogenic precursors, providing a plausible explanation for the enhanced development of cartilage islands in the regenerated ears. This mutant mouse strain provides a unique model to further explore regeneration in mammals and, in particular, the role of TGFBR1 in chondrogenesis and regenerative wound healing.
Collapse
|
25
|
Abstract
The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation.
Collapse
|
26
|
Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mamm Genome 2009; 20:720-33. [PMID: 19760323 DOI: 10.1007/s00335-009-9216-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022]
Abstract
MRL mice display unusual healing properties. When MRL ear pinnae are hole punched, the holes close completely without scarring, with regrowth of cartilage and reappearance of both hair follicles and sebaceous glands. Studies using (MRL/lpr x C57BL/6)F(2) and backcross mice first showed that this phenomenon was genetically determined and that multiple loci contributed to this quantitative trait. The lpr mutation itself, however, was not one of them. In the present study we examined the genetic basis of healing in the Large (LG/J) mouse strain, a parent of the MRL mouse and a strain that shows the same healing phenotype. LG/J mice were crossed with Small (SM/J) mice and the F(2) population was scored for healing and their genotypes determined at more than 200 polymorphic markers. As we previously observed for MRL and (MRL x B6)F(2) mice, the wound-healing phenotype was sexually dimorphic, with female mice healing more quickly and more completely than male mice. We found quantitative trait loci (QTLs) on chromosomes (Chrs) 9, 10, 11, and 15. The heal QTLs on Chrs 11 and 15 were linked to differential healing primarily in male animals, whereas QTLs on Chrs 9 and 10 were not sexually dimorphic. A comparison of loci identified in previous crosses with those in the present report using LG/J x SM/J showed that loci on Chrs 9, 11, and 15 colocalized with those seen in previous MRL crosses, whereas the locus on Chr 10 was not seen before and is contributed by SM/J.
Collapse
|
27
|
Thuret S, Toni N, Aigner S, Yeo GW, Gage FH. Hippocampus-dependent learning is associated with adult neurogenesis in MRL/MpJ mice. Hippocampus 2009; 19:658-69. [PMID: 19140178 DOI: 10.1002/hipo.20550] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The hippocampus is involved in declarative memory and produces new neurons throughout adulthood. Numerous experiments have been aimed at testing the possibility that adult neurogenesis is required for learning and memory. However, progress has been encumbered by the fact that abating adult neurogenesis usually affects other biological processes, confounding the interpretation of such experiments. In an effort to circumvent this problem, we used a reverse approach to test the role of neurogenesis in hippocampus-dependent learning, exploiting the low levels of adult neurogenesis in the MRL/MpJ strain of mice compared with other mouse strains. We observed that adult MRL/MpJ mice produce 75% fewer new neurons in the dentate gyrus than age-matched C57BL/6 mice. Learning-induced synaptic remodeling, spatial learning, and visual recognition learning were reduced in MRL/MpJ mice compared with C57BL/6 mice. When MRL/MpJ mice were allowed unlimited access to running wheels, neurogenesis along with spatial learning and visual recognition learning were increased to levels comparable to those in running C57BL/6 mice. Together, these results suggest that adult neurogenesis is correlated with spatial learning and visual recognition learning, possibly by modulating morphological plasticity in the dentate gyrus.
