1
|
Cumer T, Machado AP, San-Jose LM, Ducrest AL, Simon C, Roulin A, Goudet J. The genomic architecture of continuous plumage colour variation in the European barn owl ( Tyto alba). Proc Biol Sci 2024; 291:20231995. [PMID: 38196365 PMCID: PMC10777144 DOI: 10.1098/rspb.2023.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
The maintenance of colour variation in wild populations has long fascinated evolutionary biologists, although most studies have focused on discrete traits exhibiting rather simple inheritance patterns and genetic architectures. However, the study of continuous colour traits and their potentially oligo- or polygenic genetic bases remains rare in wild populations. We studied the genetics of the continuously varying white-to-rufous plumage coloration of the European barn owl (Tyto alba) using a genome-wide association approach on the whole-genome data of 75 individuals. We confirmed a mutation at the melanocortin-1-receptor gene (MC1R) is involved in the coloration and identified two new regions, located in super-scaffolds 9 and 42. The combination of the three regions explains most of the colour variation (80.37%, 95% credible interval 58.45-100%). One discovered region, located in the sex chromosome, differs between the most extreme colorations in owls sharing a specific MC1R genotype. This region may play a role in the colour sex dimorphism of this species, possibly in interaction with the autosomal MC1R. We thus provide insights into the genetic architecture of continuous colour variation, pointing to an oligogenic basis with potential epistatic effects among loci that should aid future studies understanding how continuous colour variation is maintained in nature.
Collapse
Affiliation(s)
- Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Luis M. San-Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
2
|
Corl A, Charter M, Rozman G, Toledo S, Turjeman S, Kamath PL, Getz WM, Nathan R, Bowie RCK. Movement ecology and sex are linked to barn owl microbial community composition. Mol Ecol 2020; 29:1358-1371. [PMID: 32115796 DOI: 10.1111/mec.15398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
The behavioural ecology of host species is likely to affect their microbial communities, because host sex, diet, physiology, and movement behaviour could all potentially influence their microbiota. We studied a wild population of barn owls (Tyto alba) and collected data on their microbiota, movement, diet, size, coloration, and reproduction. The composition of bacterial species differed by the sex of the host and female owls had more diverse bacterial communities than their male counterparts. The abundance of two families of bacteria, Actinomycetaceae and Lactobacillaceae, also varied between the sexes, potentially as a result of sex differences in hormones and immunological function, as has previously been found with Lactobacillaceae in the microbiota of mice. Male and female owls did not differ in the prey they brought to the nest, which suggests that dietary differences are unlikely to underlie the differences in their microbiota. The movement behaviour of the owls was associated with the host microbiota in both males and females because owls that moved further from their nest each day had more diverse bacterial communities than owls that stayed closer to their nests. This novel result suggests that the movement ecology of hosts can impact their microbiota, potentially on the basis of their differential encounters with new bacterial species as the hosts move and forage across the landscape. Overall, we found that many aspects of the microbial community are correlated with the behavioural ecology of the host and that data on the microbiota can aid in generating new hypotheses about host behaviour.
Collapse
Affiliation(s)
- Ammon Corl
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Motti Charter
- Movement Ecology Laboratory, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Shamir Research Institute and Department of Geography and Environmental Studies, University of Haifa, Haifa, Israel
| | - Gabe Rozman
- Movement Ecology Laboratory, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Sondra Turjeman
- Movement Ecology Laboratory, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Wayne M Getz
- Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.,School of Mathematical Sciences, University of KwaZulu, Natal, South Africa
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Differential fitness effects of moonlight on plumage colour morphs in barn owls. Nat Ecol Evol 2019; 3:1331-1340. [PMID: 31477846 PMCID: PMC6728161 DOI: 10.1038/s41559-019-0967-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
The Moon cycle exposes nocturnal life to variation in environmental light. However, whether moonlight shapes the fitness of nocturnal species with distinct colour variants remains unknown. Combining long-term monitoring, high-resolution GPS tracking, and experiments on prey, we show that barn owls (Tyto alba) with distinct plumage colourations are differently affected by moonlight. The reddest owls are less successful hunting and providing food to their offspring during moonlit nights, which associates with lower body mass and survival of the youngest nestlings and with female mates starting to lay eggs at low moonlight levels. Although moonlight should make white owls more conspicuous to prey, hunting and fitness of the whitest owls are positively or un-affected by moonlight. We experimentally show that, under full-moon conditions, white plumages trigger longer freezing times in the prey, which should facilitate prey catchability. We propose that the barn owl’s white plumage, a rare trait among nocturnal predators, exploits the known aversion of rodents to bright light, explaining why, counterintuitively, moonlight impacts less the whitest owls. Our study provides evidence for the long-suspected influence of the Moon on the evolution of colouration in nocturnal species, highlighting the importance of colour in nocturnal ecosystems.
