1
|
Sankar M, Kryvi H, Fraser TWK, Philip AJP, Remø S, Hansen TJ, Witten PE, Fjelldal PG. A new method for regionalization of the vertebral column in salmonids based on radiographic hallmarks. JOURNAL OF FISH BIOLOGY 2024; 105:1189-1199. [PMID: 39034462 DOI: 10.1111/jfb.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
Current procedures to establish vertebral column regionalization (e.g., histology) in fish are time consuming and difficult to apply. The aim of this study was to develop a more rapid and accurate radiology-based method for Atlantic salmon (Salmo salar). A detailed analysis of 90 animals (4 kg) led to the establishment of region-specific radiographic hallmarks. To elucidate its transferability to other salmonid species, radiography was carried out in brown trout (Salmo trutta), Arctic char (Salvelinus alpinus), rainbow trout (Oncorhynchus mykiss), pink salmon (Oncorhynchus gorbuscha), and Chinook salmon (Oncorhynchus tshawytscha). This method was also evaluated for whole ungutted fish. The vertebral column of Atlantic salmon can be subdivided into five regions (R1-R5) based on anatomy: postcranial (R1, V1, and V2), abdominal (R2, V3-V26), transitional (R3, V27-V36), caudal (R4, V37-V53), and ural (R5, V54-V59). The following specific radiographic hallmarks allow the identification of regions: (i) lack of ribs in R1, (ii) modified parapophysis of the first vertebra of R3, (iii) prominent hemal spine of the first vertebra of R4, and (iv) the separated hemal spine of the most cranial pre-ural vertebra of R5. These hallmarks were all transferable to the other salmonid species assessed. The results include a further description of various region-specific characteristics in Atlantic salmon. The method was found applicable for sedated/whole ungutted fish, verifying it as quick and easy compared to other regionalization methods. The regions defined by radiology in this study agree with the vertebral column regions recently defined for Chinook salmon (O. tshawytscha). Thus, and considering the results of this study on various salmonid species, the currently developed regionalization protocol can be generally used for salmonids.
Collapse
Affiliation(s)
- Murugesan Sankar
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas W K Fraser
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | | | - Sofie Remø
- Feed and Nutrition, Institute of Marine Research (IMR), Bergen, Norway
| | - Tom J Hansen
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Paul Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Per Gunnar Fjelldal
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| |
Collapse
|
2
|
Niu M, Whang H, Wu Z, Jiang S, Chen L. Deletion of Asb15b gene can lead to a significant decrease in zebrafish intermuscular bone. Gene 2024; 923:148561. [PMID: 38754570 DOI: 10.1016/j.gene.2024.148561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Intermuscular bones, which are present in numerous economically significant fish species, have a negative impact on the development of aquaculture. The Asb15b gene, primarily expressed in skeletal muscle, plays a crucial role in regulating protein turnover and the development of muscle fibers. It stimulates protein synthesis and controls the differentiation of muscle fibers. In this study, we employed CRISPR/Cas9 technology to generate homozygous zebrafish strains with 7 bp and 49 bp deletions in the Asb15b gene. Subsequent analyses using skeleton staining demonstrated a substantial reduction in the number of intermuscular bones in adult Asb15b-/- -7 bp and Asb15b-/- -49 bp mutants compared to the wild-type zebrafish, with decreases of 30 % (P < 0.001) and 40 % (P < 0.0001), respectively. Histological experiments further revealed that the diameter and number of muscle fibers in adult Asb15b-/- mutants did not exhibit significant changes when compared to wild-type zebrafish. Moreover, qRT-PCR experiments demonstrated significant differences in the expression of bmp6 and runx2b genes, which are key regulators of intermuscular bone development, during different stages of intermuscular bone development in Asb15b-/- mutants. This study strongly suggests that the Asb15b gene plays a crucial role in regulating intermuscular bone development in fish and lays the groundwork for further exploration of the role of the Asb15b gene in zebrafish intermuscular bone development.
