1
|
Schmidt LA, Brix S, Rossel S, Forster S, Eichsteller A. Unveiling ophiuroid biodiversity across North Atlantic habitats via an integrative perspective. Sci Rep 2024; 14:20405. [PMID: 39223179 PMCID: PMC11369278 DOI: 10.1038/s41598-024-71178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The depths of the North Atlantic Ocean host a species-rich fauna providing heterogeneous habitats from thermal vent fields to cold-water coral reefs. With the increasing threat of destruction of deep-sea habitats due to human impacts, such as demersal fishing and the beginning of deep-sea mining, an analysis of the diversity and distribution of species is crucial for conservation efforts. Brittle stars occur in high biomasses, contributing to the biodiversity of the seafloor. Specimens were collected during several scientific expeditions to gain a more detailed insight into the brittle star diversity in the North Atlantic Ocean. An integrative approach to identify the species with DNA barcoding (mtCOI) in combination with morphological studies revealed 24 species. Most species have been previously identified in the North Atlantic, but sequences for 13 species are newly added to public repositories. Additionally, the MALDI-TOF-MS proteomic analysis was successfully applied for 197 specimens with known COI barcodes. Results are congruent with other molecular species delimitations demonstrating the functionality of proteomics for the identification of brittle stars. This dataset significantly expands our understanding of the taxonomic and genetic diversity of brittle stars and contributes to publicly available data. It emphasizes the importance of considering habitat heterogeneity for large scale patterns of biodiversity.
Collapse
Affiliation(s)
- Lydia Anastasia Schmidt
- Institute of Biological Science, University of Rostock, Albert-Einsteinstraße 3, 18059, Rostock, Germany.
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Saskia Brix
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Sven Rossel
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382, Wilhelmshaven, Germany
| | - Stefan Forster
- Institute of Biological Science, University of Rostock, Albert-Einsteinstraße 3, 18059, Rostock, Germany
| | - Angelina Eichsteller
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, 26382, Wilhelmshaven, Germany
| |
Collapse
|
2
|
Shin CP, Allmon WD. How we study cryptic species and their biological implications: A case study from marine shelled gastropods. Ecol Evol 2023; 13:e10360. [PMID: 37680961 PMCID: PMC10480071 DOI: 10.1002/ece3.10360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/10/2023] [Accepted: 07/13/2023] [Indexed: 09/09/2023] Open
Abstract
Methodological and biological considerations are intertwined when studying cryptic species. A potentially large component of modern biodiversity, the frequency of cryptic species among taxonomic groups is not well documented. The term "cryptic species" is imprecisely used in scientific literature, causing ambiguity when interpreting their evolutionary and ecological significance. This study reviews how cryptic species have been defined, discussing implications for taxonomy and biology, and explores these implications with a case study based on recently published literature on extant shelled marine gastropods. Reviewed gastropods were recorded by species. Records of cryptic gastropods were presented by authors with variable levels of confidence but were difficult to disentangle from inherent biases in the study effort. These complexities notwithstanding, most gastropod species discussed were not cryptic. To the degree that this review's sample represents extinct taxa, the results suggest that a high proportion of shelled marine gastropod species are identifiable for study in the fossil record. Much additional work is needed to provide a more adequate understanding of the relative frequency of cryptic species in shelled marine gastropods, which should start with more explicit definitions and targeted case studies.
