1
|
Rowe AJ, Rayfield EJ. Morphological evolution and functional consequences of giantism in tyrannosauroid dinosaurs. iScience 2024; 27:110679. [PMID: 39262785 PMCID: PMC11387897 DOI: 10.1016/j.isci.2024.110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Tyrannosauroids are a clade of theropod dinosaur taxa that varied greatly in their body size distribution. We investigated the feeding performance of six tyrannosaur genera of variable body size and skull morphology. We used 3D finite element analysis to test whether skull shape becomes more or less resistant to feeding-induced forces. Cranial and mandibular models were scaled by adult Tyrannosaurus's surface area to analyze the influence of shape on skull function. It was found that Tyrannosaurus experienced higher absolute stresses compared to small-bodied relatives. When surface area values were equalized across genera to account for the effect of size and test efficiency of skull shape, smaller individuals experience notably greater stresses than larger relatives due to the robust cranial osteology characterized in the allometry of tyrannosaurids. These results may indicate that the wide crania of tyrannosaurids convey a functional advantage that basal tyrannosauroids, juvenile tyrannosauroids, and alioramins lacked.
Collapse
Affiliation(s)
- Andre J Rowe
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
2
|
Aureliano T, Almeida W, Rasaona M, Ghilardi AM. The evolution of the air sac system in theropod dinosaurs: Evidence from the Upper Cretaceous of Madagascar. J Anat 2024. [PMID: 39022807 DOI: 10.1111/joa.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Recent evidence suggests that the invasive air sac system evolved at least three times independently in avemetatarsalians: in pterosaurs, sauropodomorphs and theropods. Data from sauropodomorphs showed that the pneumatic architecture in vertebrae first developed in camellate-like trabeculae in the Triassic, later in camerate systems in Jurassic neosauropods, and finally camellate tissue in Cretaceous titanosaurs. This evolutionary trajectory has support from a considerable sampling of sauropodomorph taxa. However, the evolution of pneumatic bone tissues in Theropoda is less understood. We analyzed the computed tomography of Majungasaurus and Rahonavis, using densitometry rendering to differentiate the microarchitecture along the presacral axial skeleton of late Ceratosaurians and early Paravians. We also compared these results with scans of other theropod clades. Our analysis revealed an increase in pneumatic complexity in early paravians compared to the ceratosaurians. Majungasaurus presents some apneumatic neural spines, a condition also observed in Allosaurus. Majungasaurus also features some apneumatic centra despite the presence of lateral pneumatic fossae. This raises caution when evaluating PSP solely based on external morphology. We also found evidence of distinct patterns of PSP in maniraptorans. Considering that Majungasaurus, a late abelisaurid, inherited from their ceratosaurian ancestors, some apneumatic elements such as the neural spine and some centra, Rahonavis, an early paravian, took a different trajectory toward the full pneumatization of the axial skeleton. This characteristic provided paravians an advantage in gliding and flying. Also, unlike Sauropoda, pneumaticity in Theropoda apparently developed by increasing chamber volumes toward paravians. Similar studies on early Theropoda are needed to elucidate their condition and better describe the evolutionary trajectory of different groups.
Collapse
Affiliation(s)
- Tito Aureliano
- Laboratory of Zoology, Department of Biological Chemistry, Programa de Pós-Graduação em Diversidade Biológica e Recursos Naturais, Regional University of Cariri (URCA), Crato, Brazil
- Diversity, Ichnology and Osteohistology Laboratory (DINOlab), Department of Geology, Federal University of Rio Grande Do Norte (URFN), Natal, Brazil
| | - Waltécio Almeida
- Laboratory of Zoology, Department of Biological Chemistry, Programa de Pós-Graduação em Diversidade Biológica e Recursos Naturais, Regional University of Cariri (URCA), Crato, Brazil
| | - Masinissa Rasaona
- Diversity, Ichnology and Osteohistology Laboratory (DINOlab), Department of Geology, Federal University of Rio Grande Do Norte (URFN), Natal, Brazil
- Mention Bassins Sédimentaires, Evolution, Conservation, University of Antananarivo (UA), Antananarivo, Madagascar
| | - Aline M Ghilardi
- Laboratory of Zoology, Department of Biological Chemistry, Programa de Pós-Graduação em Diversidade Biológica e Recursos Naturais, Regional University of Cariri (URCA), Crato, Brazil
- Diversity, Ichnology and Osteohistology Laboratory (DINOlab), Department of Geology, Federal University of Rio Grande Do Norte (URFN), Natal, Brazil
| |
Collapse
|
3
|
Johnson-Ransom E, Li F, Xu X, Ramos R, Midzuk AJ, Thon U, Atkins-Weltman K, Snively E. Comparative cranial biomechanics reveal that Late Cretaceous tyrannosaurids exerted relatively greater bite force than in early-diverging tyrannosauroids. Anat Rec (Hoboken) 2024; 307:1897-1917. [PMID: 37772730 DOI: 10.1002/ar.25326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Tyrannosaurus has been an exemplar organism in feeding biomechanical analyses. An adult Tyrannosaurus could exert a bone-splintering bite force, through expanded jaw muscles and a robust skull and teeth. While feeding function of adult Tyrannosaurus has been thoroughly studied, such analyses have yet to expand to other tyrannosauroids, especially early-diverging tyrannosauroids (Dilong, Proceratosaurus, and Yutyrannus). In our analysis, we broadly assessed the cranial and feeding performance of tyrannosauroids at varying body sizes. Our sample size included small (Proceratosaurus and Dilong), medium-sized (Teratophoneus), and large (Tarbosaurus, Daspletosaurus, Gorgosaurus, and Yutyrannus) tyrannosauroids, and incorporation of tyrannosaurines at different ontogenetic stages (small juvenile Tarbosaurus, Raptorex, and mid-sized juvenile Tyrannosaurus). We used jaw muscle force calculations and finite element analysis to comprehend the cranial performance of our tyrannosauroids. Scaled subtemporal fenestrae areas and calculated jaw muscle forces show that broad-skulled tyrannosaurines (Tyrannosaurus, Daspletosaurus, juvenile Tyrannosaurus, and Raptorex) exhibited higher jaw muscle forces than other similarly sized tyrannosauroids (Gorgosaurus, Yutyrannus, and Proceratosaurus). The large proceratosaurid Yutyrannus exhibited lower cranial stress than most adult tyrannosaurids. This suggests that cranial structural adaptations of large tyrannosaurids maintained adequate safety factors at greater bite force, but their robust crania did not notably decrease bone stress. Similarly, juvenile tyrannosaurines experienced greater cranial stress than similarly-sized earlier tyrannosauroids, consistent with greater adductor muscle forces in the juveniles, and with crania no more robust than in their small adult predecessors. As adult tyrannosauroid body size increased, so too did relative jaw muscle forces manifested even in juveniles of giant adults.