Collapse
Affiliation(s)
- Minghui Niu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Huamin Whang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Zhichao Wu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Shouwen Jiang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China
| | - Liangbiao Chen
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Fishery Germplasm Resources Exploration and Utilization, Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
3
|
Jawad LA, Dizaj LP, Esmaeili HR. Osteological features of some clupeid fishes (Teleostei: Clupeiformes) of Iran. Anat Histol Embryol 2024; 53:e13070. [PMID: 39031825 DOI: 10.1111/ahe.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 07/22/2024]
Abstract
This paper presents the conclusions of a comparative analysis of six osteological features: the Structure of the vertebral column, the morphology of the predorsal bones, the vertebral column regionalization, the pterygiophore interdigitation with neural spines of dorsal fin, the pterygiophores interdigitation of with the haemal spines of the anal fin, and the intermuscular bones (IMB) and hypomerals (HM) of 12 clupeid species of the families Alosidae, Dorosomatidae, Dussumieridae and Ehiravidae. Conceivable taxonomically beneficial osteological features are nominated and utilized to discrete the clupeid species explored. Formulae for the structure of the vertebral column, the dorsal- and anal-fin pterygiophores' interdigitation with the neural and haemal spines of the vertebrae are established. These morphological descriptive traits disclose a morphotype that may be related to the mode of swimming of the species searched. The morphological study of the vertebral column of the species in question permits the division of this bony structure into six morphologically different regions. This regionalization is more intricate than the classical division in abdominal and caudal parts only.
Collapse
Affiliation(s)
- Laith A Jawad
- School of Environmental and Animal Sciences, Unitec Institute of Technology, Auckland, New Zealand
| | - Leyli Purrafee Dizaj
- Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| | - Hamid Reza Esmaeili
- Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Zhou Z, Leng C, Wang Z, Long L, Lv Y, Gao Z, Wang Y, Wang S, Li P. The potential regulatory role of the lncRNA-miRNA-mRNA axis in teleost fish. Front Immunol 2023; 14:1065357. [PMID: 36895573 PMCID: PMC9988957 DOI: 10.3389/fimmu.2023.1065357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Research over the past two decades has confirmed that noncoding RNAs (ncRNAs), which are abundant in cells from yeast to vertebrates, are no longer "junk" transcripts but functional regulators that can mediate various cellular and physiological processes. The dysregulation of ncRNAs is closely related to the imbalance of cellular homeostasis and the occurrence and development of various diseases. In mammals, ncRNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to serve as biomarkers and intervention targets in growth, development, immunity, and disease progression. The regulatory functions of lncRNAs on gene expression are usually mediated by crosstalk with miRNAs. The most predominant mode of lncRNA-miRNA crosstalk is the lncRNA-miRNA-mRNA axis, in which lncRNAs act as competing endogenous RNAs (ceRNAs). Compared to mammals, little attention has been given to the role and mechanism of the lncRNA-miRNA-mRNA axis in teleost species. In this review, we provide current knowledge about the teleost lncRNA-miRNA-mRNA axis, focusing on its physiological and pathological regulation in growth and development, reproduction, skeletal muscle, immunity to bacterial and viral infections, and other stress-related immune responses. Herein, we also explored the potential application of the lncRNA-miRNA-mRNA axis in the aquaculture industry. These findings contribute to an enhanced understanding of ncRNA and ncRNA-ncRNA crosstalk in fish biology to improve aquaculture productivity, fish health and quality.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Cuibo Leng
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Zhan Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yiju Lv
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Yu J, Guo L, Zhang SH, Zhu QY, Chen RY, Wong BH, Ding GH, Chen J. Transcriptomic analysis of intermuscular bone development in barbel steed (Hemibarbus labeo). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101030. [PMID: 36343604 DOI: 10.1016/j.cbd.2022.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Intermuscular bones (IBs), which are little, bony spicules in muscle, are embedded in lower teleosts' myosepta. Despite the importance of studying IB development in freshwater aquaculture species, the genes associated with IB development need to be further explored. In the present study, we identified four stages of IB development in barbel steed (Hemibarbus labeo), namely stage 1: IBs have not emerged, stage 2: a few small IBs have emerged in the tail, stage 3: longer IBs gradually emerged in the tail and stage 4: all of the IBs in the tail are mature and long, via Alizarin red staining. Subsequently, we used the HiseqXTen platform to sequence and de novo assemble the transcriptome of epaxial muscle (between 35th and 40th myomere) of barbel steed at 29 days (stage 1) and 42 days (stage 3) after hatching. A total of 190,814 unigenes were obtained with an average length and N50 of 648 bp and 1027 bp, respectively. We found 2174 differentially expressed genes (DEGs) between stages 1 and 3, of which 378 and 1796 were up- and down-regulated, respectively. Functional enrichment analysis showed that several DEGs functioned in ossification, positive regulation of osteoblast differentiation, osteoblast differentiation, and BMP signaling pathway, and were further enriched in signal pathway, including osteoclast differentiation, TGF-β signaling pathway, cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, and other KEEG pathways. In conclusion, we identified genes that may be related to IB development, such as kazal type serine peptidase inhibitor domain 1 (KAZALD1), extracellular matrix protein 1 (ECM1), tetranectin, bone morphogenetic protein 1 (bmp1), acid phosphatase 5 (ACP5), collagen type XI alpha 1 chain (COL11A1), matrix metallopeptidase 9 (MMP9), pannexin-3 (PANX3), sp7 transcription factor (Sp7), and c-x-c motif chemokine ligand 8 (CXCL8), by comparing the transcriptomes of epaxial muscle before and after IB ossification. This study provided a theoretical basis for identifying the molecular mechanisms underlying IB development in fish.