Collapse
Affiliation(s)
- Caren P. Shin
- Department of Earth and Atmospheric SciencesCornell UniversityIthacaNew YorkUSA
- Paleontological Research InstitutionIthacaNew YorkUSA
| | - Warren D. Allmon
- Department of Earth and Atmospheric SciencesCornell UniversityIthacaNew YorkUSA
- Paleontological Research InstitutionIthacaNew YorkUSA
| |
Collapse
|
3
|
Díaz JA, Ramírez-Amaro S, Ordines F. Sponges of Western Mediterranean seamounts: new genera, new species and new records. PeerJ 2021; 9:e11879. [PMID: 34527436 PMCID: PMC8403479 DOI: 10.7717/peerj.11879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Background The seamounts Ses Olives (SO), Ausias March (AM) and Emile Baudot (EB) at the Mallorca Channel (Balearic Islands, western Mediterranean), are poorly explored areas containing rich and singular sponge communities. Previous works have shown a large heterogeneity of habitats, including rhodolith beds, rocky, gravel and sandy bottoms and steeped slopes. This diversity of habitats provides a great opportunity for improving the knowledge of the sponges from Mediterranean seamounts. Methods Sponges were collected during several surveys carried out by the Balearic Center of the Spanish Institute of Oceanography at the Mallorca Channel seamounts. Samples were obtained using a beam-trawl, rock dredge and remote operated vehicle. Additional samples were obtained from fishing grounds of the Balearic Islands continental shelf, using the sampling device GOC-73. Sponges were identified through the analysis of morphological and molecular characters. Results A total of 60 specimens were analyzed, from which we identified a total of 19 species. Three species and one genus are new to science: Foraminospongia balearicagen. nov. sp. nov., Foraminospongia minutagen. nov. sp. nov. and Paratimea massutiisp. nov.Heteroxya cf. beauforti represents the first record of the genus Heteroxya in the Mediterranean Sea. Additionally, this is the second report of Axinella spatula and Haliclona (Soestella) fimbriata since their description. Moreover, the species Petrosia (Petrosia) raphida, Calyx cf. tufa and Lanuginella pupa are reported for the first time in the Mediterranean Sea. Petrosia (Strongylophora) vansoesti is reported here for the first time in the western Mediterranean Sea. Haliclona (S.) fimbriata is reported here for the first time in the north-western Mediterranean Sea. Hemiasterella elongata is reported here for the second time in the Mediterranean Sea. The species Melonanchora emphysema, Rhabdobaris implicata, Polymastia polytylota, Dragmatella aberrans, Phakellia ventilabrum and Pseudotrachya hystrix are reported for first time off Balearic Islands. Following the Sponge Barcoding project goals, we have sequenced the Cytochrome Oxidase subunit I (COI) and the 28S ribosomal fragment (C1–D2 domains) for Foraminospongia balearicasp. nov., Foraminospongia minutasp. nov., H. cf. beauforti and C. cf. tufa, and the COI for Paratimea massuti sp. nov. We also provide a phylogenetic analysis to discern the systematic location of Foraminospongiagen. nov., which, in accordance to skeletal complement, is placed in the Hymerhabdiidae family. A brief biogeographical discussion is provided for all these species, with emphasis on the sponge singularity of SO, AM and the EB seamounts and the implications for their future protection.
Collapse
Affiliation(s)
- Julio A Díaz
- Instituto Español de Oceanografía, Centre Oceanogràfic de Balears, España, Palma, Spain.,Interdisciplinary Ecology Group, Biology Department, Universitat de Les Illes Balears, Palma, Spain
| | - Sergio Ramírez-Amaro
- Instituto Español de Oceanografía, Centre Oceanogràfic de Balears, España, Palma, Spain.,Laboratori de Genètica, Biology Department, Universitat de Les Illes Balears, Palma, Spain
| | - Francesc Ordines
- Instituto Español de Oceanografía, Centre Oceanogràfic de Balears, España, Palma, Spain
| |
Collapse
|
4
|
Abstract
Seamounts are one of the major biomes of the global ocean. The last 25 years of research has seen considerable advances in the understanding of these ecosystems. The interactions between seamounts and steady and variable flows have now been characterised providing a better mechanistic understanding of processes influencing biology. Processes leading to upwelling, including Taylor column formation and tidal rectification, have now been defined as well as those leading to draw down of organic matter from the ocean surface to seamount summit and flanks. There is also an improved understanding of the interactions between seamounts, zooplankton and micronekton communities especially with respect to increased predation pressure in the vicinity of seamounts. Evidence has accumulated of the role of seamounts as hot spots for ocean predators including large pelagic fish, sharks, pinnipeds, cetaceans and seabirds. The complexity of benthic communities associated with seamounts is high and drivers of biodiversity are now being resolved. Claims of high endemism resulting from isolation of seamounts as islands of habitat and speciation have not been supported. However, for species characterised by low dispersal capability, such as some groups of benthic sessile or low-mobility invertebrates, low connectivity between seamount populations has been found with evidence of endemism at a local level. Threats to seamounts have increased in the last 25 years and include overfishing, destructive fishing, marine litter, direct and indirect impacts of climate change and potentially marine mining in the near future. Issues around these threats and their management are discussed.