Collapse
Affiliation(s)
- Sandrine Thuret
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Buhimschi CS, Sora N, Zhao G, Buhimschi IA. Genetic background affects the biomechanical behavior of the postpartum mouse cervix. Am J Obstet Gynecol 2009; 200:434.e1-7. [PMID: 19200937 DOI: 10.1016/j.ajog.2008.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/30/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We hypothesized that the genetic makeup has an impact on the functional behavior of the uterine cervix. Therefore, we compared the biomechanical properties of uterine cervix in postpartum in 2 strains of mice that differ in their underlying regenerative collagen remodeling characteristics: MRL/MpJ+/+ (MRL: high regenerative repair) and C57BL/6 (C57: low regenerative high fibrotic repair). STUDY DESIGN Cervical tensile proprieties were assessed on day 3, 15, and 60 postpartum in MRL (n = 14) and C57 (n = 13) mice (4-5 animals at each time point). Stress-strain curves were generated using Shimadzu EZ-test instrumentation. Cervical tissue was stretched by 0.42 mm/min until rupture. Parameters of viscoelasticity including slope (a measure of stiffness), yield point (YP; moment when tissue changes its proprieties from elastic to plastic), and break point (BP; measure of tissue strength) were recorded and analyzed blindly between strains. Data were normalized to the weight of the tissue and analyzed by 2-way analysis of variance. Histological and collagen birefringence evaluation of the uterine cervix (MRL: n = 4; C57: n = 4) was performed 5 days after delivery. RESULTS At 3 and 15 days postpartum, cervices of MRL mice were significantly more compliant than those of C57 (P < .001). MRL mice displayed a significant increase in stiffness from day 3 to day 60 (slope, median +/- SEM: day 3: 3.1 +/- 0.5 vs day 15: 20.3 +/- 4.9 vs day 60: 33.1 +/- 3.5 N/mm per gram; P < .001). In contrast, the stiffness of C57 cervices reached maximum on day 15 (slope day 3: 14.1 +/- 4.3 vs day 15: 40.0 +/- 6.5 N/mm per gram; P = .02) and rested at a similar level on day 60 (day 60: 26.1 +/- 7.0 N/mm per gram; day 60 vs day 15: P = .937). More force was required to reach YP in C57 on day 3 (C57: 72.5 +/- 14.7 vs MRL: 19.9 +/- 1.6 N/g; P < .001) but not on either day 15 (C57: 156.1 +/- 27.5 vs MRL: 109.2 +/- 26.0 N/g; P = .120) or on day 60 (C57: 143.4 +/- 26.5 vs MRL: 164.5 +/- 18.7 N/g; P = .412). There was a significant decrease in BP in both strains on both day 15 and day 60 compared with day 3 postpartum (P = .856 for strain, P = .008 for day). MRL mice displayed significantly less cervical collagen birefringence compared with C57 control (P < .001) but increased proteoglycan staining and increased water content. CONCLUSION We provide evidence that genetic makeup may have an impact on cervical tissue remodeling and function. There are significant differences in postpartum cervical stiffness and compliance that vary with the regenerative collagen remodeling phenotype.
Collapse
|
29
|
Naviaux RK, Le TP, Bedelbaeva K, Leferovich J, Gourevitch D, Sachadyn P, Zhang XM, Clark L, Heber-Katz E. Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab 2009; 96:133-44. [PMID: 19131261 PMCID: PMC3646557 DOI: 10.1016/j.ymgme.2008.11.164] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 12/11/2022]
Abstract
The MRL mouse is an inbred laboratory strain that was derived by selective breeding in 1960 from the rapidly growing LG/J (Large) strain. MRL mice grow to nearly twice the size of other commonly used mouse strains, display uncommonly robust healing and regeneration properties, and express later onset autoimmune traits similar to Systemic Lupus Erythematosis. The regeneration trait (heal) in the MRL mouse maps to 14-20 quantitative trait loci and the autoimmune traits map to 5-8 loci. In this paper we report the metabolic and biochemical features that characterize the adult MRL mouse and distinguish it from C57BL/6 control animals. We found that adult MRL mice have retained a number of features of embryonic metabolism that are normally lost during development in other strains. These include an emphasis on aerobic glycolytic energy metabolism, increased glutamate oxidation, and a reduced capacity for fatty acid oxidation. MRL tissues, including the heart, liver, and regenerating ear hole margins, showed considerable mitochondrial genetic and physiologic reserve, decreased mitochondrial transmembrane potential (DeltaPsi(m)), decreased reactive oxygen species (ROS), and decreased oxidative phosphorylation, yet increased mitochondrial DNA and protein content. The discovery of embryonic metabolic features led us to look for cells that express markers of embryonic stem cells. We found that the adult MRL mouse has retained populations of cells that express the stem cell markers Nanog, Islet-1, and Sox2. These are present in the heart at baseline and highly induced after myocardial injury. The retention of embryonic features of metabolism in adulthood is rare in mammals. The MRL mouse provides a unique experimental window into the relationship between metabolism, stem cell biology, and regeneration.