Collapse
Affiliation(s)
- Jing Yu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Ling Guo
- College of Ecology, Lishui University, Lishui 323000, China
| | - Si-Hai Zhang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Qun-Yin Zhu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Ru-Yi Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Boon Hui Wong
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
| | - Guo-Hua Ding
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jie Chen
- College of Ecology, Lishui University, Lishui 323000, China.
| |
Collapse
|
6
|
Nie CH, Wan SM, Chen YL, Huysseune A, Wu YM, Zhou JJ, Hilsdorf AWS, Wang WM, Witten PE, Lin Q, Gao ZX. Single-cell transcriptomes and runx2b-/- mutants reveal the genetic signatures of intermuscular bone formation in zebrafish. Natl Sci Rev 2022; 9:nwac152. [PMID: 36478733 PMCID: PMC9718792 DOI: 10.1093/nsr/nwac152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 01/17/2023] Open
Abstract
Intermuscular bones (IBs) are mineralized spicules, present in the myosepta of many, but not all, teleost species. IBs are often small and sharp, and they consequently limit how the fish can be processed; the IBs may cause injury or trauma if lodged in consumers' throats or mouths, and therefore affect the appeal of the fish to many consumers. The development of IBs in teleosts is still not fully understood and the molecular basis of IB development remains to be established. Here, the characteristics of IB tissue are evaluated based on single-cell transcriptomics in wild-type zebrafish. The analysis defined 18 distinct cell types. Differentiation trajectories showed that IBs are derived from tendons and that a core tendon-osteoblast cell lineage is related to IB formation. In particular, the functions of 10 candidate genes were evaluated via CRISPR-Cas9 mutants. Among those, runx2b-/- mutants completely lost IBs, while swimming performance, growth and bone mineral density were not significantly different from runx2b+/+ zebrafish. Comparative single-cell RNA sequencing (scRNA-seq) analysis in runx2b-/- and runx2b+/+ zebrafish revealed the role of osteoblasts in IB formation. In addition, differentially expressed genes were enriched in the transforming growth factor β/bone morphogenetic protein (TGF-β/BMP) pathway after runx2b deletion. This study provides evidence for the crucial role of runx2b regulation in IB formation. Genetic breeding can target runx2b regulation and generate strains of commercial fish species without IBs, which can improve the safe consumption and economic value of many farmed fish species.
Collapse
Affiliation(s)
| | | | | | - Ann Huysseune
- Department of Biology, Ghent University, Ghent B-9000, Belgium
| | - Ya-Ming Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jia-Jia Zhou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | | | - Wei-Min Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | | | | | | |
Collapse
|
7
|
Schnell NK, Kriwet J, López‐Romero FA, Lecointre G, Pfaff C. Musculotendinous system of mesopelagic fishes: Stomiiformes (Teleostei). J Anat 2022; 240:1095-1126. [PMID: 34927245 PMCID: PMC9119618 DOI: 10.1111/joa.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022] Open
Abstract
Every night the greatest migration on Earth starts in the deep pelagic oceans where organisms move up to the meso- and epipelagic to find food and return to the deeper zones during the day. One of the dominant fish taxa undertaking vertical migrations are the dragonfishes (Stomiiformes). However, the functional aspects of locomotion and the architecture of the musculotendinous system (MTS) in these fishes have never been examined. In general, the MTS is organized in segmented blocks of specific three-dimensional 'W-shaped' foldings, the myomeres, separated by thin sheets of connective tissue, the myosepta. Within a myoseptum characteristic intermuscular bones or tendons may be developed. Together with the fins, the MTS forms the functional unit for locomotion in fishes. For this study, microdissections of cleared and double stained specimens of seven stomiiform species (Astronesthes sp., Chauliodus sloani, Malacosteus australis, Eustomias simplex, Polymetme sp., Sigmops elongatus, Argyropelecus affinis) were conducted to investigate their MTS. Soft tissue was investigated non-invasively in E. schmidti using a micro-CT scan of one specimen stained with iodine. Additionally, classical histological serial sections were consulted. The investigated stomiiforms are characterized by the absence of anterior cones in the anteriormost myosepta. These cones are developed in myosepta at the level of the dorsal fin and elongate gradually in more posterior myosepta. In all but one investigated stomiiform taxon the horizontal septum is reduced. The amount of connective tissue in the myosepta is very low anteriorly, but increases gradually with body length. Red musculature overlies laterally the white musculature and exhibits strong tendons in each myomere within the muscle bundles dorsal and ventral to the horizontal midline. The amount of red musculature increases immensely towards the caudal fin. The elongated lateral tendons of the posterior body segments attach in a highly complex pattern on the caudal-fin rays, which indicates that the posterior most myosepta are equipped for a multisegmental force transmission towards the caudal fin. This unique anatomical condition might be essential for steady swimming during diel vertical migrations, when prey is rarely available.