Collapse
Affiliation(s)
- Alex D Rogers
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Taylor ML, Roterman CN. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor. Mol Ecol 2017; 26:4872-4896. [PMID: 28833857 DOI: 10.1111/mec.14237] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made.
Collapse
Affiliation(s)
- M L Taylor
- Department of Zoology, University of Oxford, Oxford, UK
| | - C N Roterman
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Postaire B, Magalon H, Bourmaud CAF, Bruggemann JH. Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Mol Phylogenet Evol 2016; 105:36-49. [DOI: 10.1016/j.ympev.2016.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 01/04/2023]
|
7
|
Barco A, Raupach MJ, Laakmann S, Neumann H, Knebelsberger T. Identification of North Sea molluscs with DNA barcoding. Mol Ecol Resour 2015; 16:288-97. [DOI: 10.1111/1755-0998.12440] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/09/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Andrea Barco
- GEOMAR-Helmholtz Centre for Ocean Research Kiel; Düsternbrooker Weg 20 24105 Kiel Germany
- German Centre for Marine Biodiversity Research (DZMB); Senckenberg am Meer; Südstrand 44 26382 Wilhelmshaven Germany
| | - Michael J. Raupach
- German Centre for Marine Biodiversity Research (DZMB); Senckenberg am Meer; Südstrand 44 26382 Wilhelmshaven Germany
| | - Silke Laakmann
- German Centre for Marine Biodiversity Research (DZMB); Senckenberg am Meer; Südstrand 44 26382 Wilhelmshaven Germany
| | - Hermann Neumann
- German Centre for Marine Biodiversity Research (DZMB); Senckenberg am Meer; Südstrand 44 26382 Wilhelmshaven Germany
| | - Thomas Knebelsberger
- German Centre for Marine Biodiversity Research (DZMB); Senckenberg am Meer; Südstrand 44 26382 Wilhelmshaven Germany
| |
Collapse
|
8
|
Fedosov AE, Stahlschmidt P. Revision of the genusThetidosHedley, 1899 (Gastropoda: Conoidea: Raphitomidae) in the Indo-Pacific with descriptions of three new species. MOLLUSCAN RESEARCH 2014. [DOI: 10.1080/13235818.2014.909557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Schlacher TA, Baco AR, Rowden AA, O'Hara TD, Clark MR, Kelley C, Dower JF. Seamount benthos in a cobalt‐rich crust region of the central
P
acific: conservation challenges for future seabed mining. DIVERS DISTRIB 2013. [DOI: 10.1111/ddi.12142] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Thomas A. Schlacher
- Faculty of Science, Health & Education University of the Sunshine Coast Q‐4558 Maroochydore Australia
| | - Amy R. Baco
- Department of Oceanography Florida State University 600 W. College Ave. Tallahassee FL 3230 USA
| | - Ashley A. Rowden
- National Institute for Water and Atmospheric Research ‐ NIWA Private Bag 14901 Wellington New Zealand
| | | | - Malcolm R. Clark
- National Institute for Water and Atmospheric Research ‐ NIWA Private Bag 14901 Wellington New Zealand