Collapse
Affiliation(s)
- Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine and Pediatrics University of California, San Diego, CA
- Communicating Authors: RKN, , phone: 619-543-2904, fax: 619-543-7868; EH-K, , phone: 215-898-3710, fax: 215-898-3868
| | - Thuy P. Le
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine and Pediatrics University of California, San Diego, CA
| | | | | | | | | | | | | | - Ellen Heber-Katz
- The Wistar Institute, Philadelphia, PA
- Communicating Authors: RKN, , phone: 619-543-2904, fax: 619-543-7868; EH-K, , phone: 215-898-3710, fax: 215-898-3868
| |
Collapse
|
30
|
Fitzgerald J, Rich C, Burkhardt D, Allen J, Herzka AS, Little CB. Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthritis Cartilage 2008; 16:1319-26. [PMID: 18455447 DOI: 10.1016/j.joca.2008.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 03/24/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE A major clinical problem in Orthopaedics is the repair of traumatic articular cartilage lesions. The MRL/MpJ strain of mice has the remarkable ability to regenerate ear hole punch wounds seamlessly including the scarless replacement of multiple tissues. The objective of this study was to assess whether articular cartilage defects repair or regenerate in the MRL/MpJ 'healer' strain of mice. METHOD Full thickness and partial thickness lesions were introduced into trochlear groove articular cartilage of MRL/MpJ and C57Bl/6 mice, a control strain that does not undergo ear hole regeneration. The wound sites were assessed 6 weeks and 12 weeks post-surgery using a histological scoring scheme and immunohistochemistry for markers of articular cartilage including proteoglycan, collagen II and collagen VI. RESULTS The partial thickness lesions did not repair in either strain. However, at both 6 weeks and 12 weeks timepoints the MRL/MpJ mice had a superior healing response of full thickness lesions with abundant chondrocytes and an extracellular matrix rich in proteoglycan, collagen II and collagen VI at the wound site. At the 12 week timepoint the enhanced cartilage healing was restricted to male MRL/MpJ mice. In contrast, the C57Bl/6 control strain produced an extracellular matrix at the wound site that, overall, had significantly less matrix proteoglycan and collagen II. CONCLUSIONS Male MRL/MpJ mice appear to possess an intrinsic ability to 'regenerate' articular cartilage. Understanding the biochemical and genetic basis for articular cartilage regeneration may open up new treatment options for traumatic articular cartilage defects.
Collapse
Affiliation(s)
- J Fitzgerald
- Oregon Health and Science University, Department of Orthopaedics and Rehabilitation, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Tucker B, Klassen H, Yang L, Chen DF, Young MJ. Elevated MMP Expression in the MRL Mouse Retina Creates a Permissive Environment for Retinal Regeneration. Invest Ophthalmol Vis Sci 2008; 49:1686-95. [PMID: 18385092 DOI: 10.1167/iovs.07-1058] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The MRL/MpJ (healer) mouse is an established model for autoimmune studies and was recently identified as having a profound ability to undergo scarless regeneration of the tissue in the ear and heart. This regenerative capacity has been linked to elevated matrix metalloproteinase (MMP)-2 and -9 expression, giving this mouse the ability to degrade and remove inhibitory basement membrane molecules. Although elevated MMP expression has been reported in somatic tissues in this strain, little is known about MMP expression and the response to injury in the MRL/MpJ mouse retina. The purpose of this study was to investigate whether increased MMP expression and subsequent decreased inhibitory extracellular matrix molecule deposition in the MRL/MpJ mouse retina produces a permissive regenerative environment. METHODS Experiments were performed using 3- to 4-week-old MRL/MpJ, retinal degenerative (rd1), and C57BL/6 (wild-type) mice. Western blotting, oligo-microarray, and immunohistochemical analyses were used to determine the level and location of MMP and extracellular matrix (ECM) protein expression. Retinal responses to injury were modeled by retinal detachment in vivo and in retinal explantation in vitro. The capacity of the retinal environment to support photoreceptor cell migration, integration, or regeneration was analyzed using hematoxylin-eosin, immunohistochemical staining, and cell counting. RESULTS Compared with C57BL/6J animals, MRL/MpJ mice exhibit elevated levels of MMP-2, -9, and -14 and decreased levels of the inhibitory proteins neurocan and CD44 within the retina. Although similar increases in MMP-2, -9, and CD44s (CD44 degradation product) were observed in the rd1 retina, elevated levels of the inhibitory ECM molecules (neurocan and CD44) remained. Thus, the MRL retinal environment, which expresses lower levels of inhibitory ECM molecules after injury, was more conducive to regeneration and enhanced photoreceptor integration in vitro than C57BL/6J or rd1 controls. CONCLUSIONS The MRL mouse retina shows elevated MMP expression and decreased levels of scar-related inhibitory molecules, which leads to a retinal environment that is more permissive for neural regeneration and cell integration after in vitro retinal explantation.