Collapse
Affiliation(s)
- Nalani K. Schnell
- Institut Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSUEPHEUAConcarneauFrance
| | - Jürgen Kriwet
- Department of PalaeontologyUniversity of ViennaViennaAustria
| | | | - Guillaume Lecointre
- Institut Systématique, Evolution, Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRSSUEPHEUAParisFrance
| | - Cathrin Pfaff
- Department of PalaeontologyUniversity of ViennaViennaAustria
| |
Collapse
|
8
|
Nie C, Wan S, Chen Y, Zhu D, Wang X, Dong X, Gao ZX. Loss of scleraxis leads to distinct reduction of mineralized intermuscular bone in zebrafish. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Chen Y, Wan S, Li Q, Dong X, Diao J, Liao Q, Wang GY, Gao ZX. Genome-Wide Integrated Analysis Revealed Functions of lncRNA-miRNA-mRNA Interaction in Growth of Intermuscular Bones in Megalobrama amblycephala. Front Cell Dev Biol 2021; 8:603815. [PMID: 33614620 PMCID: PMC7891300 DOI: 10.3389/fcell.2020.603815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Intermuscular bone (IB) occurs in the myosepta of teleosts. Its existence has an adverse influence on the edible and economic value of fish, especially for aquaculture species belonging to Cypriniformes. The growth mechanism of IBs is quite lacking. In this study, we firstly used single molecular real-time sequencing (SMRT) technology to improve the draft genome annotation and full characterization of the transcriptome for one typical aquaculture species, blunt snout bream (Megalobrama amblycephala). The long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression profiles in two IB growth stages (1 and 3 years old) were compared through transcriptome and degradome analyses. A total of 126 miRNAs, 403 mRNAs, and 353 lncRNAs were found to be differentially expressed between the two stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the significantly upregulated map2k6 and cytc in the MAPK/p53 signaling pathway and the significantly downregulated lama3 and thbs4b in the extracellular matrix (ECM)–receptor pathway may play a key regulatory role in IB growth. Bioinformatics analysis subsequently revealed 14 competing endogenous RNA (ceRNA) pairs related to the growth of IBs, consisting of 10 lncRNAs, 7 miRNAs, and 10 mRNAs. Of these, dre-miR-24b-3p and dre-miR-193b-3p are core regulatory factors interacting with four lncRNAs and three mRNAs, the interaction mechanism of which was also revealed by subsequent experiments at the cellular level. In conclusion, our data showed that IBs had higher activity of cell apoptosis and lower mineralization activity in IB_III compared to IB_I via interaction of MAPK/p53 and ECM–receptor signaling pathways. The downregulated zip1 interacted with miR-24a-3p and lnc017705, decreased osteoblast differentiation and Ca2+ deposition in the IB_III stage. Our identified functional mRNAs, lncRNAs, and miRNAs provide a data basis for in-depth elucidation of the growth mechanism of teleost IB.