| | - Chris Kelley
- Hawaii Undersea Research Laboratory ‐HURL University of Hawaii 1000 Pope Rd, MSB 303 Honolulu HI 96822 USA
| | - John F. Dower
- Department of Biology University of Victoria PO Box 1700 Station CSC Victoria BC V8W 2Y2Victoria, BC Canada
| |
Collapse
|
10
|
Barco A, Houart R, Bonomolo G, Crocetta F, Oliverio M. Molecular data reveal cryptic lineages within the northeastern Atlantic and Mediterranean small mussel drills of theOcinebrina edwardsiicomplex (Mollusca: Gastropoda: Muricidae). Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Barco
- Department of Biology and Biotechnology ‘C. Darwin’; University of Rome ‘La Sapienza’; Viale dell'Università 32 I-00185 Rome Italy
| | - Roland Houart
- Belgian Royal Institute of Natural Sciences; Rue Vautier, 29 B-1000 Bruxelles Belgium
| | | | - Fabio Crocetta
- Stazione Zoologica Anton Dohrn; Villa Comunale I-80121 Napoli Italy
| | - Marco Oliverio
- Department of Biology and Biotechnology ‘C. Darwin’; University of Rome ‘La Sapienza’; Viale dell'Università 32 I-00185 Rome Italy
| |
Collapse
|
11
|
Ceccarelli DM, McKinnon AD, Andréfouët S, Allain V, Young J, Gledhill DC, Flynn A, Bax NJ, Beaman R, Borsa P, Brinkman R, Bustamante RH, Campbell R, Cappo M, Cravatte S, D'Agata S, Dichmont CM, Dunstan PK, Dupouy C, Edgar G, Farman R, Furnas M, Garrigue C, Hutton T, Kulbicki M, Letourneur Y, Lindsay D, Menkes C, Mouillot D, Parravicini V, Payri C, Pelletier B, Richer de Forges B, Ridgway K, Rodier M, Samadi S, Schoeman D, Skewes T, Swearer S, Vigliola L, Wantiez L, Williams A, Williams A, Richardson AJ. The coral sea: physical environment, ecosystem status and biodiversity assets. ADVANCES IN MARINE BIOLOGY 2013; 66:213-290. [PMID: 24182902 DOI: 10.1016/b978-0-12-408096-6.00004-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Coral Sea, located at the southwestern rim of the Pacific Ocean, is the only tropical marginal sea where human impacts remain relatively minor. Patterns and processes identified within the region have global relevance as a baseline for understanding impacts in more disturbed tropical locations. Despite 70 years of documented research, the Coral Sea has been relatively neglected, with a slower rate of increase in publications over the past 20 years than total marine research globally. We review current knowledge of the Coral Sea to provide an overview of regional geology, oceanography, ecology and fisheries. Interactions between physical features and biological assemblages influence ecological processes and the direction and strength of connectivity among Coral Sea ecosystems. To inform management effectively, we will need to fill some major knowledge gaps, including geographic gaps in sampling and a lack of integration of research themes, which hinder the understanding of most ecosystem processes.
