1
|
Heath-Heckman E, Nishiguchi M. Leveraging Short-Read Sequencing to Explore the Genomics of Sepiolid Squid. Integr Comp Biol 2021; 61:1753-1761. [PMID: 34191015 DOI: 10.1093/icb/icab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their large size (∼3-5 Gb) and high repetitive content, the study of cephalopod genomes has historically been problematic. However, with the recent sequencing of several cephalopod genomes, including the Hawaiian bobtail squid (Euprymna scolopes), whole-genome studies of these molluscs are now possible. Of particular interest are the sepiolid or bobtail squids, many of which develop photophores in which bioluminescent bacterial symbionts reside. The variable presence of the symbiosis throughout the family allows us to determine regions of the genome that are under selection in symbiotic lineages, potentially providing a mechanism for identifying genes instrumental in the evolution of these mutualistic associations. To this end, we have used high-throughput sequencing to generate sequence from five bobtail squid genomes, four of which maintain symbioses with luminescent bacteria (E. hyllebergi, E. albatrossae, E. scolopes and Rondeletiola minor), and one of which does not (Sepietta neglecta). When we performed K-mer based heterozygosity and genome size estimations, we found that the Euprymna genus has a higher predicted genome size than other bobtail squid (∼ 5 Gb as compared to ∼ 4 Gb) and lower genomic heterozygosity. When we analyzed the repetitive content of the genomes, we found that genomes in the genus Euprymna appear to have recently acquired a significant quantity of LINE elements that are not found in its sister genus Rondeletiola or the closely related Sepietta. Using Abyss-2.0 and then Chromosomer with the published E. scolopes genome as a reference, we generated E. hyllebergi and E. albatrossae genomes of 1.54-1.57 Gb in size, but containing over 78-81% of eukaryotic single-copy othologs. The data we have generated will enable future whole-genome comparisons between these species to determine gene and regulatory content that differs between symbiotic and non-symbiotic lineages, as well as genes associated with symbiosis that are under selection.
Collapse
Affiliation(s)
| | - Michele Nishiguchi
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| |
Collapse
|
2
|
Chalifour B, Li J. A Review of the Molluscan Microbiome: Ecology, Methodology and Future. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bridget Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| |
Collapse
|
3
|
Gould AL, Fritts-Penniman A, Gaisiner A. Museum Genomics Illuminate the High Specificity of a Bioluminescent Symbiosis for a Genus of Reef Fish. Front Ecol Evol 2021; 9:630207. [PMID: 34485316 PMCID: PMC8412414 DOI: 10.3389/fevo.2021.630207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symbiotic relationships between bioluminescent bacteria and fishes have evolved multiple times across hundreds of fish taxa, but relatively little is known about the specificity of these associations and how stable they are over host generations. This study describes the degree of specificity of a bioluminescent symbiosis between cardinalfishes in the genus Siphamia and luminous bacteria in the Vibrio family. Primarily using museum specimens, we investigated the codivergence of host and symbiont and test for patterns of divergence that correlate with both biogeography and time. Contrary to expectations, we determined that the light organ symbionts of all 14 Siphamia species examined belong to one genetic clade of Photobacterium mandapamensis (Clade II), indicating that the association is highly specific and conserved throughout the host genus. Thus, we did not find evidence of codivergence among hosts and symbionts. We did observe that symbionts hosted by individuals sampled from colder water regions were more divergent, containing more than three times as many single nucleotide polymorphisms than the rest of the symbionts examined. Overall, our findings indicate that the symbiosis between Siphamia fishes and P. mandapamensis Clade II has been highly conserved across host taxa and over a broad geographic range despite the facultative nature of the bacterial symbiont. We also present a new approach to simultaneously recover genetic information from a bacterial symbiont and its vertebrate host from formalin-fixed specimens, enhancing the utility of museum collections.
Collapse
Affiliation(s)
- Alison L. Gould
- California Academy of Sciences, San Francisco, CA, United States
| | | | - Ana Gaisiner
- California Academy of Sciences, San Francisco, CA, United States
| |
Collapse
|
4
|
Chen J, Lu Y, Ye X, Emam M, Zhang H, Wang H. Current advances in Vibrio harveyi quorum sensing as drug discovery targets. Eur J Med Chem 2020; 207:112741. [PMID: 32871343 DOI: 10.1016/j.ejmech.2020.112741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Vibrio harveyi is a marine bacterial pathogen which infects a wide range of marine organisms and results in severe loss. Antibiotics have been used for prophylaxis and treatment of V. harveyi infection. However, antibiotic resistance is a major public health threat to both human and animals. Therefore, there is an urgent need for novel antimicrobial agents with new modes of action. In V. harveyi, many virulence factors production and bioluminescence formation depend on its quorum sensing (QS) network. Therefore, the QS system has been widely investigated as an effective potential target for the treatment of V. harveyi infection. This perspective focuses on the quorum sensing inhibitors (QSIs) of V. harveyi QS systems (LuxM/N, LuxS/PQ, and CqsA/S) and evaluates medicinal chemistry strategies.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yaojia Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mahmoud Emam
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
5
|
Draft Genome Sequence of a Harveyi Clade Bacterium Isolated from Lolliguncula brevis Squid. Microbiol Resour Announc 2020; 9:9/8/e00078-20. [PMID: 32079629 PMCID: PMC7033266 DOI: 10.1128/mra.00078-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio species of the Harveyi clade are commonly found in free-living and host-associated marine habitats. Here, we report the draft genome sequence for a Harveyi clade bacterium, Vibrio sp. strain LB10LO1, which was isolated from the Atlantic brief squid Lolliguncula brevis.