Collapse
Affiliation(s)
- Yulong Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Shiming Wan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Qing Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan Xianfeng Aquaculture Technology Co. Ltd, Wuhan, China
| | - Xiaoru Dong
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Jinghan Diao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Qing Liao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Gui-Ying Wang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan Xianfeng Aquaculture Technology Co. Ltd, Wuhan, China
| | - Ze-Xia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, China
| |
Collapse
|
10
|
Nunes JRS, Pértille F, Andrade SCS, Perazza CA, Villela PMS, Almeida-Val VMF, Gao ZX, Coutinho LL, Hilsdorf AWS. Genome-wide association study reveals genes associated with the absence of intermuscular bones in tambaqui (Colossoma macropomum). Anim Genet 2020; 51:899-909. [PMID: 33006182 DOI: 10.1111/age.13001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 01/21/2023]
Abstract
The presence of intermuscular bones in fisheries products limits the consumption and commercialization potential of many fish species, including tambaqui (Colossoma macropomum). These bones have caused medical emergencies and are an undesirable characteristic for fish farming because their removal is labor-intensive during fish processing. Despite the difficulty in identifying genes related to the lack of intermuscular bone in diverse species of fish, the discovery of individuals lacking intermuscular bones in a Neotropical freshwater characiform fish has provided a unique opportunity to delve into the genetic mechanisms underlying the pathways of intermuscular bone formation. In this study, we carried out a GWAS among boneless and wt tambaqui populations to identify markers associated with a lack of intermuscular bone. After analyzing 11 416 SNPs in 360 individuals (12 boneless and 348 bony), we report 675 significant (Padj < 0.003) associations for this trait. Of those, 13 associations were located near candidate genes related to the reduction of bone mass, promotion of bone formation, inhibition of bone resorption, central control of bone remodeling, bone mineralization and other related functions. To the best of our knowledge, for the first time, we have successfully identified genes related to a lack of intermuscular bones using GWAS in a non-model species.
Collapse
Affiliation(s)
- J R S Nunes
- Nature and Culture Institute, Federal University of Amazon (UFAM), Benjamin Constant, Amazonas, 69630-000, Brazil.,Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - F Pértille
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil.,Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58 183, Sweden
| | - S C S Andrade
- Genetics and Evolutionary Biology Department, University of São Paulo (USP)/Bioscience Institute (IB), São Paulo, São Paulo, 05508-090, Brazil
| | - C A Perazza
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, São Paulo, 08780-911, Brazil
| | - P M S Villela
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - V M F Almeida-Val
- Brazilian National Institute for Research of the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Manaus, Amazonas, 69067-375, Brazil
| | - Z-X Gao
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Hongshan District, Wuhan, 430070, China
| | - L L Coutinho
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - A W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, São Paulo, 08780-911, Brazil
| |
Collapse
|
11
|
Chen J, Chen X, Huang X, Huang G, Gao Z, Wang W, Liu H. Genome-wide analysis of intermuscular bone development reveals changes of key genes expression and signaling pathways in blunt snout bream (Megalobrama amblycephala). Genomics 2020; 113:654-663. [PMID: 33011328 DOI: 10.1016/j.ygeno.2020.09.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
Intermuscular bone (IB) is a hard-boned spicule exist in lower teleost, which brings a lot of detrimental effects on palatability and economic value of blunt snout bream (Megalobrama amblycephala). Masson trichrome staining for ossific IB indicated that some osteoblasts appeared at the edge of the bone matrix and a few osteocytes are present in the center of the mineralized bone matrix. By comparing the orthologous gene families of fish with IBs and without IBs, we screened the key signaling pathways associated with IB formation. Furthermore, the transcriptomic data demonstrated the functional importance of these gene families. The candidate genes involved in chondrocyte development were highly expressed in stage 1 compared with stage 2 and stage 3, suggesting that the development process of IB might mainly involve in intramembranous ossification. Our research reveals the molecular mechanism of IBs formation, and provides molecular evidence for the further study on intermuscular boneless stains.
Collapse
Affiliation(s)
- Jing Chen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning 530021, China
| | - Xin Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guanghua Huang
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning 530021, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
12
|
Crawford CH, Randall ZS, Hart PB, Page LM, Chakrabarty P, Suvarnaraksha A, Flammang BE. Skeletal and muscular pelvic morphology of hillstream loaches (Cypriniformes: Balitoridae). J Morphol 2020; 281:1280-1295. [PMID: 32790104 DOI: 10.1002/jmor.21247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/19/2020] [Accepted: 07/18/2020] [Indexed: 12/28/2022]
Abstract
The rheophilic hillstream loaches (Balitoridae) of South and Southeast Asia possess a range of pelvic girdle morphologies, which may be attributed to adaptations for locomotion against rapidly flowing water. Specifically, the connectivity of the pelvic plate (basipterygium) to the vertebral column via a sacral rib, and the relative size and shape of the sacral rib, fall within a spectrum of three discrete morphotypes: long, narrow rib that meets the basipterygium; thicker, slightly curved rib meeting the basipterygium; and robust crested rib interlocking with the basipterygium. Species in this third category with more robust sacral rib connections between the basipterygium and vertebral column are capable of walking out of water with a tetrapod-like lateral-sequence, diagonal-couplet gait. This behavior has not been observed in species lacking direct skeletal connection between the vertebrae and the pelvis. The phylogenetic positions of the morphotypes were visualized by matching the morphological features onto a novel hypothesis of relationships for the family Balitoridae. The morphotypes determined through skeletal morphology were correlated with patterns observed in the pelvic muscle morphology of these fishes. Transitions towards increasingly robust pelvic girdle attachment were coincident with a more anterior origin on the basipterygium and more lateral insertion of the muscles on the fin rays, along with a reduction of the superficial abductors and adductors with more posterior insertions. These modifications are expected to provide a mechanical advantage for generating force against the ground. Inclusion of the enigmatic cave-adapted balitorid Cryptotora thamicola into the most data-rich balitorid phylogeny reveals its closest relatives, providing insight into the origin of the skeletal connection between the axial skeleton and basipterygium.
