1
|
Silva AFE, Antoniolli HDRM, Zefa E, Valente VLDS, Deprá M. Phylomitogenomics of two Neotropical species of long-legged crickets Endecous Saussure, 1878 (Orthoptera: Phalangopsidae). Genet Mol Biol 2024; 46:e20230144. [PMID: 38648091 PMCID: PMC11034622 DOI: 10.1590/1678-4685-gmb-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/28/2024] [Indexed: 04/25/2024] Open
Abstract
Mitochondrial genomes have provided significant insights into the evolution of several insects. A typical mitogenome contains 37 genes, and variations in gene order can indicate evolutionary relationships between species. In this study, we have assembled the first complete mitogenomes of Endecous chape and E. onthophagus and analyzed the phylogenetic implications for the Gryllidea infraorder. We performed DNA extractions and genome sequencing for both Endecous species. Subsequently, we searched for raw data in the Sequence Read Archive (SRA) in NCBI. Using the SRA data, we assembled the partial mitogenome of Dianemobius nigrofasciatus and annotated the protein-coding genes (PCGs) for nine species. Phylogenomic relationships were reconstructed using Maximum Likelihood (ML) and Bayesian Inference (BI), utilizing the PCGs from 49 Gryllidea species. The mitogenome lengths of E. chape and E. onthophagus are 16,266 bp and 16,023 bp, respectively, while D. nigrofasciatus has a length of 15,359 bp. Our results indicate that species within the infraorder exhibit four types of gene order arrangements that align with their phylogenetic relationships. Both phylogenomic trees displayed strong support, and the ML corroborated with the literature. Gryllidea species have significantly contributed to various fields, and studying their mitogenomes can provide valuable insights into this infraorder evolution.
Collapse
Affiliation(s)
- Anelise Fernandes e Silva
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Henrique da Rocha Moreira Antoniolli
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Edison Zefa
- Universidade Federal de Pelotas, Departamento de Zoologia, Ecologia e Genética, Programa de Pós-Graduação em Biodiversidade Animal, Capão do Leão, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Zhang C, Mao B, Wang H, Dai L, Huang Y, Chen Z, Huang J. The Complete Mitogenomes of Three Grasshopper Species with Special Notes on the Phylogenetic Positions of Some Related Genera. INSECTS 2023; 14:85. [PMID: 36662013 PMCID: PMC9865218 DOI: 10.3390/insects14010085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Clarifying phylogenetic position and reconstructing robust phylogeny of groups using various evidences are an eternal theme for taxonomy and systematics. In this study, the complete mitogenomes of Longzhouacris mirabilis, Ranacris albicornis, and Conophyma zhaosuensis were sequenced using next-generation sequencing (NGS), and the characteristics of the mitogenomes are presented briefly. The mitogenomes of the three species are all circular molecules with total lengths of 16,164 bp, 15,720 bp, and 16,190 bp, respectively. The gene structures and orders, as well as the characteristics of the mitogenomes, are similar to those of other published mitogenomes in Caelifera. The phylogeny of the main subfamilies of Acrididae with prosternal process was reconstructed using a selected dataset of mitogenome sequences under maximum likelihood (ML) and Bayesian inference (BI) frameworks. The results showed that the genus Emeiacris consistently fell into the subfamily Melanoplinae rather than Oxyinae, and the genus Choroedocus had the closest relationship with Shirackiacris of the subfamily Eyprepocnemidinae in both phylogenetic trees deduced from mitogenome protein coding genes (PCGs). This finding is entirely consistent with the morphological characters, which indicate that Emeiacris belongs to Melanoplinae and Choroedocus belongs to Eyprepocnemidinae. In addition, the genera Conophymacris and Xiangelilacris, as well as Ranacris and Menglacris, are two pairs of the closest relatives, but their phylogenetic positions need further study to clarify.