Collapse
Affiliation(s)
- Budd Tucker
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
New scientific knowledge offers fresh opportunities for regenerative medicine and tissue repair. Among various clinical options, multipotent embryonic stem cells (ESC) prepared from inner cell masses of rabbit blastocysts have been tested over many years. More recently, stem cells have been isolated from individual tissues and from umbilical cord blood. These methods seemingly offer similar rates of repair and avoid ethical complexities arising from the need for human embryos to prepare ESC. Different methods of regenerating tissues have now emerged, based on the well-known forms of organ regeneration in urodeles such as salamanders. These methods depend on the formation of a blastema, and recent studies on MRL mice have revealed that they possess similar methods of repair as in salamanders. There is also some evidence showing that this form of repair is also active in human fetuses but not in adults. Detailed knowledge of these various forms of tissue repair is now urgently needed in order to assess the benefits of each form of treatment. These matters are discussed at the end of this review where various investigations clarify the benefits and drawbacks of these varied approaches to tissue repair.
Collapse
Affiliation(s)
- R G Edwards
- Reproductive BioMedicine Online, Park Lane, Dry Drayton, Cambridge CB3 8DB, UK.
| |
Collapse
|
33
|
Campos PP, Bakhle YS, Andrade SP. Mechanisms of wound healing responses in lupus-prone New Zealand White mouse strain. Wound Repair Regen 2008; 16:416-24. [DOI: 10.1111/j.1524-475x.2008.00381.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Yu H, Baylink DJ, Masinde GL, Li R, Nguyen B, Davidson HM, Xu S, Mohan S. Mouse chromosome 9 quantitative trait loci for soft tissue regeneration: congenic analysis and fine mapping. Wound Repair Regen 2008; 15:922-7. [PMID: 18028142 DOI: 10.1111/j.1524-475x.2007.00317.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development of gene therapies for wound healing will depend on the identification of the genes involved in wound healing and tissue regeneration. Previous quantitative trait loci (QTL) studies in mice using the ear punch model have shown that major QTL exist on chromosome (Chr) 9 for soft tissue regeneration. In this study, we have developed a congenic line that contains the Chr 9 QTL chromosomal region from super healer MRL/MpJ in the genomic background of poor-healing SJL/J. The phenotypic effect of this QTL was confirmed in male mice, where the congenic line has shown significant healing improvement over SJL. Fine mapping of the Chr 9 QTL region with 23 markers at an average distance of 4.2 Mb using a total of 1,564 MRL/MpJ x SJL/J F(2) mice revealed the presence of at least three QTL peaks, implying that three separate loci may contribute to the phenotypic effect of this QTL. Based on the 2-LOD intervals, the total QTL region was confined to a combined length of no more than 28.2 Mb. Application of a Bayesian shrinkage estimation indicated that a major locus was located in a region of just 1.3 Mb.
Collapse
Affiliation(s)
- Hongrun Yu
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California 92357, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Quest for the cardiovascular holy grail: mammalian myocardial regeneration. Cardiovasc Pathol 2008; 17:1-5. [DOI: 10.1016/j.carpath.2007.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 05/04/2007] [Indexed: 12/21/2022] Open
|
36
|
Abstract
We have previously shown that MRL/MpJ mice have a capacity for regeneration instead of scar formation following an ear punch wound. Understanding the differences that occur between scar-free regeneration or repair with scarring will have great impact upon advances in skin tissue engineering. A key question that remains unanswered in the MRL/MpJ mouse model is whether regeneration was restricted to the ear or whether it extended to the skin. A histological analysis was conducted up to 4 months post-wounding, not only with 2-mm punch wounds to the ear but also to the skin on the backs of the same animals. MRL/MpJ mouse ear wounds regenerate faster than control strains, with enhanced blastema formation, a markedly thickened tip epithelium and reduced scarring. Interestingly, in the excisional back wounds, none of these regenerative features was observed and both the C57BL/6 control and MRL/MpJ mice healed with scarring. This review gives an insight into how this regenerative capacity may be due to evolutionary processes as well as ear anatomy. The ear is thin and surrounded on both sides by epithelia, and the dorsal skin is devoid of cartilage and under greater tensile strain. Analysis of apoptosis during ear regeneration is also discussed, assessing the role and expression of various members of the Bcl-2 family of proteins. Ongoing studies are focusing on de novo cartilage development in the regenerating ear, as well as understanding the role of downstream signalling cascades in the process. Identification of such signals could lead to their manipulation and use in a novel tissue-engineered skin substitute with scar-free integration.