Collapse
|
6
|
Montánchez I, Kaberdin VR. Vibrio harveyi: A brief survey of general characteristics and recent epidemiological traits associated with climate change. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104850. [PMID: 32056705 DOI: 10.1016/j.marenvres.2019.104850] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Here we briefly review the major characteristics of the emerging pathogen Vibrio harveyi and discuss survival strategies and adaptation mechanisms underlying the capacity of this marine bacterium to thrive in natural and artificial aquatic settings. Recent studies suggest that some adaptation mechanisms can easily be acquired by V. harveyi and other members of the Vibrionaceae family owing to efficient horizontal gene transfer and elevated mutation rate. While discussing the main factors in charge of the expansion of Vibrio spp. habitats and concomitant spread of Vibrio-associated diseases under climate change, this review highlights the need for future studies able to address the joint impact of environmental and anthropogenic factors on the long-term dynamics and virulence of V. harveyi populations at the global scale.
Collapse
Affiliation(s)
- Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain.
| |
Collapse
|
7
|
Pacheco-Sandoval A, Schramm Y, Heckel G, Brassea-Pérez E, Martínez-Porchas M, Lago-Lestón A. The Pacific harbor seal gut microbiota in Mexico: Its relationship with diet and functional inferences. PLoS One 2019; 14:e0221770. [PMID: 31465508 PMCID: PMC6715212 DOI: 10.1371/journal.pone.0221770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Diet is a primary driver of the composition of gut microbiota and is considered one of the main routes of microbial colonization. Prey identification is fundamental for correlating the diet with the presence of particular microbial groups. The present study examined how diet influenced the composition and function of the gut microbiota of the Pacific harbor seal (Phoca vitulina richardii) in order to better understand the role of prey consumption in shaping its microbiota. This species is a good indicator of the quality of the local environment due to both its foraging and haul-out site fidelity. DNA was extracted from 20 fecal samples collected from five harbor seal colonies located in Baja California, Mexico. The V4 region of 16S rRNA gene was amplified and sequenced using the Illumina technology. Results showed that the gut microbiota of the harbor seals was dominated by the phyla Firmicutes (37%), Bacteroidetes (26%) and Fusobacteria (26%) and revealed significant differences in its composition among the colonies. Funtional analysis using the PICRUSt software suggests a high number of pathways involved in the basal metabolism, such as those for carbohydrates (22%) and amino acids (20%), and those related to the degradation of persistent environmental pollutants. In addition, a DNA metabarcoding analysis of the same samples, via the amplification and sequencing of the mtRNA 16S and rRNA 18S genes, was used to identify the prey consumed by harbor seals revealing the consumption of prey with mainly demersal habits. Functional redundancy in the seal gut microbiota was observed, irrespective of diet or location. Our results indicate that the frequency of occurrence of specific prey in the harbor seal diet plays an important role in shaping the composition of the gut microbiota of harbor seals by influencing the relative abundance of specific groups of gut microorganisms. A significant relationship was found among diet, gut microbiota composition and OTUs assigned to a particular metabolic pathway.
Collapse
Affiliation(s)
- Arlette Pacheco-Sandoval
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Yolanda Schramm
- Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Gisela Heckel
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Elizabeth Brassea-Pérez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | | | - Asunción Lago-Lestón
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
- * E-mail:
| |
Collapse
|
8
|
Girard L, Blanchet E, Stien D, Baudart J, Suzuki M, Lami R. Evidence of a Large Diversity of N-acyl-Homoserine Lactones in Symbiotic Vibrio fischeri Strains Associated with the Squid Euprymna scolopes. Microbes Environ 2019; 34:99-103. [PMID: 30760664 PMCID: PMC6440727 DOI: 10.1264/jsme2.me18145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio fischeri possesses a complex AHL-mediated Quorum-sensing (QS) system including two pathways, LuxI/R (3-oxo-C6-HSL and C6-HSL) and AinS/R (C8-HSL), which are important for the regulation of physiological traits. Diverse QS-dependent functional phenotypes have been described in V. fischeri; however, AHL diversity is still underestimated. In the present study, we investigated AHL diversity in five symbiotic V. fischeri strains with distinct phenotypic properties using UHPLC-HRMS/MS. The results obtained (1) revealed an unexpectedly high diversity of signaling molecules, (2) emphasized the complexity of QS in V. fischeri, and (3) highlight the importance of understanding the specificity of AHL-mediated QS.