Collapse
Affiliation(s)
- Callie H Crawford
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Zachary S Randall
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Pamela B Hart
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lawrence M Page
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Prosanta Chakrabarty
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Apinun Suvarnaraksha
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, Thailand
| | - Brooke E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
13
|
Yang G, Qin Z, Kou H, Liang R, Zhao L, Jiang S, Lin L, Zhang K. A Comparative Genomic and Transcriptional Survey Providing Novel Insights into Bone Morphogenetic Protein 2 ( bmp2) in Fishes. Int J Mol Sci 2019; 20:E6137. [PMID: 31817477 PMCID: PMC6940749 DOI: 10.3390/ijms20246137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Intermuscular bones (IBs) are only found in the muscles of fish. Bone morphogenetic protein 2 (bmp2) is considered to be the most active single osteogenesis factor. It promotes cell proliferation and differentiation during bone repair, as well as inducing the formation of bones and cartilages in vivo. However, detailed investigations of this family in fish are incredibly limited. Here, we have used a variety of published and unpublished bmp2 sequences for teleosts and cartilage fish in order to explore and expand our understanding of bmp2 genes in fish. Our results confirmed that teleost genomes contain two or more bmp2 genes, and the diversity of bmp2 genes in vertebrates appears to be as a result of a combination of whole genome duplication (WGD) and gene loss. Differences were also observed in tissue distribution and relative transcription abundance of the bmp2s through a transcriptomic analysis. Our data also indicated that bmp2b may play an important role in the formation of IBs in teleosts. In addition, protein sequence alignments and 3D structural predictions of bmp2a and bmp2b supported their similar roles in fishes. To summarize, our existing work provided novel insights into the bmp2 family genes in fishes through a mixture of comparative genomic and transcriptomic analysis.
Collapse
Affiliation(s)
- Guang Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Rishen Liang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Shoujia Jiang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China;
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
| | - Kai Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (G.Y.); (Z.Q.); (R.L.); (L.Z.)
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong 93117, China
| |
Collapse
|
14
|
Nie CH, Wan SM, Liu YL, Liu H, Wang WM, Gao ZX. Development of Teleost Intermuscular Bones Undergoing Intramembranous Ossification Based on Histological-Transcriptomic-Proteomic Data. Int J Mol Sci 2019; 20:E4698. [PMID: 31546739 PMCID: PMC6801895 DOI: 10.3390/ijms20194698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Intermuscular bones (IBs) specially exist in lower teleost fish and the molecular mechanism for its development remains to be clarified. In this study, different staining methods and comparative proteomics were conducted to investigate the histological structure and proteome of IB development in Megalobrama amblycephala, including four key IB developmental stages (S1-IBs have not emerged in the tail part; S2-several small IBs started to ossify in the tail part; S3-IBs appeared rapidly; S4-all the IBs appeared with mature morphology). Alcian blue and alizarin red S stained results indicated that IBs were gradually formed from S2 to S4, undergoing intramembranous ossification without a cartilaginous phase. A total of 3368 proteins were identified by using the isobaric tags for relative and absolute quantitation (iTRAQ) approach. Functional annotation showed that proteins which were differentially expressed among stages were involved in calcium, MAPK, Wnt, TGF-β, and osteoclast pathways which played a critical role in bone formation and differentiation. Three proteins (collagen9α1, stat1, tnc) associated with chondrocytes did not exhibit significant changes through S2 to S4; however, proteins (entpd5, casq1a, pvalb, anxa2a, anxa5) which associated with osteoblasts and bone formation and differentiation showed significantly a higher expression level from S1 to S2, as well as to S3 and S4. These further demonstrated that development of IBs did not go through a cartilaginous phase. The inhibitors of TGF-β and Wnt pathways were tested on zebrafish (sp7/eGFP) and the results indicated that both inhibitors significantly delayed IB development. This study provides a comprehensive understanding of the IB ossification pattern, which will help further elucidate the molecular mechanisms for IB development in teleosts.