Collapse
Affiliation(s)
- Evan Johnson-Ransom
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Feng Li
- Tianjin Natural History Museum, Tianjin, China
| | - Xing Xu
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Raul Ramos
- Illustration Department, Rocky Mountain College of Art and Design, Lakewood, Colorado, USA
| | - Adam J Midzuk
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ulrike Thon
- Informatik Department, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Kyle Atkins-Weltman
- College of Osteopathic Medicine, Oklahoma State University, Tulsa, Oklahoma, USA
| | - Eric Snively
- Oklahoma State University College of Osteopathic Medicine-Cherokee Nation, Tahlequah, Oklahoma, USA
| |
Collapse
|
4
|
Fawcett MJ, Lautenschlager S, Bestwick J, Butler RJ. Functional morphology of the Triassic apex predator Saurosuchus galilei (Pseudosuchia: Loricata) and convergence with a post-Triassic theropod dinosaur. Anat Rec (Hoboken) 2024; 307:549-565. [PMID: 37584310 DOI: 10.1002/ar.25299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023]
Abstract
Pseudosuchian archosaurs, reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic and are thus associated with hypotheses of high ecological diversity during this time. One example involves basal loricatans which are non-crocodylomorph pseudosuchians traditionally known as "rauisuchians." Their large size (5-8+ m long) and morphological similarities to post-Triassic theropod dinosaurs, including dorsoventrally deep skulls and serrated dentitions, suggest basal loricatans were apex predators. However, this hypothesis does not consider functional behaviors that can influence more refined roles of predators in their environment, for example, degree of carcass utilization. Here, we apply finite element analysis to a juvenile but three-dimensionally well-preserved cranium of the basal loricatan Saurosuchus galilei to investigate its functional morphology and to compare with stress distributions from the theropod Allosaurus fragilis to assess degrees of functional convergence between Triassic and post-Triassic carnivores. We find similar stress distributions and magnitudes between the two study taxa under the same functional simulations, indicating that Saurosuchus had a somewhat strong skull and thus exhibited some degree of functional convergence with theropods. However, Saurosuchus also had a weak bite for an animal of its size (1015-1885 N) that is broadly equivalent to the bite force of modern gharials (Gavialis gangeticus). We infer that Saurosuchus potentially avoided tooth-bone interactions and consumed the softer parts of carcasses, unlike theropods and other basal loricatans. This deduced feeding mode for Saurosuchus increases the known functional diversity of basal loricatans and highlights functional differences between Triassic and post-Triassic apex predators.
Collapse
Affiliation(s)
- Molly J Fawcett
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jordan Bestwick
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Rowe AJ, Rayfield EJ. The efficacy of computed tomography scanning versus surface scanning in 3D finite element analysis. PeerJ 2022; 10:e13760. [PMID: 36042861 PMCID: PMC9420411 DOI: 10.7717/peerj.13760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Finite element analysis (FEA) is a commonly used application in biomechanical studies of both extant and fossil taxa to assess stress and strain in solid structures such as bone. FEA can be performed on 3D structures that are generated using various methods, including computed tomography (CT) scans and surface scans. While previous palaeobiological studies have used both CT scanned models and surface scanned models, little research has evaluated to what degree FE results may vary when CT scans and surface scans of the same object are compared. Surface scans do not preserve the internal geometries of 3D structures, which are typically preserved in CT scans. Here, we created 3D models from CT scans and surface scans of the same specimens (crania and mandibles of a Nile crocodile, a green sea turtle, and a monitor lizard) and performed FEA under identical loading parameters. It was found that once surface scanned models are solidified, they output stress and strain distributions and model deformations comparable to their CT scanned counterparts, though differing by notable stress and strain magnitudes in some cases, depending on morphology of the specimen and the degree of reconstruction applied. Despite similarities in overall mechanical behaviour, surface scanned models can differ in exterior shape compared to CT scanned models due to inaccuracies that can occur during scanning and reconstruction, resulting in local differences in stress distribution. Solid-fill surface scanned models generally output lower stresses compared to CT scanned models due to their compact interiors, which must be accounted for in studies that use both types of scans.
Collapse
Affiliation(s)
- Andre J. Rowe
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Sakamoto M. Estimating bite force in extinct dinosaurs using phylogenetically predicted physiological cross-sectional areas of jaw adductor muscles. PeerJ 2022; 10:e13731. [PMID: 35846881 PMCID: PMC9285543 DOI: 10.7717/peerj.13731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/23/2022] [Indexed: 01/17/2023] Open
Abstract
I present a Bayesian phylogenetic predictive modelling (PPM) framework that allows the prediction of muscle parameters (physiological cross-sectional area, A Phys) in extinct archosaurs from skull width (W Sk) and phylogeny. This approach is robust to phylogenetic uncertainty and highly versatile given its ability to base predictions on simple, readily available predictor variables. The PPM presented here has high prediction accuracy (up to 95%), with downstream biomechanical modelling yielding bite force estimates that are in line with previous estimates based on muscle parameters from reconstructed muscles. This approach does not replace muscle reconstructions but one that provides a powerful means to predict A Phys from skull geometry and phylogeny to the same level of accuracy as that measured from reconstructed muscles in species for which soft tissue data are unavailable or difficult to obtain.