Collapse
Affiliation(s)
- Léa Girard
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Elodie Blanchet
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Didier Stien
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Julia Baudart
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Marcelino Suzuki
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Raphaël Lami
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| |
Collapse
|
9
|
Pankey MS, Foxall RL, Ster IM, Perry LA, Schuster BM, Donner RA, Coyle M, Cooper VS, Whistler CA. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. eLife 2017; 6:e24414. [PMID: 28447935 PMCID: PMC5466423 DOI: 10.7554/elife.24414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/23/2017] [Indexed: 01/14/2023] Open
Abstract
Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations.
Collapse
Affiliation(s)
- M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Randi L Foxall
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Ian M Ster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
- Graduate Program in Biochemistry, University of New Hampshire, Durham, United States
| | - Lauren A Perry
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Brian M Schuster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Rachel A Donner
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Matthew Coyle
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Vaughn S Cooper
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Cheryl A Whistler
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| |
Collapse
|
10
|
Colton DM, Stabb EV, Hagen SJ. Modeling Analysis of Signal Sensitivity and Specificity by Vibrio fischeri LuxR Variants. PLoS One 2015; 10:e0126474. [PMID: 25962099 PMCID: PMC4427320 DOI: 10.1371/journal.pone.0126474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 01/22/2023] Open
Abstract
The LuxR protein of the bacterium Vibrio fischeri belongs to a family of transcriptional activators that underlie pheromone-mediated signaling by responding to acyl-homoserine lactones (-HSLs) or related molecules. V. fischeri produces two acyl-HSLs, N-3-oxo-hexanoyl-HSL (3OC6-HSL) and N-octanoyl-HSL (C8-HSL), each of which interact with LuxR to facilitate its binding to a "lux box" DNA sequence, thereby enabling LuxR to activate transcription of the lux operon responsible for bioluminescence. We have investigated the HSL sensitivity of four different variants of V. fischeri LuxR: two derived from wild-type strains ES114 and MJ1, and two derivatives of LuxRMJ1 generated by directed evolution. For each LuxR variant, we measured the bioluminescence induced by combinations of C8-HSL and 3OC6-HSL. We fit these data to a model in which the two HSLs compete with each other to form multimeric LuxR complexes that directly interact with lux to activate bioluminescence. The model reproduces the observed effects of HSL combinations on the bioluminescence responses directed by LuxR variants, including competition and non-monotonic responses to C8-HSL and 3OC6-HSL. The analysis yields robust estimates for the underlying dissociation constants and cooperativities (Hill coefficients) of the LuxR-HSL complexes and their affinities for the lux box. It also reveals significant differences in the affinities of LuxRMJ1 and LuxRES114 for 3OC6-HSL. Further, LuxRMJ1 and LuxRES114 differed sharply from LuxRs retrieved by directed evolution in the cooperativity of LuxR-HSL complex formation and the affinity of these complexes for lux. These results show how computational modeling of in vivo experimental data can provide insight into the mechanistic consequences of directed evolution.
Collapse
Affiliation(s)
- Deanna M. Colton
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Eric V. Stabb
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Stephen J. Hagen
- Physics Department, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
11
|
Franklin AM, Squires ZE, Stuart-Fox D. Does predation risk affect mating behavior? An experimental test in dumpling squid (Euprymna tasmanica). PLoS One 2014; 9:e115027. [PMID: 25551378 PMCID: PMC4281177 DOI: 10.1371/journal.pone.0115027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/17/2014] [Indexed: 11/22/2022] Open
Abstract
Introduction One of the most important trade-offs for many animals is that between survival and reproduction. This is particularly apparent when mating increases the risk of predation, either by increasing conspicuousness, reducing mobility or inhibiting an individual's ability to detect predators. Individuals may mitigate the risk of predation by altering their reproductive behavior (e.g. increasing anti-predator responses to reduce conspicuousness). The degree to which individuals modulate their reproductive behavior in relation to predation risk is difficult to predict because both the optimal investment in current and future reproduction (due to life-history strategies) and level of predation risk may differ between the sexes and among species. Here, we investigate the effect of increased predation risk on the reproductive behavior of dumpling squid (Euprymna tasmanica). Results Females, but not males, showed a substantial increase in the number of inks (an anti-predator behavior) before mating commenced in the presence of a predator (sand flathead Platycephalus bassensis). However, predation risk did not affect copulation duration, the likelihood of mating, female anti-predator behavior during or after mating or male anti-predator behavior at any time. Conclusions Inking is a common anti-predator defense in cephalopods, thought to act like a smokescreen, decoy or distraction. Female dumpling squid are probably using this form of defense in response to the increase in predation risk prior to mating. Conversely, males were undeterred by the increase in predation risk. A lack of change in these variables may occur if the benefit of completing mating outweighs the risk of predation. Prioritizing current reproduction, even under predation risk, can occur when the chance of future reproduction is low, there is substantial energetic investment into mating, or the potential fitness payoffs of mating are high.