Collapse
Affiliation(s)
- Anthony D Metcalfe
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester, UK.
| | | | | | | |
Collapse
|
37
|
De Franco M, Carneiro PDS, Peters LC, Vorraro F, Borrego A, Ribeiro OG, Starobinas N, Cabrera WK, Ibañez OM. Slc11a1 (Nramp1) alleles interact with acute inflammation loci to modulate wound-healing traits in mice. Mamm Genome 2007; 18:263-9. [PMID: 17486412 DOI: 10.1007/s00335-007-9012-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 03/02/2007] [Indexed: 11/30/2022]
Abstract
Lines of mice were obtained by selective breeding for maximum (AIRmax) or minimum (AIRmin) acute inflammation. They present distinct neutrophil influx and show frequency disequilibrium of the solute carrier family 11a member 1 (Slc11a1) alleles. This gene is involved in ion transport at the endosomes within macrophages and neutrophils, interfering in their activation. Homozygous AIRmax and AIRmin sublines for the Slc11a1 gene were produced to examine the interaction of this gene with the acute inflammatory loci. The present work investigated wound-healing traits in AIRmax and AIRmin mice, in F(1) and F(2) intercrosses, and in Slc11a1 sublines. Two-millimeter ear punches were made in the mice and hole closure was measured during 40 days. AIRmax mice demonstrated significant tissue repair while AIRmin mice did not. Significant differences between the responses of male and female mice were also observed. Wound-healing traits demonstrated a correlation with neutrophil influx in F(2) populations. AIRmax( SS )showed higher ear-wound closure than AIRmax( RR ) mice, suggesting that the Slc11a1 S allele favored ear tissue repair. QTL analysis has detected two inflammatory loci modulating ear wound healing on chromosomes 1 and 14. These results suggest the involvement of the acute inflammation modifier QTL in the wound-healing phenotype.
Collapse
Affiliation(s)
- Marcelo De Franco
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Many, but not all, autoimmune diseases primarily affect women. In humans, severity of illness does not differ between men and women. Men and women respond similarly to infection and vaccination, which suggests that the intrinsic differences in immune response between the sexes do not account for differences in disease frequency. In autoimmune-like illnesses caused by recognized environmental agents, sex discrepancy is usually explained by differences in exposure. Endogenous hormones are not a likely explanation for sex discrepancy; hormones could have an effect if the effect is a threshold rather than quantitative. X and Y chromosomal differences have not been studied in depth. Other possibilities to explain sex discrepancy include chronobiologic difference and various other biologies, such and pregnancy and menstruation, in which men differ from women.
Collapse
Affiliation(s)
- Michael D Lockshin
- Barbara Volcker Center for Women and Rheumatic Disease, Mary Kirkland Center for Lupus Research, Joan and Sanford Weill Medical College of Cornell University, Hospital for Special Surgery, New York, NY 10021, USA.
| |
Collapse
|
39
|
Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L. Conjecture: Can continuous regeneration lead to immortality? Studies in the MRL mouse. Rejuvenation Res 2006; 9:3-9. [PMID: 16608389 DOI: 10.1089/rej.2006.9.3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A particular mouse strain, the MRL mouse, has been shown to have unique healing properties that show normal replacement of tissue without scarring. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivaling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. We propose this mouse as a model for continuous regeneration with possible life-extending properties. We will use the classical "immortal" organism, the hydra, for comparison and examine those key phenotypes that contribute to their immortality as they are expressed in the MRL mouse versus control mouse strains. The phenotypes to be examined include the rate of proliferation and the rate of cell death, which leads to a continual turnover in cells without an increase in mass.
Collapse
|
40
|
Yu H, Mohan S, Masinde GL, Baylink DJ. Mapping the dominant wound healing and soft tissue regeneration QTL in MRL x CAST. Mamm Genome 2005; 16:918-24. [PMID: 16341671 DOI: 10.1007/s00335-005-0077-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/10/2005] [Indexed: 01/18/2023]
Abstract
We have used a mouse ear punch model and the QTL (quantitative trait loci) mapping technique to identify genes that are responsible for soft tissue regeneration. In the early studies, we have identified several QTL and have shown that the inheritance of ear healing was additive in one cross (MRL x SJL), and recessive in another cross (DBA x 129). Because CAST mice are genetically distinct and have a different genetic background, CAST would facilitate the identification of common and novel QTL when crossed with common inbred lines. We made a cross between super healer MRL and poor healer CAST and collected ear punch phenotype and marker genotype data from F(2). Ear punch healing exhibited a dominant mode of inheritance in this cross. There were three main QTL on Chromosomes 4, 9, and 17, and two suggestive QTL on Chromosomes 1 (new) and 7. Taken together, these QTL accounted for about 29% of total F2 variance of MRL x CAST. Compared with another study using the same cross, we found a totally different set of QTL. Two QTL interactions were identified by a full QTL model: Chromosomes 4 x 17 and 9 x 17; the latter reached to a statistical level at p < 0.05. These interactions explained about 4% of the F2 phenotypic variance. We conclude that soft tissue regeneration is controlled by multiple genes and locus vs. locus interactions.