Collapse
|
7
|
Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev Camb Philos Soc 2021; 96:2058-2112. [PMID: 34240530 PMCID: PMC8519158 DOI: 10.1111/brv.12743] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans (i.e. non-crown birds), particularly of their diet. The diet of non-avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark-based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our synthesis of the current knowledge of non-avian avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow for a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this developed into their pivotal role in modern ecosystems.
Collapse
Affiliation(s)
- Case Vincent Miller
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
8
|
Peterson JE, Tseng ZJ, Brink S. Bite force estimates in juvenile Tyrannosaurus rex based on simulated puncture marks. PeerJ 2021; 9:e11450. [PMID: 34141468 PMCID: PMC8179241 DOI: 10.7717/peerj.11450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background Bite marks attributed to adult Tyrannosaurus rex have been subject to numerous studies. However, few bite marks attributed to T. rex have been traced to juveniles, leaving considerable gaps in understanding ontogenetic changes in bite mechanics and force, and the paleoecological role of juvenile tyrannosaurs in the late Cretaceous. Methods Here we present bite force estimates for a juvenile Tyrannosaurus rex based on mechanical tests designed to replicate bite marks previously attributed to a T. rex of approximately 13 years old. A maxillary tooth of the juvenile Tyrannosaurus specimen BMR P2002.4.1 was digitized, replicated in dental grade cobalt chromium alloy, and mounted to an electromechanical testing system. The tooth was then pressed into bovine long bones in various locations with differing cortical bone thicknesses at varying speeds for a total of 17 trials. Forces required to replicate punctures were recorded and puncture dimensions were measured. Results Our experimentally derived linear models suggest bite forces up to 5,641.19 N from cortical bone thickness estimated from puncture marks on an Edmontosaurus and a juvenile Tyrannosaurus. These findings are slightly higher than previously estimated bite forces for a juvenile Tyrannosaurus rex of approximately the same size as BMR P2002.4.1 but fall within the expected range when compared to estimates of adult T. rex. Discussion The results of this study offer further insight into the role of juvenile tyrannosaurs in late Cretaceous ecosystems. Furthermore, we discuss the implications for feeding mechanisms, feeding behaviors, and ontogenetic niche partitioning.
Collapse
Affiliation(s)
- Joseph E Peterson
- Department of Geology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Z Jack Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California Berkeley, Berkeley, California, United States of America
| | - Shannon Brink
- Department of Geological Sciences, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
9
|
Rowe AJ, Snively E. Biomechanics of juvenile tyrannosaurid mandibles and their implications for bite force: Evolutionary biology. Anat Rec (Hoboken) 2021; 305:373-392. [PMID: 33586862 DOI: 10.1002/ar.24602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022]
Abstract
The tyrannosaurids are among the most well-studied dinosaurs described by science, and analysis of their feeding biomechanics allows for comparison between established tyrannosaurid genera and across ontogeny. 3D finite element analysis (FEA) was used to model and quantify the mechanical properties of the mandibles (lower jaws) of three tyrannosaurine tyrannosaurids of different sizes. To increase evolutionary scope and context for 3D tyrannosaurine results, a broader sample of validated 2D mandible FEA enabled comparisons between ontogenetic stages of Tyrannosaurus rex and other large theropods. It was found that mandibles of small juvenile and large subadult tyrannosaurs experienced lower stress overall because muscle forces were relatively lower, but experienced greater simulated stresses at decreasing sizes when specimen muscle force is normalized. The strain on post-dentary ligaments decreases stress and strain in the posterior region of the dentary and where teeth impacted food. Tension from the lateral insertion of the looping m. ventral pterygoid muscle increases compressive stress on the angular but may decrease anterior bending stress on the mandible. Low mid-mandible bending stresses are congruent with ultra-robust teeth and high anterior bite force in adult T. rex. Mandible strength increases with size through ontogeny in T. rex and phylogenetically among other tyrannosaurids, in addition to that tyrannosaurid mandibles exceed the mandible strength of other theropods at equivalent ramus length. These results may indicate separate predatory strategies used by juvenile and mature tyrannosaurids; juvenile tyrannosaurids lacked the bone-crunching bite of adult specimens and hunted smaller prey, while adult tyrannosaurids fed on larger prey.
Collapse
Affiliation(s)
- Andre J Rowe
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Eric Snively
- College of Osteopathic Medicine, Oklahoma State University, Tulsa, Oklahoma, USA
| |
Collapse
|
10
|
Montefeltro FC, Lautenschlager S, Godoy PL, Ferreira GS, Butler RJ. A unique predator in a unique ecosystem: modelling the apex predator within a Late Cretaceous crocodyliform-dominated fauna from Brazil. J Anat 2020; 237:323-333. [PMID: 32255518 DOI: 10.1111/joa.13192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Theropod dinosaurs were relatively scarce in the Late Cretaceous ecosystems of southeast Brazil. Instead, hypercarnivorous crocodyliforms known as baurusuchids were abundant and probably occupied the ecological role of apex predators. Baurusuchids exhibited a series of morphological adaptations hypothesized to be associated with this ecological role, but quantitative biomechanical analyses of their morphology have so far been lacking. Here, we employ a biomechanical modelling approach, applying finite element analysis (FEA) to models of the skull and mandibles of a baurusuchid specimen. This allows us to characterize the craniomandibular apparatus of baurusuchids, as well as to compare the functional morphology of the group with that of other archosaurian carnivores, such as theropods and crocodylians. Our results support the ecological role of baurusuchids as specialized apex predators in the continental Late Cretaceous ecosystems of South America. With a relatively weak bite force (~600 N), the predation strategies of baurusuchids likely relied on other morphological specializations, such as ziphodont dentition and strong cervical musculature. Comparative assessments of the stress distribution and magnitude of scaled models of other predators (the theropod Allosaurus fragilis and the living crocodylian Alligator mississippiensis) consistently show different responses to loadings under the same functional scenarios, suggesting distinct predatory behaviors for these animals. The unique selective pressures in the arid to semi-arid Late Cretaceous ecosystems of southeast Brazil, which were dominated by crocodyliforms, possibly drove the emergence and evolution of the biomechanical features seen in baurusuchids, which are distinct from those previously reported for other predatory taxa.