Collapse
Affiliation(s)
- Amanda M. Franklin
- Zoology Department, The University of Melbourne, Melbourne, Victoria 3010, Australia
- * E-mail:
| | - Zoe E. Squires
- Zoology Department, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Devi Stuart-Fox
- Zoology Department, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
12
|
Soto W, Nishiguchi MK. Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis. Front Microbiol 2014; 5:593. [PMID: 25538686 PMCID: PMC4260504 DOI: 10.3389/fmicb.2014.00593] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists). The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to solid substrates such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae) is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study.
Collapse
Affiliation(s)
- William Soto
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast Lansing, MI, USA
| | | |
Collapse
|
13
|
Martins E, Figueras A, Novoa B, Santos RS, Moreira R, Bettencourt R. Comparative study of immune responses in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus and the shallow-water mussel Mytilus galloprovincialis challenged with Vibrio bacteria. FISH & SHELLFISH IMMUNOLOGY 2014; 40:485-499. [PMID: 25089010 DOI: 10.1016/j.fsi.2014.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
The deep-sea hydrothermal vent mussel Bathymodiolus azoricus and the continental European coast Mytilus galloprovincialis are two bivalves species living in highly distinct marine habitats. Mussels are filter-feeding animals that may accumulate rapidly bacteria from the environment. Contact with microorganism is thus inevitable during feeding processes where gill tissues assume a strategic importance at the interface between the external milieu and the internal body cavities promoting interactions with potential pathogens during normal filtration and a constant challenge to their immune system. In the present study B. azoricus and M. galloprovincialis were exposed to Vibrio alginolyticus, Vibrio anguillarum and Vibrio splendidus suspensions and to a mixture of these Vibrio suspensions, in order to ascertain the expression level of immune genes in gill samples, from both mussel species. The immune gene expressions were analyzed by means of quantitative-Polymerase Chain Reaction (qPCR). The gene expression results revealed that these bivalve species exhibit significant expression differences between 12 h and 24 h post-challenge times, and between the Vibrio strains used. V. splendidus induced the strongest gene expression level in the two bivalve species whereas the NF-κB and Aggrecan were the most significantly differentially expressed between the two mussel species. When comparing exposure times, both B. azoricus and M. galloprovincialis showed similar percentage of up-regulated genes at 12 h while a marked increased of gene expression was observed at 24 h for the majority of the immune genes in M. galloprovincialis. This contrasts with B. azoricus where the majority of the immune genes were down-regulated at 24 h. The 24 h post-challenge gene expression results clearly bring new evidence supporting time-dependent transcriptional activities resembling acute phase-like responses and different immune responses build-up in these two mussel species when challenged with Vibrio bacteria. High Pressure Liquid Chromatography (HPLC)-Electrospray ionization mass spectrometry (ESI-MS/MS) analyses resulted in different peptide sequences from B. azoricus and M. galloprovincialis gill tissues suggesting that naïve animals present differences, at the protein synthesis level, in their natural environment. B. azoricus proteins sequences, mostly of endosymbiont origin, were related to metabolic, energy production, protein synthesis processes and nutritional demands whereas in M. galloprovincialis putative protein functions were assumed to be related to structural and cellular integrity and signaling functions.
Collapse
Affiliation(s)
- Eva Martins
- Department of Oceanography and Fisheries, University of the Azores (DOP/UAç), Rua Prof. Doutor Frederico Machado, 9901-862 Horta, Portugal; IMAR Institute of Marine Research and LARSyS Laboratory of Robotics and Systems in Engineering and Science, 9901-862 Horta, Azores, Portugal
| | - António Figueras
- Instituto de Investigaciones Marinas, IIM - CSIC. Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, IIM - CSIC. Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Ricardo Serrão Santos
- Department of Oceanography and Fisheries, University of the Azores (DOP/UAç), Rua Prof. Doutor Frederico Machado, 9901-862 Horta, Portugal; IMAR Institute of Marine Research and LARSyS Laboratory of Robotics and Systems in Engineering and Science, 9901-862 Horta, Azores, Portugal
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas, IIM - CSIC. Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Raul Bettencourt
- IMAR Institute of Marine Research and LARSyS Laboratory of Robotics and Systems in Engineering and Science, 9901-862 Horta, Azores, Portugal; MARE-Marine and Environmental Science Center, University of the Azores, 9901-862 Horta, Azores, Portugal.