Collapse
Affiliation(s)
- Chun-Hong Nie
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China.
| | - Shi-Ming Wan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China.
| | - Yu-Long Liu
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA.
| | - Han Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China.
| | - Wei-Min Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China.
| | - Ze-Xia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China.
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Liu H, Chen C, Gao Z, Min J, Gu Y, Jian J, Jiang X, Cai H, Ebersberger I, Xu M, Zhang X, Chen J, Luo W, Chen B, Chen J, Liu H, Li J, Lai R, Bai M, Wei J, Yi S, Wang H, Cao X, Zhou X, Zhao Y, Wei K, Yang R, Liu B, Zhao S, Fang X, Schartl M, Qian X, Wang W. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet. Gigascience 2018; 6:1-13. [PMID: 28535200 PMCID: PMC5570040 DOI: 10.1093/gigascience/gix039] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/20/2017] [Indexed: 01/24/2023] Open
Abstract
The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunhai Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiumeng Min
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Yongming Gu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Jianbo Jian
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Xiewu Jiang
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Huimin Cai
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt D-60438, Germany
| | - Meng Xu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Xinhui Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Wei Luo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Boxiang Chen
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.,Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Junhui Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiang Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Ruifang Lai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingzhou Bai
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Jin Wei
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaokui Yi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Zhou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhua Zhao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaijian Wei
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruibin Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingnan Liu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Shancen Zhao
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Xiaodong Fang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Am Hubland, and Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg 97070, Germany.,Texas A&M Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xueqiao Qian
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
De Clercq A, Perrott MR, Davie PS, Preece MA, Wybourne B, Ruff N, Huysseune A, Witten PE. Vertebral column regionalisation in Chinook salmon, Oncorhynchus tshawytscha. J Anat 2017; 231:500-514. [PMID: 28762509 PMCID: PMC5603787 DOI: 10.1111/joa.12655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2017] [Indexed: 02/05/2023] Open
Abstract
Teleost vertebral centra are often similar in size and shape, but vertebral-associated elements, i.e. neural arches, haemal arches and ribs, show regional differences. Here we examine how the presence, absence and specific anatomical and histological characters of vertebral centra-associated elements can be used to define vertebral column regions in juvenile Chinook salmon (Oncorhynchus tshawytscha). To investigate if the presence of regions within the vertebral column is independent of temperature, animals raised at 8 and 12 °C were studied at 1400 and 1530 degreedays, in the freshwater phase of the life cycle. Anatomy and composition of the skeletal tissues of the vertebral column were analysed using Alizarin red S whole-mount staining and histological sections. Six regions, termed I-VI, are recognised in the vertebral column of specimens of both temperature groups. Postcranial vertebrae (region I) carry neural arches and parapophyses but lack ribs. Abdominal vertebrae (region II) carry neural arches and ribs that articulate with parapophyses. Elastic- and fibrohyaline cartilage and Sharpey's fibres connect the bone of the parapophyses to the bone of the ribs. In the transitional region (III) vertebrae carry neural arches and parapophyses change stepwise into haemal arches. Ribs decrease in size, anterior to posterior. Vestigial ribs remain attached to the haemal arches with Sharpey's fibres. Caudal vertebrae (region IV) carry neural and haemal arches and spines. Basidorsals and basiventrals are small and surrounded by cancellous bone. Preural vertebrae (region V) carry neural and haemal arches with modified neural and haemal spines to support the caudal fin. Ural vertebrae (region VI) carry hypurals and epurals that represent modified haemal and neural arches and spines, respectively. The postcranial and transitional vertebrae and their respective characters are usually recognised, but should be considered as regions within the vertebral column of teleosts because of their distinctive morphological characters. While the number of vertebrae within each region can vary, each of the six regions is recognised in specimens of both temperature groups. This refined identification of regionalisation in the vertebral column of Chinook salmon can help to address evolutionary developmental and functional questions, and to support applied research into this farmed species.