Collapse
Affiliation(s)
- Felipe C Montefeltro
- Laboratório de Paleontologia e Evolução de Ilha Solteira, UNESP, Ilha Solteira, Brazil.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Pedro L Godoy
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Gabriel S Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Hummingbird-sized dinosaur from the Cretaceous period of Myanmar. Nature 2020; 579:245-249. [PMID: 32161388 DOI: 10.1038/s41586-020-2068-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/22/2020] [Indexed: 11/08/2022]
Abstract
Skeletal inclusions in approximately 99-million-year-old amber from northern Myanmar provide unprecedented insights into the soft tissue and skeletal anatomy of minute fauna, which are not typically preserved in other depositional environments1-3. Among a diversity of vertebrates, seven specimens that preserve the skeletal remains of enantiornithine birds have previously been described1,4-8, all of which (including at least one seemingly mature specimen) are smaller than specimens recovered from lithic materials. Here we describe an exceptionally well-preserved and diminutive bird-like skull that documents a new species, which we name Oculudentavis khaungraae gen. et sp. nov. The find appears to represent the smallest known dinosaur of the Mesozoic era, rivalling the bee hummingbird (Mellisuga helenae)-the smallest living bird-in size. The O. khaungraae specimen preserves features that hint at miniaturization constraints, including a unique pattern of cranial fusion and an autapomorphic ocular morphology9 that resembles the eyes of lizards. The conically arranged scleral ossicles define a small pupil, indicative of diurnal activity. Miniaturization most commonly arises in isolated environments, and the diminutive size of Oculudentavis is therefore consistent with previous suggestions that this amber formed on an island within the Trans-Tethyan arc10. The size and morphology of this species suggest a previously unknown bauplan, and a previously undetected ecology. This discovery highlights the potential of amber deposits to reveal the lowest limits of vertebrate body size.
Collapse
|
12
|
Chure DJ, Loewen MA. Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America. PeerJ 2020; 8:e7803. [PMID: 32002317 PMCID: PMC6984342 DOI: 10.7717/peerj.7803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2019] [Indexed: 11/20/2022] Open
Abstract
Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis.
Collapse
Affiliation(s)
- Daniel J Chure
- Dinosaur National Monument (retired), Jensen, UT, USA.,Independent Researcher, Jensen, UT, USA
| | - Mark A Loewen
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA.,Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Santaella BL, Tseng ZJ. Hole in One: an element reduction approach to modeling bone porosity in finite element analysis. PeerJ 2019; 7:e8112. [PMID: 31875143 PMCID: PMC6925947 DOI: 10.7717/peerj.8112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022] Open
Abstract
Finite element analysis has been an increasingly widely applied biomechanical modeling method in many different science and engineering fields over the last decade. In the biological sciences, there are many examples of FEA in areas such as paleontology and functional morphology. Despite this common use, the modeling of trabecular bone remains a key issue because their highly complex and porous geometries are difficult to replicate in the solid mesh format required for many simulations. A common practice is to assign uniform model material properties to whole or portions of models that represent trabecular bone. In this study we aimed to demonstrate that a physical, element reduction approach constitutes a valid protocol for addressing this problem in addition to the wholesale mathematical approach. We tested a customized script for element reduction modeling on five exemplar trabecular geometry models of carnivoran temporomandibular joints, and compared stress and strain energy results of both physical and mathematical trabecular modeling to models incorporating actual trabecular geometry. Simulation results indicate that that the physical, element reduction approach generally outperformed the mathematical approach: physical changes in the internal structure of experimental cylindrical models had a major influence on the recorded stress values throughout the model, and more closely approximates values obtained in models containing actual trabecular geometry than solid models with modified trabecular material properties. In models with both physical and mathematical adjustments for bone porosity, the physical changes exhibit more weight than material properties changes in approximating values of control models. Therefore, we conclude that maintaining or mimicking the internal porosity of a trabecular structure is a more effective method of approximating trabecular bone behavior in finite element models than modifying material properties.
Collapse
Affiliation(s)
- Beatriz L Santaella
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, United States of America
| | - Z Jack Tseng
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, United States of America.,Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA, United States of America.,Division of Paleontology, American Museum of Natural History, New York, NY, United States of America
| |
Collapse
|
14
|
Morales-García NM, Burgess TD, Hill JJ, Gill PG, Rayfield EJ. The use of extruded finite-element models as a novel alternative to tomography-based models: a case study using early mammal jaws. J R Soc Interface 2019; 16:20190674. [PMID: 31822222 PMCID: PMC6936041 DOI: 10.1098/rsif.2019.0674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Finite-element (FE) analysis has been used in palaeobiology to assess the mechanical performance of the jaw. It uses two types of models: tomography-based three-dimensional (3D) models (very accurate, not always accessible) and two-dimensional (2D) models (quick and easy to build, good for broad-scale studies, cannot obtain absolute stress and strain values). Here, we introduce extruded FE models, which provide fairly accurate mechanical performance results, while remaining low-cost, quick and easy to build. These are simplified 3D models built from lateral outlines of a relatively flat jaw and extruded to its average width. There are two types: extruded (flat mediolaterally) and enhanced extruded (accounts for width differences in the ascending ramus). Here, we compare mechanical performance values resulting from four types of FE models (i.e. tomography-based 3D, extruded, enhanced extruded and 2D) in Morganucodon and Kuehneotherium. In terms of absolute values, both types of extruded model perform well in comparison to the tomography-based 3D models, but enhanced extruded models perform better. In terms of overall patterns, all models produce similar results. Extruded FE models constitute a viable alternative to the use of tomography-based 3D models, particularly in relatively flat bones.