| |
Collapse
|
14
|
Allcock AL, Lindgren A, Strugnell J. The contribution of molecular data to our understanding of cephalopod evolution and systematics: a review. J NAT HIST 2014. [DOI: 10.1080/00222933.2013.825342] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Stabili L, Giangrande A, Pizzolante G, Caruso G, Alifano P. Characterization of vibrios diversity in the mucus of the polychaete Myxicola infundibulum (Annellida, Polichaeta). MICROBIAL ECOLOGY 2014; 67:186-194. [PMID: 24194098 DOI: 10.1007/s00248-013-0312-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
Vibrios are among the most abundant culturable microbes in aquatic environments. They can be either free-living in the water column or associated with several marine organisms as mutualists, saprophytes, or parasites. In the present study we analysed vibrios abundance and diversity in the mucus of the polychaete Myxicola infundibulum, complementing culture-based with molecular methods. Vibrios reached 4.6 × 10(3) CFU mL(-1) thus representing a conspicuous component of the heterotrophic culturable bacteria. In addition, luminous vibrios accounted for about 60% of the total culturable vibrios in the mucus. The isolates were assigned to: Vibrio gigantis, Vibrio fischeri, Vibrio jasicida, Vibrio crassostreae, Vibrio kanaloae, and Vibrio xuii. Two Vibrio isolates (MI-13 and MI-15) may belong to a new species. We also tested the ability of the Vibrio isolates to grow on M. infundibulum mucus as the sole carbon source. All strains showed appreciable growth in the presence of mucus, leading us to conclude that this matrix, which is abundant and covers the animal entirely, may represent a microcosm and a food source for some bacteria, playing a crucial role in the structuring of a mucus-associated beneficial microbial community. Moreover, the trophic relationship between vibrios and M. infundibulum mucus could be enhanced by the protection that mucus offers to vibrios. The results of this study represent a contribution to the growing evidence for complex and dynamic invertebrate-microbe associations present in nature and highlight the importance of exploring relationships that Vibrio species establish with marine invertebrates.
Collapse
Affiliation(s)
- Loredana Stabili
- Istituto per l'Ambiente Marino Costiero, U.O.S. di Taranto, CNR, Via Roma 3, Taranto, Italy,
| | | | | | | | | |
Collapse
|
16
|
Guerrero-Ferreira R, Gorman C, Chavez AA, Willie S, Nishiguchi MK. Characterization of the bacterial diversity in Indo-West Pacific loliginid and sepiolid squid light organs. MICROBIAL ECOLOGY 2013; 65:214-26. [PMID: 22885637 PMCID: PMC3557516 DOI: 10.1007/s00248-012-0099-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/07/2012] [Indexed: 06/01/2023]
Abstract
Loliginid and sepiolid squid light organs are known to host a variety of bacterial species from the family Vibrionaceae, yet little is known about the species diversity and characteristics among different host squids. Here we present a broad-ranging molecular and physiological analysis of the bacteria colonizing light organs in loliginid and sepiolid squids from various field locations of the Indo-West Pacific (Australia and Thailand). Our PCR-RFLP analysis, physiological characterization, carbon utilization profiling, and electron microscopy data indicate that loliginid squid in the Indo-West Pacific carry a consortium of bacterial species from the families Vibrionaceae and Photobacteriaceae. This research also confirms our previous report of the presence of Vibrio harveyi as a member of the bacterial population colonizing light organs in loliginid squid. pyrH sequence data were used to confirm isolate identity, and indicates that Vibrio and Photobacterium comprise most of the light organ colonizers of squids from Australia, confirming previous reports for Australian loliginid and sepiolid squids. In addition, combined phylogenetic analysis of PCR-RFLP and 16S rDNA data from Australian and Thai isolates associated both Photobacterium and Vibrio clades with both loliginid and sepiolid strains, providing support that geographical origin does not correlate with their relatedness. These results indicate that both loliginid and sepiolid squids demonstrate symbiont specificity (Vibrionaceae), but their distribution is more likely due to environmental factors that are present during the infection process. This study adds significantly to the growing evidence for complex and dynamic associations in nature and highlights the importance of exploring symbiotic relationships in which non-virulent strains of pathogenic Vibrio species could establish associations with marine invertebrates.
Collapse
Affiliation(s)
- Ricardo Guerrero-Ferreira
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Clayton Gorman
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8001, USA
| | - Alba A. Chavez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8001, USA
| | - Shantell Willie
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8001, USA
| | | |
Collapse
|
17
|
Lindgren AR, Pankey MS, Hochberg FG, Oakley TH. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evol Biol 2012; 12:129. [PMID: 22839506 PMCID: PMC3733422 DOI: 10.1186/1471-2148-12-129] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/05/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. RESULTS Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions) is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. DISCUSSION Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment.
