1
|
Ferstl S, Schwaha T, Ruthensteiner B, Hehn L, Allner S, Müller M, Dierolf M, Achterhold K, Pfeiffer F. Nanoscopic X-ray tomography for correlative microscopy of a small meiofaunal sea-cucumber. Sci Rep 2020; 10:3960. [PMID: 32127610 PMCID: PMC7054411 DOI: 10.1038/s41598-020-60977-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/19/2020] [Indexed: 01/18/2023] Open
Abstract
In the field of correlative microscopy, light and electron microscopy form a powerful combination for morphological analyses in zoology. Due to sample thickness limitations, these imaging techniques often require sectioning to investigate small animals and thereby suffer from various artefacts. A recently introduced nanoscopic X-ray computed tomography (NanoCT) setup has been used to image several biological objects, none that were, however, embedded into resin, which is prerequisite for a multitude of correlative applications. In this study, we assess the value of this NanoCT for correlative microscopy. For this purpose, we imaged a resin-embedded, meiofaunal sea cucumber with an approximate length of 1 mm, where microCT would yield only little information about the internal anatomy. The resulting NanoCT data exhibits isotropic 3D resolution, offers deeper insights into the 3D microstructure, and thereby allows for a complete morphological characterization. For comparative purposes, the specimen was sectioned subsequently to evaluate the NanoCT data versus serial sectioning light microscopy (ss-LM). To correct for mechanical instabilities and drift artefacts, we applied an alternative alignment procedure for CT reconstruction. We thereby achieve a level of detail on the subcellular scale comparable to ss-LM images in the sectioning plane.
Collapse
Affiliation(s)
- Simone Ferstl
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.
| | - Thomas Schwaha
- Department of Integrative Zoology, University of Vienna, 1090, Vienna, Austria
| | | | - Lorenz Hehn
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Sebastian Allner
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Mark Müller
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
2
|
Miller AK, Kerr AM, Paulay G, Reich M, Wilson NG, Carvajal JI, Rouse GW. Molecular phylogeny of extant Holothuroidea (Echinodermata). Mol Phylogenet Evol 2017; 111:110-131. [DOI: 10.1016/j.ympev.2017.02.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022]
|
3
|
Clouse RM, Linchangco GV, Kerr AM, Reid RW, Janies DA. Phylotranscriptomic analysis uncovers a wealth of tissue inhibitor of metalloproteinases variants in echinoderms. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150377. [PMID: 27017967 PMCID: PMC4807446 DOI: 10.1098/rsos.150377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) help regulate the extracellular matrix (ECM) in animals, mostly by inhibiting matrix metalloproteinases (MMPs). They are important activators of mutable collagenous tissue (MCT), which have been extensively studied in echinoderms, and the four TIMP copies in humans have been studied for their role in cancer. To understand the evolution of TIMPs, we combined 405 TIMPs from an echinoderm transcriptome dataset built from 41 specimens representing all five classes of echinoderms with variants from protostomes and chordates. We used multiple sequence alignment with various stringencies of alignment quality to cull highly divergent sequences and then conducted phylogenetic analyses using both nucleotide and amino acid sequences. Phylogenetic hypotheses consistently recovered TIMPs as diversifying in the ancestral deuterostome and these early lineages continuing to diversify in echinoderms. The four vertebrate TIMPs diversified from a single copy in the ancestral chordate, all other copies being lost. Consistent with greater MCT needs owing to body wall liquefaction, evisceration, autotomy and reproduction by fission, holothuroids had significantly more TIMPs and higher read depths per contig. Ten cysteine residues, an HPQ binding site and several other residues were conserved in at least 70% of all TIMPs. The conservation of binding sites and the placement of echinoderm TIMPs involved in MCT modification suggest that ECM regulation remains the primary function of TIMP genes, although within this role there are a large number of specialized copies.
Collapse
Affiliation(s)
- Ronald M. Clouse
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Gregorio V. Linchangco
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Alexander M. Kerr
- Marine Laboratory, University of Guam, Mangilao, GU 96913, USA
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Robert W. Reid
- Bioinformatics Services Division, North Carolina Research Campus, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
4
|
Abstract
DNA barcode sequences (a 657-bp segment of the mtDNA cytochrome oxidase I gene, COI) were collected from 191 species (503 specimens) of Echinodermata. All five classes were represented: Ophiuroidea, Asteroidea, Echinoidea, Holothuroidea and Crinoidea. About 30% of sequences were collected specifically for this study, the remainder came from GenBank. Fifty-one species were represented by multiple samples, with a mean intraspecific divergence of 0.62%. Several possible instances of cryptic speciation were noted. Thirty-two genera were represented by multiple species, with a mean congeneric divergence of 15.33%. One hundred and eighty-seven of the 191 species (97.9%) could be distinguished by their COI barcodes. Those that could not were from the echinoid genus Amblypneustes. Neighbour-joining trees of COI sequences generally showed low bootstrap support for anything other than shallow splits, although with very rare exceptions, members of the same class clustered together. Two ophiuran species, in both nucleotide and amino acid neighbour-joining trees, grouped loosely as sister taxa to Crinoidea rather than Ophiuroidea; sequences of these two species appear to have evolved very quickly. Results suggest that DNA barcoding is likely to be an effective, accurate and useful method of species diagnosis for all five classes of Echinodermata.
Collapse
Affiliation(s)
- Robert D Ward
- CSIRO Wealth from Oceans Flagship, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tas. 7001, Australia, Museum Victoria, PO Box 666, Melbourne, Vic. 3001, Australia
| | | | | |
Collapse
|