Collapse
Affiliation(s)
| | - Thomas D Burgess
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Jennifer J Hill
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.,Smithsonian Institution, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.,Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| |
Collapse
|
15
|
Cranial Musculature in Herbivorous Dinosaurs: A Survey of Reconstructed Anatomical Diversity and Feeding Mechanisms. Anat Rec (Hoboken) 2019; 303:1104-1145. [DOI: 10.1002/ar.24283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/14/2019] [Accepted: 08/22/2019] [Indexed: 11/07/2022]
|
16
|
Cost IN, Middleton KM, Sellers KC, Echols MS, Witmer LM, Davis JL, Holliday CM. Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex. Anat Rec (Hoboken) 2019; 303:999-1017. [PMID: 31260190 DOI: 10.1002/ar.24219] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/02/2023]
Abstract
The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore-aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore-aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999-1017, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ian N Cost
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| | - Kaleb C Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| | | | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Julian L Davis
- Department of Engineering, University of Southern Indiana, Evansville, Indiana
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
17
|
Werneburg I, Esteve-Altava B, Bruno J, Torres Ladeira M, Diogo R. Unique skull network complexity of Tyrannosaurus rex among land vertebrates. Sci Rep 2019; 9:1520. [PMID: 30728455 PMCID: PMC6365547 DOI: 10.1038/s41598-018-37976-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Like other diapsids, Tyrannosaurus rex has two openings in the temporal skull region. In addition, like in other dinosaurs, its snout and lower jaw show large cranial fenestrae. In T. rex, they are thought to decrease skull weight, because, unlike most other amniotes, the skull proportion is immense compared to the body. Understanding morphofunctional complexity of this impressive skull architecture requires a broad scale phylogenetic comparison with skull types different to that of dinosaurs with fundamentally diverging cranial regionalization. Extant fully terrestrial vertebrates (amniotes) provide the best opportunities in that regard, as their skull performance is known from life. We apply for the first time anatomical network analysis to study skull bone integration and modular constructions in tyrannosaur and compare it with five representatives of the major amniote groups in order to get an understanding of the general patterns of amniote skull modularity. Our results reveal that the tyrannosaur has the most modular skull organization among the amniotes included in our study, with an unexpected separation of the snout in upper and lower sub-modules and the presence of a lower adductor chamber module. Independent pathways of bone reduction in opossum and chicken resulted in different degrees of cranial complexity with chicken having a typical sauropsidian pattern. The akinetic skull of opossum, alligator, and leatherback turtle evolved in independent ways mirrored in different patterns of skull modularity. Kinetic forms also show great diversity in modularity. The complex tyrannosaur skull modularity likely represents a refined mosaic of phylogenetic and ecological factors with food processing being probably most important for shaping its skull architecture. Mode of food processing primarily shaped skull integration among amniotes, however, phylogenetic patterns of skull integration are low in our sampling. Our general conclusions on amniote skull integrity are obviously preliminary and should be tested in subsequent studies. As such, this study provides a framework for future research focusing on the evolution of modularity on lower taxonomic levels.
Collapse
Affiliation(s)
- Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) at Eberhard Karls Universität, Sigwartstraße 10, 72076, Tübingen, Germany. .,Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany. .,Museum für Naturkunde, Leibniz-Institut für Evolutions- & Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115, Berlin, Germany.
| | - Borja Esteve-Altava
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom.,Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Joana Bruno
- Departament de Prehistòria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Torres Ladeira
- Paläontologisches Institut und Museum der Universität Zürich, Zürich, Switzerland
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington DC, USA
| |
Collapse
|
18
|
Liu L, Jiang Y, Boyce M, Ortiz C, Baur J, Song J, Li Y. The effects of morphological irregularity on the mechanical behavior of interdigitated biological sutures under tension. J Biomech 2017; 58:71-78. [DOI: 10.1016/j.jbiomech.2017.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
|
19
|
Sullivan C, Xu X. Morphological Diversity and Evolution of the Jugal in Dinosaurs. Anat Rec (Hoboken) 2016; 300:30-48. [DOI: 10.1002/ar.23488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Corwin Sullivan
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences; Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences; 142 Xizhimenwai Dajie Beijing 100044 China
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences; Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences; 142 Xizhimenwai Dajie Beijing 100044 China
| |
Collapse
|
20
|
Bailleul AM, Scannella JB, Horner JR, Evans DC. Fusion Patterns in the Skulls of Modern Archosaurs Reveal That Sutures Are Ambiguous Maturity Indicators for the Dinosauria. PLoS One 2016; 11:e0147687. [PMID: 26862766 PMCID: PMC4749387 DOI: 10.1371/journal.pone.0147687] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/07/2016] [Indexed: 11/18/2022] Open
Abstract
The sutures of the skulls of vertebrates are generally open early in life and slowly close as maturity is attained. The assumption that all vertebrates follow this pattern of progressive sutural closure has been used to assess maturity in the fossil remains of non-avian dinosaurs. Here, we test this assumption in two members of the Extant Phylogenetic Bracket of the Dinosauria, the emu, Dromaius novaehollandiae and the American alligator, Alligator mississippiensis, by investigating the sequence and timing of sutural fusion in their skulls. As expected, almost all the sutures in the emu skull progressively close (i.e., they get narrower) and then obliterate during ontogeny. However, in the American alligator, only two sutures out of 36 obliterate completely and they do so during embryonic development. Surprisingly, as maturity progresses, many sutures of alligators become wider in large individuals compared to younger, smaller individuals. Histological and histomorphometric analyses on two sutures and one synchondrosis in an ontogenetic series of American alligator confirmed our morphological observations. This pattern of sutural widening might reflect feeding biomechanics and dietary changes through ontogeny. Our findings show that progressive sutural closure is not always observed in extant archosaurs, and therefore suggest that cranial sutural fusion is an ambiguous proxy for assessing maturity in non-avian dinosaurs.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Museum of the Rockies and Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| | - John B. Scannella