Collapse
Affiliation(s)
- Annie R Lindgren
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Present Address: Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Molly S Pankey
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Frederick G Hochberg
- Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol Rd, Santa Barbara, CA, 93105, USA
| | - Todd H Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
18
|
Dikow RB. Systematic relationships within the Vibrionaceae (Bacteria: Gammaproteobacteria): steps toward a phylogenetic taxonomy. Cladistics 2011; 27:9-28. [DOI: 10.1111/j.1096-0031.2010.00312.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
19
|
Zamborsky DJ, Nishiguchi MK. Phylogeographical patterns among Mediterranean sepiolid squids and their Vibrio symbionts: environment drives specificity among sympatric species. Appl Environ Microbiol 2011; 77:642-9. [PMID: 21075896 PMCID: PMC3020525 DOI: 10.1128/aem.02105-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/02/2010] [Indexed: 11/20/2022] Open
Abstract
Bobtail squid from the genera Sepiola and Rondeletiola (Cephalopoda: Sepiolidae) form mutualistic associations with luminous Gram-negative bacteria (Gammaproteobacteria: Vibrionaceae) from the genera Vibrio and Photobacterium. Symbiotic bacteria proliferate inside a bilobed light organ until they are actively expelled by the host into the surrounding environment on a diel basis. This event results in a dynamic symbiont population with the potential to establish the symbiosis with newly hatched sterile (axenic) juvenile sepiolids. In this study, we examined the genetic diversity found in populations of sympatric sepiolid squid species and their symbionts by the use of nested clade analysis with multiple gene analyses. Variation found in the distribution of different species of symbiotic bacteria suggests a strong influence of abiotic factors in the local environment, affecting bacterial distribution among sympatric populations of hosts. These abiotic factors include temperature differences incurred by a shallow thermocline, as well as a lack of strong coastal water movement accompanied by seasonal temperature changes in overlapping niches. Host populations are stable and do not appear to have a significant role in the formation of symbiont populations relative to their distribution across the Mediterranean Sea. Additionally, all squid species examined (Sepiola affinis, S. robusta, S. ligulata, S. intermedia, and Rondeletiola minor) are genetically distinct from one another regardless of location and demonstrate very little intraspecific variation within species. These findings suggest that physical boundaries and distance in relation to population size, and not host specificity, are important factors in limiting or defining gene flow within sympatric marine squids and their associated bacterial symbionts in the Mediterranean Sea.
Collapse
Affiliation(s)
- D. J. Zamborsky
- Department of Biology, MSC 3AF, New Mexico State University, P.O. Box 30001, Las Cruces, New Mexico 88003-8001
| | - M. K. Nishiguchi
- Department of Biology, MSC 3AF, New Mexico State University, P.O. Box 30001, Las Cruces, New Mexico 88003-8001
| |
Collapse
|
20
|
Guerrero-Ferreira RC, Nishiguchi MK. Differential gene expression in bacterial symbionts from loliginid squids demonstrates variation between mutualistic and environmental niches. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:514-523. [PMID: 20680094 PMCID: PMC2911791 DOI: 10.1111/j.1758-2229.2009.00077.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Luminescent bacteria (gamma-Proteobacteria: Vibrionaceae) are found in complex bilobed light organs of both sepiolid and loliginid squids (Mollusca: Cephalopoda). Despite the existence of multiple strain colonization between Vibrio bacteria and loliginid squids, specificity at the genus level still exists and may influence interactions between symbiotic and free-living stages of the symbiont. The environmentally transmitted behaviour of Vibrio symbionts bestows a certain degree of recognition that exists prior and subsequent to the colonization process. Therefore, we identified bacterial genes required for successful colonization of loliginid light organs by examining transcripts solely expressed in either the light organ or free-living stages. Selective capture of transcribed sequences (SCOTS) was used to differentiate genes expressed by the same bacterium when thriving in two different environments (i.e. loliginid light organs and seawater). Genes specific for squid light organs included vulnibactin synthetase, outer membrane protein W and dihydroxy dehydratase, which have been associated with the maintenance of bacterial host associations in other systems. In contrast, genes that were solely expressed in the free-living condition consisted of transcripts recognized as important factors for bacterial survival in the environment. These transcripts included genes for methyl accepting chemotaxis proteins, arginine decarboxylase and chitinase. These results provide valuable information regarding mechanisms determining specificity, establishment, and maintenance of bacteria-squid associations.
Collapse
|
21
|
Widder EA. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 2010; 328:704-8. [PMID: 20448176 DOI: 10.1126/science.1174269] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
From bacteria to fish, a remarkable variety of marine life depends on bioluminescence (the chemical generation of light) for finding food, attracting mates, and evading predators. Disparate biochemical systems and diverse phylogenetic distribution patterns of light-emitting organisms highlight the ecological benefits of bioluminescence, with biochemical and genetic analyses providing new insights into the mechanisms of its evolution. The origins and functions of some bioluminescent systems, however, remain obscure. Here, I review recent advances in understanding bioluminescence in the ocean and highlight future research efforts that will unite molecular details with ecological and evolutionary relationships.