Collapse
Affiliation(s)
- A. De Clercq
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
- Evolutionary Developmental BiologyGhent UniversityGhentBelgium
| | - M. R. Perrott
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | - P. S. Davie
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | | | - B. Wybourne
- Skretting AustraliaRosny ParkTasmaniaAustralia
| | - N. Ruff
- Skretting AustraliaRosny ParkTasmaniaAustralia
| | - A. Huysseune
- Evolutionary Developmental BiologyGhent UniversityGhentBelgium
| | - P. E. Witten
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
- Evolutionary Developmental BiologyGhent UniversityGhentBelgium
| |
Collapse
|
17
|
Pfaff C, Zorzin R, Kriwet J. Evolution of the locomotory system in eels (Teleostei: Elopomorpha). BMC Evol Biol 2016; 16:159. [PMID: 27514517 PMCID: PMC4981956 DOI: 10.1186/s12862-016-0728-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022] Open
Abstract
Background Living anguilliform eels represent a distinct clade of elongated teleostean fishes inhabiting a wide range of habitats. Locomotion of these fishes is highly influenced by the elongated body shape, the anatomy of the vertebral column, and the corresponding soft tissues represented by the musculotendinous system. Up to now, the evolution of axial elongation in eels has been inferred from living taxa only, whereas the reconstruction of evolutionary patterns and functional ecology in extinct eels still is scarce. Rare but excellently preserved fossil eels from the Late Cretaceous and Cenozoic were investigated here to gain a better understanding of locomotory system evolution in anguilliforms and, consequently, their habitat occupations in deep time. Results The number of vertebrae in correlation with the body length separates extinct and extant anguilliforms. Even if the phylogenetic signal cannot entirely be excluded, the analyses performed here reveal a continuous shortening of the vertebral column with a simultaneous increase in vertebral numbers in conjunction with short lateral tendons throughout the order. These anatomical changes contradict previous hypotheses based on extant eels solely. Conclusions The body curvatures of extant anguilliforms are highly flexible and can be clearly distinguished from extinct species. Anatomical changes of the vertebral column and musculotendinous system through time and between extinct and extant anguilliforms correlate with changes of the body plan and swimming performance and reveal significant shifts in habitat adaptation and thus behaviour. Evolutionary changes in the skeletal system of eels established here also imply that environmental shifts were triggered by abiotic rather than biotic factors (e.g., K/P boundary mass extinction event). Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0728-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Faculty of Earth Sciences, Geozentrum, UZA II, Althanstraße 14, 1090, Vienna, Austria.
| | - Roberto Zorzin
- Museo civico di Storia Naturale, Palazzo Pompei, Lungadige Porta Vittoria 9, 37129, Verona, Italy
| | - Jürgen Kriwet
- Department of Palaeontology, University of Vienna, Faculty of Earth Sciences, Geozentrum, UZA II, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
18
|
Yao W, Lv Y, Gong X, Wu J, Bao B. Different ossification patterns of intermuscular bones in fish with different swimming modes. Biol Open 2015; 4:1727-32. [PMID: 26603470 PMCID: PMC4736024 DOI: 10.1242/bio.012856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intermuscular bones are found in the myosepta in teleosts. However, there is very little information on the development and ossification of these intermuscular bones. In this study, we performed an in-depth investigation of the ossification process during development in zebrafish (Danio rerio) and Japanese eel (Anguilla japonica). In Japanese eel, a typical anguilliform swimmer, the intermuscular bones ossified predominantly from the anterior to the posterior. By contrast, in the zebrafish, a sub-carangiform or carangiform swimmer, the intermuscular bones ossified predominantly from the posterior to the anterior regions of the fish. Furthermore, tail amputation affected the ossification of the intermuscular bones. The length of the intermuscular bones in the posterior area became significantly shorter in tail-amputated zebrafish and Japanese eels, and both had less active and lower swimming speeds; this indicates that swimming might induce the ossification of the intermuscular bones. Moreover, when a greater length of tail was amputated in the zebrafish, the intermuscular bones became even shorter. Tail amputation affected the length and ossification of intermuscular bones in the anterior part of the fish, close to the head, differently between the two fish: they became significantly shorter in the zebrafish, but did not in the Japanese eel. This might be because tail amputation did not significantly affect the undulations in the anterior of the Japanese eel, especially near the head. This study shows that the ossification of intermuscular bones might be induced through mechanical force loadings that are produced by swimming.
Collapse
Affiliation(s)
- Wenjie Yao
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Yaoping Lv
- College of Ecology, Lishui University, Lishui 323000, China
| | - Xiaoling Gong
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Jiaming Wu
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Baolong Bao
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| |
Collapse
|