Collapse
|
12
|
Fedosov AE, Puillandre N. Phylogeny and taxonomy of the Kermia–Pseudodaphnella (Mollusca: Gastropoda: Raphitomidae) genus complex: a remarkable radiation via diversification of larval development. SYST BIODIVERS 2012. [DOI: 10.1080/14772000.2012.753137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alexander E. Fedosov
- a A.N. Severtsov Institute of Ecology and Evolution , Russian Academy of Sciences , Leninsky Prospect 33, Moscow , 119071 , Russia
| | - Nicolas Puillandre
- b Museum National d’Histoire Naturelle, Departement Systematique et Evolution , UMR 7138, 43, Rue Cuvier , 75231 , Paris , France
| |
Collapse
|
13
|
Castelin M, Lorion J, Brisset J, Cruaud C, Maestrati P, Utge J, Samadi S. Speciation patterns in gastropods with long-lived larvae from deep-sea seamounts. Mol Ecol 2012; 21:4828-53. [DOI: 10.1111/j.1365-294x.2012.05743.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/02/2012] [Accepted: 06/15/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | - C. Cruaud
- GENOSCOPE; Centre National de Séquençage; 2 rue Gaston Crémieux, CP 5706; F-91057; Evry Cedex; France
| | - P. Maestrati
- Département Systématique et Evolution; Systématique, Adaptation et Evolution; UMR 7138 UPMC-IRD-MNHN-CNRS (UR IRD 148); Muséum National d'Histoire Naturelle; CP 26, 57 Rue Cuvier; F-75231; Paris Cedex 05; France
| | - J. Utge
- Département Systématique et Evolution; Service de systématique moléculaire (CNRS-MNHN, UMS2700); Muséum National d'Histoire Naturelle; CP 26, 57 Rue Cuvier; F-75231; Paris Cedex 05; France
| | | |
Collapse
|
14
|
Castelin M, Puillandre N, Kantor YI, Modica MV, Terryn Y, Cruaud C, Bouchet P, Holford M. Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae). Mol Phylogenet Evol 2012; 64:21-44. [PMID: 22440724 PMCID: PMC3389042 DOI: 10.1016/j.ympev.2012.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 01/16/2023]
Abstract
The Terebridae are a diverse family of tropical and subtropical marine gastropods that use a complex and modular venom apparatus to produce toxins that capture polychaete and enteropneust preys. The complexity of the terebrid venom apparatus suggests that venom apparatus development in the Terebridae could be linked to the diversification of the group and can be analyzed within a molecular phylogenetic scaffold to better understand terebrid evolution. Presented here is a molecular phylogeny of 89 terebrid species belonging to 12 of the 15 currently accepted genera, based on Bayesian inference and Maximum Likelihood analyses of amplicons of 3 mitochondrial (COI, 16S and 12S) and one nuclear (28S) genes. The evolution of the anatomy of the terebrid venom apparatus was assessed by mapping traits of six related characters: proboscis, venom gland, odontophore, accessory proboscis structure, radula, and salivary glands. A novel result concerning terebrid phylogeny was the discovery of a previously unrecognized lineage, which includes species of Euterebra and Duplicaria. The non-monophyly of most terebrid genera analyzed indicates that the current genus-level classification of the group is plagued with homoplasy and requires further taxonomic investigations. Foregut anatomy in the family Terebridae reveals an inordinate diversity of features that covers the range of variability within the entire superfamily Conoidea, and that hypodermic radulae have likely evolved independently on at least three occasions. These findings illustrate that terebrid venom apparatus evolution is not perfunctory, and involves independent and numerous changes of central features in the foregut anatomy. The multiple emergence of hypodermic marginal radular teeth in terebrids are presumably associated with variable functionalities, suggesting that terebrids have adapted to dietary changes that may have resulted from predator-prey relationships. The anatomical and phylogenetic results presented serve as a starting point to advance investigations about the role of predator-prey interactions in the diversification of the Terebridae and the impact on their peptide toxins, which are promising bioactive compounds for biomedical research and therapeutic drug development.
Collapse
Affiliation(s)
- M Castelin
- Hunter College, The City University of New York, NY, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hodge JR, Read CI, van Herwerden L, Bellwood DR. The role of peripheral endemism in species diversification: Evidence from the coral reef fish genus Anampses (Family: Labridae). Mol Phylogenet Evol 2012; 62:653-63. [DOI: 10.1016/j.ympev.2011.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
|
16
|
Moura CJ, Cunha MR, Porteiro FM, Yesson C, Rogers AD. Evolution of Nemertesia hydroids (Cnidaria: Hydrozoa, Plumulariidae) from the shallow and deep waters of the NE Atlantic and western Mediterranean. ZOOL SCR 2011. [DOI: 10.1111/j.1463-6409.2011.00503.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|