- Museum of the Rockies and Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
| | - John R. Horner
- Museum of the Rockies and Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
| | - David C. Evans
- Royal Ontario Museum and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Lautenschlager S. Estimating cranial musculoskeletal constraints in theropod dinosaurs. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150495. [PMID: 26716007 PMCID: PMC4680622 DOI: 10.1098/rsos.150495] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Many inferences on the biology, behaviour and ecology of extinct vertebrates are based on the reconstruction of the musculature and rely considerably on its accuracy. Although the advent of digital reconstruction techniques has facilitated the creation and testing of musculoskeletal hypotheses in recent years, muscle strain capabilities have rarely been considered. Here, a digital modelling approach using the freely available visualization and animation software Blender is applied to estimate cranial muscle length changes and optimal and maximal possible gape in different theropod dinosaurs. Models of living archosaur taxa (Alligator mississippiensis, Buteo buteo) were used in an extant phylogenetically bracketed framework to validate the method. Results of this study demonstrate that Tyrannosaurus rex, Allosaurus fragilis and Erlikosaurus andrewsi show distinct differences in the recruitment of the jaw adductor musculature and resulting gape, confirming previous dietary and ecological assumptions. While the carnivorous taxa T. rex and Allo. fragilis were capable of a wide gape and sustained muscle force, the herbivorous therizinosaurian E. andrewsi was constrained to small gape angles.
Collapse
|
22
|
Maiorino L, Farke AA, Kotsakis T, Teresi L, Piras P. Variation in the shape and mechanical performance of the lower jaws in ceratopsid dinosaurs (Ornithischia, Ceratopsia). J Anat 2015; 227:631-46. [PMID: 26467240 DOI: 10.1111/joa.12374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 11/30/2022] Open
Abstract
Ceratopsidae represents a group of quadrupedal herbivorous dinosaurs that inhabited western North America and eastern Asia during the Late Cretaceous. Although horns and frills of the cranium are highly variable across species, the lower jaw historically has been considered to be relatively conservative in morphology. Here, the lower jaws from 58 specimens representing 21 ceratopsoid taxa were sampled, using geometric morphometrics and 2D finite element analysis (FEA) to explore differences in morphology and mechanical performance across Ceratopsoidea (the clade including Ceratopsidae, Turanoceratops and Zuniceratops). Principal component analyses and non-parametric permuted manovas highlight Triceratopsini as a morphologically distinct clade within the sample. A relatively robust and elongate dentary, a larger and more elongated coronoid process, and a small and dorso-ventrally compressed angular characterize this clade, as well as the absolutely larger size. By contrast, non-triceratopsin chasmosaurines, Centrosaurini and Pachyrhinosaurini have similar morphologies to each other. Zuniceratops and Avaceratops are distinct from other taxa. No differences in size between Pachyrhinosaurini and Centrosaurini are recovered using non-parametric permuted anovas. Structural performance, as evaluated using a 2D FEA, is similar across all groups as measured by overall stress, with the exception of Triceratopsini. Shape, size and stress are phylogenetically constrained. A longer dentary as well as a long coronoid process result in a lower jaw that is reconstructed as relatively much more stressed in triceratopsins.
Collapse
Affiliation(s)
- Leonardo Maiorino
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy.,Center for Evolutionary Ecology, Rome, Italy
| | - Andrew A Farke
- Raymond M. Alf Museum of Paleontology, Claremont, CA, USA
| | - Tassos Kotsakis
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy.,Center for Evolutionary Ecology, Rome, Italy
| | - Luciano Teresi
- Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
| | - Paolo Piras
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy.,Center for Evolutionary Ecology, Rome, Italy.,Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
23
|
Sharp AC. Comparative finite element analysis of the cranial performance of four herbivorous marsupials. J Morphol 2015; 276:1230-43. [PMID: 26193997 DOI: 10.1002/jmor.20414] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 11/07/2022]
Abstract
Marsupial herbivores exhibit a wide variety of skull shapes and sizes to exploit different ecological niches. Several studies on teeth, dentaries, and jaw adductor muscles indicate that marsupial herbivores exhibit different specializations for grazing and browsing. No studies, however, have examined the skulls of marsupial herbivores to determine the relationship between stress and strain, and the evolution of skull shape. The relationship between skull morphology, biomechanical performance, and diet was tested by applying the finite element method to the skulls of four marsupial herbivores: the common wombat (Vombatus ursinus), koala (Phascolarctos cinereus), swamp wallaby (Wallabia bicolor), and red kangaroo (Macropus rufus). It was hypothesized that grazers, requiring stronger skulls to process tougher food, would have higher biomechanical performance than browsers. This was true when comparing the koala and wallaby (browsers) to the wombat (a grazer). The cranial model of the wombat resulted in low stress and high mechanical efficiency in relation to a robust skull capable of generating high bite forces. However, the kangaroo, also a grazer, has evolved a very different strategy to process tough food. The cranium is much more gracile and has higher stress and lower mechanical efficiency, but they adopt a different method of processing food by having a curved tooth row to concentrate force in a smaller area and molar progression to remove worn teeth from the tooth row. Therefore, the position of the bite is crucial for the structural performance of the kangaroo skull, while it is not for the wombat which process food along the entire tooth row. In accordance with previous studies, the results from this study show the mammalian skull is optimized to resist forces generated during feeding. However, other factors, including the lifestyle of the animal and its environment, also affect selection for skull morphology to meet multiple functional demands.