Collapse
Affiliation(s)
- E A Widder
- Ocean Research and Conservation Association, Fort Pierce, FL 34949, USA.
| |
Collapse
|
22
|
Abstract
Bioluminescence spans all oceanic dimensions and has evolved many times--from bacteria to fish--to powerfully influence behavioral and ecosystem dynamics. New methods and technology have brought great advances in understanding of the molecular basis of bioluminescence, its physiological control, and its significance in marine communities. Novel tools derived from understanding the chemistry of natural light-producing molecules have led to countless valuable applications, culminating recently in a related Nobel Prize. Marine organisms utilize bioluminescence for vital functions ranging from defense to reproduction. To understand these interactions and the distributions of luminous organisms, new instruments and platforms allow observations on individual to oceanographic scales. This review explores recent advances, including the chemical and molecular, phylogenetic and functional, community and oceanographic aspects of bioluminescence.
Collapse
Affiliation(s)
- Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA.
| | | | | |
Collapse
|
23
|
Wollenberg MS, Ruby EG. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from Two Oahu (Hawaii) populations. Appl Environ Microbiol 2009; 75:193-202. [PMID: 18997024 PMCID: PMC2612210 DOI: 10.1128/aem.01792-08] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Accepted: 10/27/2008] [Indexed: 11/20/2022] Open
Abstract
We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.
Collapse
Affiliation(s)
- M S Wollenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706-1521, USA
| | | |
Collapse
|
24
|
GUERRERO-FERREIRA RC, NISHIGUCHI MK. ULTRASTRUCTURE OF LIGHT ORGANS OF LOLIGINID SQUIDS AND THEIR BACTERIAL SYMBIONTS: A NOVEL MODEL SYSTEM FOR THE STUDY OF MARINE SYMBIOSES. VIE ET MILIEU (PARIS, FRANCE : 1980) 2009; 59:307-313. [PMID: 21152248 PMCID: PMC2998345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The class Cephalopoda (Phylum Mollusca), encompassing squids and octopuses, contains multiple species that are characterized by the presence of specialized organs known to emit light. These complex organs have a variety of morphological characteristics ranging from groups of simple, light-producing cells, to highly specialized organs (light organs) with cells surrounded by reflectors, lenses, light guides, color filters, and muscles. Bacteriogenic light organs have been well characterized in sepiolid squids, but a number of species in the family Loliginidae are also known to contain bacteriogenic light organs. Interest in loliginid light organ structure has recently arisen because of their potential as ecological niches for Vibrio harveyi, a pathogenic marine bacterium. This also implies the importance of loliginid light organs as reservoirs for V. harveyi persistence in the ocean. The present study utilized transmission and scanning electron microscopy to characterize the morphology of loliginid light organs and determined the location of bacterial symbiont cells within the tissue. It was determined that the rod-shaped loliginid symbionts lack flagella, as similarly observed in other light organ-associated bacteria. Also, the interaction of individual cells to light organ tissue is not as defined as reported for other squid-Vibrio systems. In addition, SEM observations show the presence of two pores leading to the bacterial chamber. Data presented here offer support for the hypothesis of environmental transfer of bacterial symbionts in loliginid squids.
Collapse
Affiliation(s)
| | - M. K. NISHIGUCHI
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8001, USA
| |
Collapse
|
25
|
NAIR V, NISHIGUCHI MK. BIOLOGICAL PROPERTIES (IN VITRO) EXHIBITED BY FREE-LIVING AND SYMBIOTIC VIBRIO ISOLATES. VIE ET MILIEU (PARIS, FRANCE : 1980) 2009; 59:277-285. [PMID: 20725603 PMCID: PMC2923388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Adhesion and biofilm forming ability of symbiotic bacteria play a crucial role in host colonization and tissue infection. Bacteria benefit by adhering to their host in a manner that allows them to successfully maintain contact for the exchange of nutrients, hormones, or other necessary products. This study examined pili morphology, motility, and biofilm formation exhibited by Vibrio fischeri strains (free-living and symbiotic). Since these symbiotic factors contribute in some fashion to the interaction between V. fischeri and their squid host, variation between strains may be a contributing factor that leads to specificity among different hosts. V. fischeri strains examined in this study demonstrated considerable variation in their biological properties when observed in vitro. In addition to differences observed between strains isolated from several different host species, we observed variation between strains isolated from the same host species from diverse geographical locations. This study suggests that subtle differences in the biological properties of closely related V. fischeri strains may influence the nature of the interaction among V. fischeri and their sepiolid hosts.