Collapse
Affiliation(s)
- Chulin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha 410004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Benyong Mao
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Hanqiang Wang
- Shanghai Entomological Museum, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Dai
- Shanghai Entomological Museum, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Zhilin Chen
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541004, China
| | - Jianhua Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha 410004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Patra BC, Sarkar BK, Banerjee S, Banerjee K, Lee SS. Understanding the molecular evolution of tiger diversity through DNA barcoding marker ND4 and NADH dehydrogenase complex using computational biology. Genes Genomics 2021; 43:759-773. [PMID: 33884571 DOI: 10.1007/s13258-021-01089-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Currently, Tigers (the top predator of an ecosystem) are on the list of endangered species. Thus the need is to understand the tiger's population genomics to design their conservation strategies. OBJECTIVE We analyzed the molecular evolution of tiger diversity using NADH dehydrogenase subunit 4 (ND4), a significant electron transport chain component. METHODS We have analyzed nucleotide composition and distribution pattern of ND genes, molecular evolution, evolutionary conservation pattern and conserved blocks of NADH, phylogenomics of ND4, and estimating species divergence, etc., using different bioinformatics tools and software, and MATLAB programming and computing environment. RESULTS The nucleotide composition and distribution pattern of ND genes in the tiger genome demonstrated an increase in the number of adenine (A) and a lower trend of A+T content in some place of the distribution analysis. However, the observed distributions were not significant (P > 0.05). Evolutionary conservation analysis showed three highly align blocks (186 to 198, 406 to 416, and 527 to 545). On mapping the molecular evolution of ND4 among model species (n = 30), we observed its presence in a broader range of species. ND4 based molecular evolution of tiger diversity and time divergence for a tiger (20 different other species) shows that genus Panthera originated more or less at a similar time. CONCLUSIONS The nucleotide composition and nucleotide distribution pattern of tiger ND genes showed the evolutionary pattern and origin of tiger and Panthera lineage concerning the molecular clock, which will help to understand their adaptive evolution.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Institute For Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Republic of Korea. .,Department of Biotechnology, Adamas University, North, 24 Parganas, Kolkata, West Bengal, 700126, India.
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Manojit Bhattacharya
- Institute For Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Republic of Korea
| | - Bidhan C Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, India
| | - Bimal Kumar Sarkar
- Department of Physics, Adamas University, North, 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Saptarshi Banerjee
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Kankana Banerjee
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Sang-Soo Lee
- Institute For Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Republic of Korea. .,Institute for Skeletal Aging and Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
4
|
Pereira RJ, Ruiz‐Ruano FJ, Thomas CJ, Pérez‐Ruiz M, Jiménez‐Bartolomé M, Liu S, Torre J, Bella JL. Mind the
numt
: Finding informative mitochondrial markers in a giant grasshopper genome. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ricardo J. Pereira
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München Planegg‐Martinsried Germany
| | - Francisco J. Ruiz‐Ruano
- Department of Genetics University of Granada Granada Spain
- Department of Ecology and Genetics – Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University Uppsala Sweden
- Department of Organismal Biology – Systematic Biology Evolutionary Biology Centre (EBC) Uppsala University Uppsala Sweden
| | - Callum J.E. Thomas
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München Planegg‐Martinsried Germany
| | - Mar Pérez‐Ruiz
- Departamento de Biología (Genética) Facultad de Ciencias Universidad Autónoma de Madrid Madrid Spain
| | - Miguel Jiménez‐Bartolomé
- Departamento de Biología (Genética) Facultad de Ciencias Universidad Autónoma de Madrid Madrid Spain
| | - Shanlin Liu
- Department of Entomology College of Plant Protection China Agricultural University Beijing China
| | - Joaquina Torre
- Departamento de Biología (Genética) Facultad de Ciencias Universidad Autónoma de Madrid Madrid Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM) Universidad Autónoma de Madrid Madrid Spain
| | - José L. Bella
- Departamento de Biología (Genética) Facultad de Ciencias Universidad Autónoma de Madrid Madrid Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM) Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
5
|
Comparative analysis of mitogenomes among six species of grasshoppers (Orthoptera: Acridoidea: Catantopidae) and their phylogenetic implications in wing-type evolution. Int J Biol Macromol 2020; 159:1062-1072. [PMID: 32416301 DOI: 10.1016/j.ijbiomac.2020.05.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/16/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
Abstract
The degree of wing development has a close relationship with insects' movement ability and range, and it should also be closely related to mitochondrial-related genes. The complete mitochondrial genomes of six species of Catantopidae were sequenced, annotated and analyzed. Then, combined with 37 mitogenomes of grasshoppers, the ratio of nonsynonymous substitution to synonymous substitution (Ka/Ks) of the combined sequences of protein coding genes (PCGs) was calculated by DnaSP5, and the phylogenetic relationships were reconstructed by maximum likelihood (ML) and Bayesian (BI) methods based on PCGs+rRNAs. The results showed that the sizes of the six complete mitogenomes are Stenocatantops mistshenkoi Willemse F., 1968, 15,573 bp; Traulia lofaoshana Tinkham, 1940, 15,645 bp; Sinopodisma rostellocerca You, 1980, 15,622 bp; Anapodisma miramae Dovnar-Zapolskij, 1932, 15,189 bp; Qinlingacris elaeodes Yin & Chou, 1979, 15,221 bp; and Eozubovskya planicaudata Zhang & Jin, 1985, 15,830 bp; their structures are the same as those of Acridoidea. The AT bias of the wing-degenerated group (lobiform and apterous) is higher than that of the longipennate group, and more nonsynonymous substitutions accumulated in the wing-degenerated group than in the longipennate group (P = 0.000), which indicates that the wing-degenerated group has undergone weaker evolutionary selection than the longipinnate group. The phylogenetic tree shows that the wing-degenerated group in the Catantopidae are multiorigin and present parallel evolution.