Collapse
Affiliation(s)
- Alana C Sharp
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia.,School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Hone D, Tanke DH. Pre- and postmortem tyrannosaurid bite marks on the remains of Daspletosaurus (Tyrannosaurinae: Theropoda) from Dinosaur Provincial Park, Alberta, Canada. PeerJ 2015; 3:e885. [PMID: 25870775 PMCID: PMC4393819 DOI: 10.7717/peerj.885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/19/2015] [Indexed: 11/20/2022] Open
Abstract
Trace marks on the bones of non-avian dinosaurs may relate to feeding by large carnivores or as a result of combat. Here the cranium and mandible of a specimen of Daspletosaurus are described that show numerous premortem injuries with evidence of healing and these are inferred to relate primarily to intraspecific combat. In addition, postmortem damage to the mandible is indicative of late stage carcass consumption and the taphonomic context suggests that this was scavenging. These postmortem bites were delivered by a large bodied tyrannosaurid theropod and may have been a second Daspletosaurus, and thus this would be an additional record of tyrannosaurid cannibalism.
Collapse
Affiliation(s)
- Dwe Hone
- School of Biological and Chemical Sciences, Queen Mary, University of London , London , UK
| | - D H Tanke
- Royal Tyrrell Museum , Drumheller, Alberta , Canada
| |
Collapse
|
25
|
Snively E, Fahlke JM, Welsh RC. Bone-breaking bite force of Basilosaurus isis (Mammalia, Cetacea) from the late Eocene of Egypt estimated by finite element analysis. PLoS One 2015; 10:e0118380. [PMID: 25714832 PMCID: PMC4340796 DOI: 10.1371/journal.pone.0118380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022] Open
Abstract
Bite marks suggest that the late Eocence archaeocete whale Basilosaurus isis (Birket Qarun Formation, Egypt) fed upon juveniles of the contemporary basilosaurid Dorudon atrox. Finite element analysis (FEA) of a nearly complete adult cranium of B. isis enables estimates of its bite force and tests the animal's capabilities for crushing bone. Two loadcases reflect different biting scenarios: 1) an intitial closing phase, with all adductors active and a full condylar reaction force; and 2) a shearing phase, with the posterior temporalis active and minimized condylar force. The latter is considered probable when the jaws were nearly closed because the preserved jaws do not articulate as the molariform teeth come into occulusion. Reaction forces with all muscles active indicate that B. isis maintained relatively greater bite force anteriorly than seen in large crocodilians, and exerted a maximum bite force of at least 16,400 N at its upper P3. Under the shearing scenario with minimized condylar forces, tooth reaction forces could exceed 20,000 N despite lower magnitudes of muscle force. These bite forces at the teeth are consistent with bone indentations on Dorudon crania, reatract-and-shear hypotheses of Basilosaurus bite function, and seizure of prey by anterior teeth as proposed for other archaeocetes. The whale's bite forces match those estimated for pliosaurus when skull lengths are equalized, suggesting similar tradeoffs of bite function and hydrodynamics. Reaction forces in B. isis were lower than maxima estimated for large crocodylians and carnivorous dinosaurs. However, comparison of force estimates from FEA and regression data indicate that B. isis exerted the largest bite forces yet estimated for any mammal, and greater force than expected from its skull width. Cephalic feeding biomechanics of Basilosaurus isis are thus consistent with habitual predation.
Collapse
Affiliation(s)
- Eric Snively
- Department of Biology, University of Wisconsin–La Crosse, 1725 State Street, La Crosse, Wisconsin, United States of America
| | - Julia M. Fahlke
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Robert C. Welsh
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
26
|
Tseng ZJ, Flynn JJ. Convergence analysis of a finite element skull model of Herpestes javanicus (Carnivora, Mammalia): Implications for robust comparative inferences of biomechanical function. J Theor Biol 2015; 365:112-48. [DOI: 10.1016/j.jtbi.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|
27
|
Walmsley CW, McCurry MR, Clausen PD, McHenry CR. Beware the black box: investigating the sensitivity of FEA simulations to modelling factors in comparative biomechanics. PeerJ 2013; 1:e204. [PMID: 24255817 PMCID: PMC3828634 DOI: 10.7717/peerj.204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/14/2013] [Indexed: 11/24/2022] Open
Abstract
Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be ‘reasonable’ are often assumed to have little influence on the results and their interpretation. Here we report an extensive sensitivity analysis where high resolution finite element (FE) models of mandibles from seven species of crocodile were analysed under loads typical for comparative analysis: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results.
Collapse
Affiliation(s)
- Christopher W Walmsley
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University , Melbourne, Victoria , Australia ; School of Engineering, University of Newcastle , Newcastle, New South Wales , Australia
| | | | | | | |
Collapse
|
28
|
Curtis N, Jones MEH, Evans SE, O'Higgins P, Fagan MJ. Cranial sutures work collectively to distribute strain throughout the reptile skull. J R Soc Interface 2013; 10:20130442. [PMID: 23804444 PMCID: PMC3730698 DOI: 10.1098/rsif.2013.0442] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skull is composed of many bones that come together at sutures. These sutures are important sites of growth, and as growth ceases some become fused while others remain patent. Their mechanical behaviour and how they interact with changing form and loadings to ensure balanced craniofacial development is still poorly understood. Early suture fusion often leads to disfiguring syndromes, thus is it imperative that we understand the function of sutures more clearly. By applying advanced engineering modelling techniques, we reveal for the first time that patent sutures generate a more widely distributed, high level of strain throughout the reptile skull. Without patent sutures, large regions of the skull are only subjected to infrequent low-level strains that could weaken the bone and result in abnormal development. Sutures are therefore not only sites of bone growth, but could also be essential for the modulation of strains necessary for normal growth and development in reptiles.