Collapse
Affiliation(s)
- Hongrun Yu
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California 92357, USA
| | | | | | | |
Collapse
|
41
|
Bedelbaeva K, Gourevitch D, Clark L, Chen P, Leferovich JM, Heber-Katz E. The MRL mouse heart healing response shows donor dominance in allogeneic fetal liver chimeric mice. CLONING AND STEM CELLS 2005; 6:352-63. [PMID: 15671663 DOI: 10.1089/clo.2004.6.352] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously demonstrated that after a severe cryoinjury to the right ventricle of the heart, adult MRL mice display structural and functional recovery with myocardial tissue replacement resembling that seen in amphibians. The control non-regenerating adult C57BL/6 (B6) mouse shows a predominant scar response. In the present study, radiation chimeras reconstituted with fetal liver cells from either healer MRL or nonhealer B6 mice were generated to test for a transfer of phenotype. Allogeneic MRL fetal liver cells were injected into x-irradiated (9 Gy) B6 mice and B6 fetal liver cells were injected into x-irradiated MRL mice. In these allogeneic chimeras, the healing response to cardiac cryoinjury was predominantly of the donor phenotype. Thus, MRL fetal liver cells transferred the healing phenotype to the B6 nonhealer with the appearance of Y-chromosome positive, donor-derived cardiomyocytes in the injury site and MRL-like healing with little scar. Similarly, B6 fetal liver cells transferred the nonhealing phenotype to the MRL with little cardiomyocyte growth and an acellular B6-like scar. These results are in contrast to the ear hole closure response which was of the recipient phenotype. We conclude that, in the case of the heart, fetal liver-derived stem cells regulate regenerative healing.
Collapse
|
42
|
Lockshin MD. Sex Differences in Autoimmune Disease. HANDBOOK OF SYSTEMIC AUTOIMMUNE DISEASES 2005. [DOI: 10.1016/s1571-5078(05)04002-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Hampton DW, Seitz A, Chen P, Heber-Katz E, Fawcett JW. Altered CNS response to injury in the MRL/MpJ mouse. Neuroscience 2004; 127:821-32. [PMID: 15312895 DOI: 10.1016/j.neuroscience.2004.05.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2004] [Indexed: 11/22/2022]
Abstract
The MRL/MpJ mouse has a greatly enhanced healing response and an absence of scarring compared with other mouse strains. Following lesions to the CNS mammals show a scarring response known as reactive gliosis, and this CNS scar tissue blocks regeneration of cut axons. We have therefore compared reactive gliosis in the MRL/MpJ mouse and the Swiss Webster mouse, which exhibits normal scarring in the periphery. The lesion model was a stab lesion to the cortex, in which reactive gliosis has previously been quantified. Axon regeneration was examined following a cut lesion to the dopaminergic projection from the substantia nigra to the striatum used in previous regeneration experiments. In the MRL/MpJ following the lesion compared with Swiss Webster mice there was greater cell loss around the lesion followed by greater and more widespread and more prolonged cellular proliferation. Early after the lesion there was a greater loss of glial fibrillary acidic protein (GFAP)-positive astrocytes around the injury site in the MRL/MpJ, and an enhancement and prolongation of the microglial inflammatory response. This was accompanied by greater and more widespread blood-brain barrier leakage following injury. RNA levels for the matrix metalloproteinases (MMP)-2 and MMP-9 as well as for the thrombin receptors PAR-1 and PAR-4 were also greater at the MRL/MpJ injury site. All of these differences were transient and by 14 days post-injury there were no differences observed between MRL/MpJ and control mice. No axonal regeneration was observed following axotomy to the nigrostriatal pathway of the MRL/MpJ or the Swiss Webster mice at any time point.
Collapse
Affiliation(s)
- D W Hampton
- ICORD, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.
| | | | | | | | | |
Collapse
|