Collapse
|
6
|
Li XD, Jiang GF, Yan LY, Li R, Mu Y, Deng WA. Positive Selection Drove the Adaptation of Mitochondrial Genes to the Demands of Flight and High-Altitude Environments in Grasshoppers. Front Genet 2018; 9:605. [PMID: 30568672 PMCID: PMC6290170 DOI: 10.3389/fgene.2018.00605] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
The molecular evolution of mitochondrial genes responds to changes in energy requirements and to high altitude adaptation in animals, but this has not been fully explored in invertebrates. The evolution of atmospheric oxygen content from high to low necessarily affects the energy requirements of insect movement. We examined 13 mitochondrial protein-coding genes (PCGs) of grasshoppers to test whether the adaptive evolution of genes involved in energy metabolism occurs in changes in atmospheric oxygen content and high altitude adaptation. Our molecular evolutionary analysis of the 13 PCGs in 15 species of flying grasshoppers and 13 related flightless grasshoppers indicated that, similar to previous studies, flightless grasshoppers have experienced relaxed selection. We found evidence of significant positive selection in the genes ATP8, COX3, ND2, ND4, ND4L, ND5, and ND6 in flying lineages. This results suggested that episodic positive selection allowed the mitochondrial genes of flying grasshoppers to adapt to increased energy demands during the continuous reduction of atmospheric oxygen content. Our analysis of five grasshopper endemic to the Tibetan Plateau and 13 non-Tibetan grasshoppers indicated that, due to positive selection, more non-synonymous nucleotide substitutions accumulated in Tibetan grasshoppers than in non-Tibetan grasshoppers. We also found evidence for significant positive selection in the genes ATP6, ND2, ND3, ND4, and ND5 in Tibetan lineages. Our results thus strongly suggest that, in grasshoppers, positive selection drives mitochondrial genes to better adapt both to the energy requirements of flight and to the high altitude of the Tibetan Plateau.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| | - Guo-Fang Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, China
| | - Li-Yun Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ran Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuan Mu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei-An Deng
- School of Chemistry and Bioengineering, Hechi University, Yizhou, China
| |
Collapse
|
7
|
Gao XY, Cai YY, Yu DN, Storey KB, Zhang JY. Characteristics of the complete mitochondrial genome of Suhpalacsa longialata (Neuroptera, Ascalaphidae) and its phylogenetic implications. PeerJ 2018; 6:e5914. [PMID: 30479895 PMCID: PMC6240338 DOI: 10.7717/peerj.5914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/10/2018] [Indexed: 12/05/2022] Open
Abstract
The owlflies (Family Ascalaphidae) belong to the Neuroptera but are often mistaken as dragonflies because of morphological characters. To date, only three mitochondrial genomes of Ascalaphidae, namely Libelloides macaronius; Ascaloptynx appendiculatus; Ascalohybris subjacens, are published in GenBank, meaning that they are greatly under-represented in comparison with the 430 described species reported in this family. In this study, we sequenced and described the complete mitochondrial genome of Suhpalacsa longialata (Neuroptera, Ascalaphidae). The total length of the S. longialata mitogenome was 15,911 bp, which is the longest known to date among the available family members of Ascalaphidae. However, the size of each gene was similar to the other three Ascalaphidae species. The S. longialata mitogenome included a transposition of tRNACys and tRNATrp genes and formed an unusual gene arrangement tRNACys-tRNATrp-tRNATyr (CWY). It is likely that the transposition occurred by a duplication of both genes followed by random loss of partial duplicated genes. The nucleotide composition of the S. longialata mitogenome was as follows: A = 41.0%, T = 33.8%, C = 15.5%, G = 9.7%. Both Bayesian inference and ML analyses strongly supported S. longialata as a sister clade to (Ascalohybris subjacens + L. macaronius), and indicated that Ascalaphidae is not monophyletic.