Collapse
|
4
|
Amar A, Reynolds C, Van Velden J, Briggs CW. Clinal variation in morph frequency in Swainson’s hawk across North America: no support for Gloger’s ecogeographical rule. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Arjun Amar
- Fitzpatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| | - Chevonne Reynolds
- Fitzpatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
- Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein, South Africa
| | - Julia Van Velden
- Fitzpatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
5
|
Roulin A, Uva V, Romano A. A melanin-based trait is more strongly related to body size in the tropics than in temperate regions in the globally distributed barn owl family. J Evol Biol 2018; 31:1932-1944. [DOI: 10.1111/jeb.13386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore, Lausanne Switzerland
- Wissenschaftskolleg zu Berlin; Berlin Germany
| | - Vera Uva
- Department of Ecology and Evolution; University of Lausanne; Biophore, Lausanne Switzerland
| | - Andrea Romano
- Department of Ecology and Evolution; University of Lausanne; Biophore, Lausanne Switzerland
| |
Collapse
|
6
|
Charter M, Izhaki I, Roulin A. The relationship between intra–guild diet overlap and breeding in owls in Israel. POPUL ECOL 2018. [DOI: 10.1007/s10144-018-0633-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Motti Charter
- Shamir Research InstituteUniversity of Haifa1290000KatzrinIsrael
| | - Ido Izhaki
- Department of Evolutionary and Environmental BiologyUniversity of Haifa31905HaifaIsrael
| | - Alexandre Roulin
- Department of Ecology and Evolution, BiophoreUniversity of Lausanne1015LausanneSwitzerland
| |
Collapse
|
7
|
Female-biased dispersal and non-random gene flow of MC1R variants do not result in a migration load in barn owls. Heredity (Edinb) 2018; 122:305-314. [PMID: 30006569 DOI: 10.1038/s41437-018-0115-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
Non-random gene flow is a widely neglected force in evolution and ecology. This genotype-dependent dispersal is difficult to assess, yet can impact the genetic variation of natural populations and their fitness. In this work, we demonstrate a high immigration rate of barn owls (Tyto alba) inside a Swiss population surveyed during 15 years. Using ten microsatellite loci as an indirect method to characterize dispersal, two-third of the genetic tests failed to detect a female-biased dispersal, and Monte Carlo simulations confirmed a low statistical power to detect sex-biased dispersal in case of high dispersal rate of both sexes. The capture-recapture data revealed a female-biased dispersal associated with an excess of heterozygote for the melanocortin-1 receptor gene (MC1R), which is responsible for their ventral rufous coloration. Thus, female homozygotes for the MC1RWHITE allele might be negatively selected during dispersal. Despite the higher immigration of females that are heterozygote at MC1R, non-random gene flow should not lead to a migration load regarding this gene because we did not detect an effect of MC1R on survival and reproductive success in our local population. The present study highlights the usefulness of using multiple methods to correctly decrypt dispersal and gene flow. Moreover, despite theoretical expectations, we show that non-random dispersal of particular genotypes does not necessarily lead to migration load in recipient populations.
Collapse
|
8
|
Ducret V, Gaigher A, Simon C, Goudet J, Roulin A. Sex-specific allelic transmission bias suggests sexual conflict at MC1R. Mol Ecol 2016; 25:4551-63. [PMID: 27480981 DOI: 10.1111/mec.13781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 02/03/2023]
Abstract
Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages.
Collapse
Affiliation(s)
- Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland.
| | - Arnaud Gaigher
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
9
|
Burri R, Antoniazza S, Gaigher A, Ducrest AL, Simon C, Fumagalli L, Goudet J, Roulin A. The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution 2015; 70:140-53. [DOI: 10.1111/evo.12824] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/08/2015] [Accepted: 11/09/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Sylvain Antoniazza
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
- Swiss Ornithological Institute; Seerose 1 CH-6204 Sempach Switzerland
| | - Arnaud Gaigher
- Laboratory for Conservation Biology, Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Céline Simon
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore CH-1015 Lausanne Switzerland
| | | |
Collapse
|
10
|
Roulin A, Jensen H. Sex-linked inheritance, genetic correlations and sexual dimorphism in three melanin-based colour traits in the barn owl. J Evol Biol 2015; 28:655-66. [PMID: 25656218 DOI: 10.1111/jeb.12596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 02/03/2023]
Abstract
Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits.