Collapse
|
26
|
Browne-Silva J, Nishiguchi MK. Gene sequences of the pil operon reveal relationships between symbiotic strains of Vibrio fischeri. Int J Syst Evol Microbiol 2008; 58:1292-9. [PMID: 18523167 PMCID: PMC3374725 DOI: 10.1099/ijs.0.65370-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiosis between the bobtail squid Euprymna scolopes (Mollusca: Cephalopoda) and Vibrio fischeri bacteria has been a well-studied model for understanding the molecular mechanisms of colonization and adherence to host cells. For example, pilin expression has been observed to cause subtle variation in colonization for a number of Gram-negative bacteria with eukaryotic hosts. To investigate variation amongst pil genes of closely related strains of vibrios, we amplified pil genes A, B, C and D to determine orientation and sequence similarity to other symbiotic vibrios. The pilA gene was found to be upstream from all other pil genes, and not contiguous with the rest of the operon. The pilB, pilC and pilD loci were flanked at the 3' end by yacE, followed by a conserved hypothetical gene. DNA sequences of each pil gene were aligned and analysed phylogenetically using parsimony for both individual and combined gene trees. Results demonstrate that certain pil loci (pilB and pilD) are conserved among strains of V. fischeri, but pilC differs in sequence between symbiotic and free-living strains. Phylogenetic analysis of all pil genes gives better resolution of Indo-west Pacific V. fischeri symbionts compared with analysis of the 16S rRNA gene. Hawaiian and Australian symbiotic strains form one monophyletic tree, supporting the hypothesis that V. fischeri strain specificity is selected by the geographical location of their hosts and is not related to specific squid species.
Collapse
Affiliation(s)
- J Browne-Silva
- Department of Biology, New Mexico State University, Box 30001, MSC 3AF, Las Cruces, NM 88003-8001, USA
| | | |
Collapse
|
27
|
Nishiguchi M, Hirsch AM, Devinney R, Vedantam G, Riley M, Mansky L. Deciphering Evolutionary Mechanisms Between Mutualistic and Pathogenic Symbioses. VIE ET MILIEU (PARIS, FRANCE : 1980) 2008; 58:87-106. [PMID: 19655044 PMCID: PMC2719982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The continuum between mutualistic and pathogenic symbioses has been an underlying theme for understanding the evolution of infection and disease in a number of eukaryotic-microbe associations. The ability to monitor and then predict the spread of infectious diseases may depend upon our knowledge and capabilities of anticipating the behavior of virulent pathogens by studying related, benign symbioses. For instance, the ability of a symbiotic species to infect, colonize, and proliferate efficiently in a susceptible host will depend on a number of factors that influence both partners during the infection. Levels of virulence are not only affected by the genetic and phenotypic composite of the symbiont, but also the life history, mode(s) of transmission, and environmental factors that influence colonization, such as antibiotic treatment. Population dynamics of both host and symbiont, including densities, migration, as well as competition between symbionts will also affect infection rates of the pathogen as well as change the evolutionary dynamics between host and symbiont. It is therefore important to be able to compare the evolution of virulence between a wide range of mutualistic and pathogenic systems in order to determine when and where new infections might occur, and what conditions will render the pathogen ineffective. This perspective focuses on several symbiotic models that compare mutualistic associations to pathogenic forms and the questions posed regarding their evolution and radiation. A common theme among these systems is the prevailing concept of how heritable mutations can eventually lead to novel phenotypes and eventually new species.
Collapse
Affiliation(s)
- M.K. Nishiguchi
- Department of Biology, New Mexico State University, Box 30001 MSC 3AF, Las Cruces, NM 88003-8001, USA
| | - A. M. Hirsch
- Department of Molecular, Cell and Developmental Biology, University of California, 405 Hilgard Ave., Los Angeles, CA 90095-1606, USA
| | - R. Devinney
- Department of Microbiology and Infectious Disease, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - G. Vedantam
- Department of Medicine, Section of Infectious Diseases, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL, 60153, USA
| | - M.A. Riley
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - L.M. Mansky
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St. SE Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Nyholm S, Nishiguchi M. THE EVOLUTIONARY ECOLOGY OF A SEPIOLID SQUID-VIBRIO ASSOCIATION: FROM CELL TO ENVIRONMENT. VIE ET MILIEU (PARIS, FRANCE : 1980) 2008; 58:175-184. [PMID: 20414482 PMCID: PMC2857784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mutualistic relationships between bacteria and their eukaryotic hosts have existed for millions of years, and such associations can be used to understand the evolution of these beneficial partnerships. The symbiosis between sepiolid squids (Cephalopoda: Sepiolidae), and their Vibrio bacteria (gamma Proteobacteria: Vibrionaceae), has been a model system for over 20 years, giving insight as to the specificity of the association, and whether the interactions themselves give rise to such finely tuned dialog. Since the association is environmentally transmitted, selection for specificity can evolve from a number of factors; abiotic (temperature, salinity), as well as biotic (host species, receptors, cell/cell interactions). Here, we examine the transition between these forces effecting the symbiosis, and pose possible explanations as to why this association offers many attributes for understanding the role of symbiotic competence.
Collapse
Affiliation(s)
- S.V. Nyholm
- University of Connecticut, Department of Molecular and Cell Biology, BSP 405 91 North Eagleville Rd., Unit 3125, Storrs, CT 06269-3125
| | - M.K. Nishiguchi
- New Mexico State University, Department of Biology, Box 30001, MSC 3AF Las Cruces, NM 88003-8001
| |
Collapse
|