Collapse
Affiliation(s)
- Xin-Yan Gao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yin-Yin Cai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | | | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
8
|
Hu Z, Guan DL, Mao BY. Characterization of the complete mitochondrial genome of the Yunnan endemic grasshopper Yunnanacris yunnaneus (Insecta: Orthoptera: Acrididae). CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Song H, Amédégnato C, Cigliano MM, Desutter‐Grandcolas L, Heads SW, Huang Y, Otte D, Whiting MF. 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics 2015; 31:621-651. [DOI: 10.1111/cla.12116] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Hojun Song
- Department of Biology University of Central Florida Orlando FL USA
- Department of Entomology Texas A&M University College Station TX USA
| | - Christiane Amédégnato
- Département Systématique et Évolution Muséum National d ‘Histoire Naturelle’ ISYEB, UMR7205 CNRS MNHN UPMC EPHE Paris France
| | | | - Laure Desutter‐Grandcolas
- Département Systématique et Évolution Muséum National d ‘Histoire Naturelle’ ISYEB, UMR7205 CNRS MNHN UPMC EPHE Paris France
| | - Sam W. Heads
- Illinois Natural History Survey University of Illinois at Urbana‐Champaign Champaign IL USA
| | - Yuan Huang
- Institute of Zoology Shaanxi Normal University Xi'an China
| | - Daniel Otte
- Department of Biodiversity, Earth & Environmental Science Academy of Natural Sciences of Drexel University Philadelphia PA USA
| | - Michael F. Whiting
- Department of Biology and M. L. Bean Museum Brigham Young University Provo UT USA
| |
Collapse
|
10
|
Li R, Jiang GF, Liang AP, Zhong XT, Liu Y. Characterization of the mitochondrial genome of the montane grasshopper, Qinlingacris elaeodes (Orthoptera: Catantopidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1765-6. [PMID: 25259458 DOI: 10.3109/19401736.2014.963802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Qinlingacris elaeodes is the dominant grasshopper at an altitude of 3000 meters and above, and is a representative species of the genus Qinlingacris endemic to China. The sequenced mitochondrial genome of this grasshopper is 14,818 bp in length, including 13 protein-coding genes (ND1-6, COI-III, ATP6, ATP8, ND4L, CTYB), 21 transfer RNAs, and 2 ribosomal RNAs (12S and 16S). The orientation and gene order of these genes are identical to those found in the putative ancestral insect mitogenome. The 13 PCGs start with a typical ATN codon as their start codons. The usual TAA and TAG termination codons are found for 12 PCGs. However, the ND5 gene has an incomplete termination codon (T).
Collapse
Affiliation(s)
- Ran Li
- a Jiangsu Key Laboratory for Bioresource Technology , College of Life Sciences, Nanjing Normal University , Nanjing , P.R. China
| | - Guo-Fang Jiang
- a Jiangsu Key Laboratory for Bioresource Technology , College of Life Sciences, Nanjing Normal University , Nanjing , P.R. China
| | - Ai-Ping Liang
- b Key Laboratory of Zoological Systematics and Evolution (CAS) , Institute of Zoology, Chinese Academy of Sciences , Beijing , P.R. China
| | - Xin-Tong Zhong
- c College of Educational Sciences, Nanjing Normal University , Nanjing , P.R. China
| | - Ying Liu
- c College of Educational Sciences, Nanjing Normal University , Nanjing , P.R. China
| |
Collapse
|
11
|
Zhang HL, Huang Y, Lin LL, Wang XY, Zheng ZM. The phylogeny of the Orthoptera (Insecta) as deduced from mitogenomic gene sequences. Zool Stud 2013. [DOI: 10.1186/1810-522x-52-37] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The phylogeny of the Orthoptera was analyzed based on 6 datasets from 47 orthopteran mitochondrial genomes (mitogenomes). The phylogenetic signals in the mitogenomes were rigorously examined under analytical regimens of maximum likelihood (ML) and Bayesian inference (BI), along with how gene types and different partitioning schemes influenced the phylogenetic reconstruction within the Orthoptera. The monophyly of the Orthoptera and its two suborders (Caelifera and Ensifera) was consistently recovered in the analyses based on most of the datasets we selected, regardless of the optimality criteria.