Collapse
Affiliation(s)
- A Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
11
|
Roulin A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol Rev Camb Philos Soc 2015; 91:328-48. [PMID: 25631160 DOI: 10.1111/brv.12171] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/30/2014] [Accepted: 12/11/2014] [Indexed: 02/03/2023]
Abstract
The signalling function of melanin-based colouration is debated. Sexual selection theory states that ornaments should be costly to produce, maintain, wear or display to signal quality honestly to potential mates or competitors. An increasing number of studies supports the hypothesis that the degree of melanism covaries with aspects of body condition (e.g. body mass or immunity), which has contributed to change the initial perception that melanin-based colour ornaments entail no costs. Indeed, the expression of many (but not all) melanin-based colour traits is weakly sensitive to the environment but strongly heritable suggesting that these colour traits are relatively cheap to produce and maintain, thus raising the question of how such colour traits could signal quality honestly. Here I review the production, maintenance and wearing/displaying costs that can generate a correlation between melanin-based colouration and body condition, and consider other evolutionary mechanisms that can also lead to covariation between colour and body condition. Because genes controlling melanic traits can affect numerous phenotypic traits, pleiotropy could also explain a linkage between body condition and colouration. Pleiotropy may result in differently coloured individuals signalling different aspects of quality that are maintained by frequency-dependent selection or local adaptation. Colouration may therefore not signal absolute quality to potential mates or competitors (e.g. dark males may not achieve a higher fitness than pale males); otherwise genetic variation would be rapidly depleted by directional selection. As a consequence, selection on heritable melanin-based colouration may not always be directional, but mate choice may be conditional to environmental conditions (i.e. context-dependent sexual selection). Despite the interest of evolutionary biologists in the adaptive value of melanin-based colouration, its actual role in sexual selection is still poorly understood.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Delhey K, Smith J, Peters A. Colour-variable birds have broader ranges, wider niches and are less likely to be threatened. J Evol Biol 2013; 26:1559-68. [PMID: 23663162 DOI: 10.1111/jeb.12157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/28/2013] [Accepted: 03/15/2013] [Indexed: 11/30/2022]
Abstract
Coloration fulfils a variety of adaptive functions in animals. Colour variability, both between and within species, can be caused by different colours being favoured for different functions and in different environments. Thus, species with highly variable coloration may have greater potential to persist in new and changing environments. As a consequence, such colour-variable species may be more able to adapt, colonize new areas and niches, occupy larger ranges, speciate more readily and in general be less vulnerable to environmental change and extinction. These predictions have been supported by comparative analyses on amphibians and reptiles. However, as coloration in ectotherms plays a key role in thermoregulation, it is unclear whether these results can be generalized to endotherms, such as birds and mammals. Here, we test the hypothesis that more colour-variable endotherms occupy larger ranges/niches and are less vulnerable to the threat of extinction by focussing on colour variation in Australian parrots and passerine birds. As predicted, colour variability was correlated with range size (parrots and passerines) and niche breadth (dietary heterogeneity, parrots only). These relationships support the predicted link between colour variability and adaptability, whereby range size and niche breadth may be a cause of colour variability or vice versa. Irrespective, and as predicted, colour variability was lower in threatened species, even after statistically controlling for other confounding variables. Hence, our study supports the hypothesis that colour-variable species in general are more resilient to environmental change.
Collapse
Affiliation(s)
- K Delhey
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
13
|
Roulin A, Ducrest AL. Genetics of colouration in birds. Semin Cell Dev Biol 2013; 24:594-608. [PMID: 23665152 DOI: 10.1016/j.semcdb.2013.05.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 04/19/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023]
Abstract
Establishing the links between phenotype and genotype is of great importance for resolving key questions about the evolution, maintenance and adaptive function of phenotypic variation. Bird colouration is one of the most studied systems to investigate the role of natural and sexual selection in the evolution of phenotypic diversity. Given the recent advances in molecular tools that allow discovering genetic polymorphisms and measuring gene and protein expression levels, it is timely to review the literature on the genetics of bird colouration. The present study shows that melanin-based colour phenotypes are often associated with mutations at melanogenic genes. Differences in melanin-based colouration are caused by switches of eumelanin to pheomelanin production or by changes in feather keratin structure, melanoblast migration and differentiation, as well as melanosome structure. Similar associations with other types of colourations are difficult to establish, because our knowledge about the molecular genetics of carotenoid-based and structural colouration is quasi inexistent. This discrepancy stems from the fact that only melanin-based colouration shows pronounced heritability estimates, i.e. the resemblance between related individuals is usually mainly explained by genetic factors. In contrast, the expression of carotenoid-based colouration is phenotypically plastic with a high sensitivity to variation in environmental conditions. It therefore appears that melanin-based colour traits are prime systems to understand the genetic basis of phenotypic variation. In this context, birds have a great potential to bring us to new frontiers where many exciting discoveries will be made on the genetics of phenotypic traits, such as colouration. In this context, a major goal of our review is to suggest a number of exciting future avenues.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
14
|
Roulin A, Mangels J, Wakamatsu K, Bachmann T. Sexually dimorphic melanin-based colour polymorphism, feather melanin content, and wing feather structure in the barn owl (Tyto alba). Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution; Université de Lausanne; Lausanne; Switzerland
| | - Jule Mangels
- Institute for Fluid Mechanics and Aerodynamics; Technische Universität Darmstadt; Darmstadt; Germany
| | - Kazumasa Wakamatsu
- Department of Chemistry; School of Health Sciences; Fujita Health University; Toyoake; Aichi; Japan
| | - Thomas Bachmann
- Institute for Fluid Mechanics and Aerodynamics; Technische Universität Darmstadt; Darmstadt; Germany
| |
Collapse
|
15
|
van den Brink V, Dreiss AN, Roulin A. Melanin-based coloration predicts natal dispersal in the barn owl, Tyto alba. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|