Results
When the seven NADH dehydrogenase subunits were concatenated into a single alignment (NADH) and were analyzed; a near-identical topology to the traditional morphological analysis was recovered, especially for BI_NADH. In both the concatenated cytochrome oxidase (COX) subunits and COX + cytochrome b (Cyt b) datasets, the small extent of sequence divergence seemed to be helpful for resolving relationships among major Orthoptera lineages (between suborders or among superfamilies). The conserved and variable domains of ribosomal (r)RNAs performed poorly when respectively analyzed but provided signals at some taxonomic levels.
Conclusions
Our findings suggest that the best phylogenetic inferences can be made when moderately divergent nucleotide data from mitogenomes are analyzed, and that the NADH dataset was suited for studying orthopteran phylogenetic relationships at different taxonomic levels, which may have been due to the larger amount of DNA sequence data and the larger number of phylogenetically informative sites.
Collapse
|
12
|
Zhao J, Li H, Winterton SL, Liu Z. Ancestral gene organization in the mitochondrial genome of Thyridosmylus langii (McLachlan, 1870) (Neuroptera: Osmylidae) and implications for lacewing evolution. PLoS One 2013; 8:e62943. [PMID: 23717397 PMCID: PMC3662673 DOI: 10.1371/journal.pone.0062943] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/26/2013] [Indexed: 11/19/2022] Open
Abstract
The first complete mitochondrial genome of the lacewing family Osmylidae (Thyridosmylus langii (McLachlan, 1870)) (Neuroptera) was sequenced in this study. The genome is a circular molecule of 16,221 bp containing the typical 37 genes but is arranged in the same order as that of the putative ancestor of hexapod and lacks translocation of trnC as shared by all previously sequenced neuropteran mtDNAs. This reveals that trnC translocation does not represent an organizational synapomorphy in the mitochondrion for the entire Neuroptera clade. Comparative analysis of neuropteran tRNA genes reveals a relatively slow and conserved evolution of the mitochondrion throughout the order. Secondary structure models of the ribosomal RNA genes of T. langii largely agree with those proposed for other insect orders. Nevertheless, domain I of T. langii rrnL is consisted of nine helices rather than eight helices which is typical for neuropteran rrnL. Protein-coding genes have typical mitochondrial start codons, with the exception of COI, which uses the TCG start codon also found in Ithonidae and Chrysopidae. Like other neuropteran insects, the control region is the most AT-rich region and comparatively simple, with little evidence of conserved blocks or long tandem repeats. Considering the issues of base-compositional and branch length heterogeneity, we used a range of phylogenetic approaches to recover neuropteridan relationships and explored the effect of method choice on recovery of monophyly of Neuropterida: ((Neuroptera + Megaloptera) + Raphidioptera). The monophyly of Neuroptera and the more basal position of Osmylidae were also recovered by different datasets and phylogenetic methods.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Shaun L. Winterton
- California State Collection of Arthropods, California Department of Food and Agriculture, Sacramento, California, United States of America
| | - Zhiqi Liu
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Leavitt JR, Hiatt KD, Whiting MF, Song H. Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: A phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study. Mol Phylogenet Evol 2013; 67:494-508. [DOI: 10.1016/j.ympev.2013.02.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 02/10/2013] [Accepted: 02/15/2013] [Indexed: 11/24/2022]
|
14
|
Song H, Moulton MJ, Hiatt KD, Whiting MF. Uncovering historical signature of mitochondrial DNA hidden in the nuclear genome: the biogeography ofSchistocercarevisited. Cladistics 2013; 29:643-662. [DOI: 10.1111/cla.12013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hojun Song
- Department of Biology; University of Central Florida; Orlando FL 32816 USA
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| | - Matthew J. Moulton
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| | - Kevin D. Hiatt
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| | - Michael F. Whiting
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| |
Collapse
|
15
|
Zhang HL, Zeng HH, Huang Y, Zheng ZM. The complete mitochondrial genomes of three grasshoppers, Asiotmethis zacharjini, Filchnerella helanshanensis and Pseudotmethis rubimarginis (Orthoptera: Pamphagidae). Gene 2013; 517:89-98. [PMID: 23291499 DOI: 10.1016/j.gene.2012.12.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/02/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022]
Abstract
The complete mitogenomes of Asiotmethis zacharjini, Filchnerella helanshanensis and Pseudotmethis rubimarginis are 15,660 bp, 15,657 bp and 15,661 bp in size, respectively. All three mitogenomes contain a standard set of 13 protein - coding genes, 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A+T-rich region in the same order as those of the other analysed caeliferan species, including the rearrangement of trnAsp and trnLys. The putative initiation codon for the cox1 gene in the three species is CCG. The long polythymine stretch (T-stretch) in the A+T-rich region of the three species is not adjacent to the trnIle but inside the stem-loop sequence in the majority strand. The mitogenomes of F. helanshanensis and P. rubimarginis have higher overall similarities. The characterization of the three mitogenomes will enrich our knowledge on the Pamphagidae mitogenome. The phylogenetic analyses indicated that within the Caelifera, Pyrgomorphoidea is a sister group to Acridoidea. The species from the Pamphagidae form a monophyletic group, as is the case for Acrididae. Furthermore, the two families cluster as sister groups, supporting the monophyly of Acridoidea. The relationships among eight acridid subfamilies were (Cyrtacanthacridinae+(Calliptaminae+(Catantopinae+(Oxyinae+(Melanopline+(Acridinae+(Oedipodinae+Gomphocerinae).
Collapse
Affiliation(s)
- Hong-Li Zhang
- Institute of Zoology, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | |
Collapse
|
16
|
Yin H, Zhi Y, Jiang H, Wang P, Yin X, Zhang D. The complete mitochondrial genome of Gomphocerus tibetanus Uvarov, 1935 (Orthoptera: Acrididae: Gomphocerinae). Gene 2012; 494:214-8. [DOI: 10.1016/j.gene.2011.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/10/2011] [Accepted: 12/10/2011] [Indexed: 10/14/2022]
|
17
|
Complete Mitochondrial Genome Sequence of Acrida cinerea (Acrididae: Orthoptera) and Comparative Analysis of Mitochondrial Genomes in Orthoptera. Comp Funct Genomics 2010; 2010:319486. [PMID: 21197069 PMCID: PMC3004375 DOI: 10.1155/2010/319486] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/02/2010] [Accepted: 09/02/2010] [Indexed: 11/19/2022] Open
Abstract
The complete 15,599-bp mitogenome of Acrida cinerea was determined and compared with that of the other 20 orthopterans. It displays characteristic gene content, genome organization, nucleotide composition, and codon usage found in other Caelifera mitogenomes. Comparison of 21 orthopteran sequences revealed that the tRNAs encoded by the H-strand appear more conserved than those by the L-stand. All tRNAs form the typical clover-leaf structure except trnS (agn), and most of the size variation among tRNAs stemmed from the length variation in the arm and loop of TΨC and the loop of DHU. The derived secondary structure models of the rrnS and rrnL from 21 orthoptera species closely resemble those from other insects on CRW except a considerably enlarged loop of helix 1399 of rrnS in Caelifera, which is a potentially autapomorphy of Caelifera. In the A+T-rich region, tandem repeats are not only conserved in the closely related mitogenome but also share some conserved motifs in the same subfamily. A stem-loop structure, 16 bp or longer, is likely to be involved in replication initiation in Caelifera and Grylloidea. A long T-stretch (>17 bp) with conserved stem-loop structure next to rrnS on the H-strand, bounded by a purine at either end, exists in the three species from Tettigoniidae.
Collapse
|
18
|
Sheffield NC, Hiatt KD, Valentine MC, Song H, Whiting MF. Mitochondrial genomics in Orthoptera using MOSAS. ACTA ACUST UNITED AC 2010; 21:87-104. [DOI: 10.3109/19401736.2010.500812] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|