Collapse
Affiliation(s)
- Neil Curtis
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK.
| | | | | | | | | |
Collapse
|
29
|
Moazen M, Costantini D, Bruner E. A sensitivity analysis to the role of the fronto-parietal suture in Lacerta bilineata: a preliminary finite element study. Anat Rec (Hoboken) 2012. [PMID: 23192831 DOI: 10.1002/ar.22629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cranial sutures are sites of bone growth and development but micromovements at these sites may distribute the load across the skull more evenly. Computational studies have incorporated sutures into finite element (FE) models to assess various hypotheses related to their function. However, less attention has been paid to the sensitivity of the FE results to the shape, size, and stiffness of the modeled sutures. Here, we assessed the sensitivity of the strain predictions to the aforementioned parameters in several models of fronto-parietal (FP) suture in Lacerta bilineata. For the purpose of this study, simplifications were made in relation to modeling the bone properties and the skull loading. Results highlighted that modeling the FP as either an interdigitated suture or a simplified butt suture, did not reduce the strain distribution in the FP region. Sensitivity tests showed that similar patterns of strain distribution can be obtained regardless of the size of the suture, or assigned stiffness, yet the exact magnitudes of strains are highly sensitive to these parameters. This study raises the question whether the morphogenesis of epidermic scales in the FP region in the Lacertidae is related to high strain fields in this region, because of micromovement in the FP suture.
Collapse
Affiliation(s)
- Mehran Moazen
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | | | | |
Collapse
|
30
|
Cox PG, Rayfield EJ, Fagan MJ, Herrel A, Pataky TC, Jeffery N. Functional evolution of the feeding system in rodents. PLoS One 2012; 7:e36299. [PMID: 22558427 PMCID: PMC3338682 DOI: 10.1371/journal.pone.0036299] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022] Open
Abstract
The masticatory musculature of rodents has evolved to enable both gnawing at the incisors and chewing at the molars. In particular, the masseter muscle is highly specialised, having extended anteriorly to originate from the rostrum. All living rodents have achieved this masseteric expansion in one of three ways, known as the sciuromorph, hystricomorph and myomorph conditions. Here, we used finite element analysis (FEA) to investigate the biomechanical implications of these three morphologies, in a squirrel, guinea pig and rat. In particular, we wished to determine whether each of the three morphologies is better adapted for either gnawing or chewing. Results show that squirrels are more efficient at muscle-bite force transmission during incisor gnawing than guinea pigs, and that guinea pigs are more efficient at molar chewing than squirrels. This matches the known diet of nuts and seeds that squirrels gnaw, and of grasses that guinea pigs grind down with their molars. Surprisingly, results also indicate that rats are more efficient as well as more versatile feeders than both the squirrel and guinea pig. There seems to be no compromise in biting efficiency to accommodate the wider range of foodstuffs and the more general feeding behaviour adopted by rats. Our results show that the morphology of the skull and masticatory muscles have allowed squirrels to specialise as gnawers and guinea pigs as chewers, but that rats are high-performance generalists, which helps explain their overwhelming success as a group.
Collapse
Affiliation(s)
- Philip G Cox
- Hull York Medical School, University of Hull, Hull, United Kingdom.
| | | | | | | | | | | |
Collapse
|
31
|
BRUSATTE SL, SAKAMOTO M, MONTANARI S, HARCOURT SMITH WEH. The evolution of cranial form and function in theropod dinosaurs: insights from geometric morphometrics. J Evol Biol 2011; 25:365-77. [DOI: 10.1111/j.1420-9101.2011.02427.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Cox PG, Fagan MJ, Rayfield EJ, Jeffery N. Finite element modelling of squirrel, guinea pig and rat skulls: using geometric morphometrics to assess sensitivity. J Anat 2011; 219:696-709. [PMID: 21974720 DOI: 10.1111/j.1469-7580.2011.01436.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rodents are defined by a uniquely specialized dentition and a highly complex arrangement of jaw-closing muscles. Finite element analysis (FEA) is an ideal technique to investigate the biomechanical implications of these specializations, but it is essential to understand fully the degree of influence of the different input parameters of the FE model to have confidence in the model's predictions. This study evaluates the sensitivity of FE models of rodent crania to elastic properties of the materials, loading direction, and the location and orientation of the models' constraints. Three FE models were constructed of squirrel, guinea pig and rat skulls. Each was loaded to simulate biting on the incisors, and the first and the third molars, with the angle of the incisal bite varied over a range of 45°. The Young's moduli of the bone and teeth components were varied between limits defined by findings from our own and previously published tests of material properties. Geometric morphometrics (GMM) was used to analyse the resulting skull deformations. Bone stiffness was found to have the strongest influence on the results in all three rodents, followed by bite position, and then bite angle and muscle orientation. Tooth material properties were shown to have little effect on the deformation of the skull. The effect of bite position varied between species, with the mesiodistal position of the biting tooth being most important in squirrels and guinea pigs, whereas bilateral vs. unilateral biting had the greatest influence in rats. A GMM analysis of isolated incisor deformations showed that, for all rodents, bite angle is the most important parameter, followed by elastic properties of the tooth. The results here elucidate which input parameters are most important when defining the FE models, but also provide interesting glimpses of the biomechanical differences between the three skulls, which will be fully explored in future publications.
Collapse
Affiliation(s)
- P G Cox
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|
33
|
Attard M, Chamoli U, Ferrara T, Rogers T, Wroe S. Skull mechanics and implications for feeding behaviour in a large marsupial carnivore guild: the thylacine, Tasmanian devil and spotted-tailed quoll. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00844.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Wood SA, Strait DS, Dumont ER, Ross CF, Grosse IR. The effects of modeling simplifications on craniofacial finite element models: The alveoli (tooth sockets) and periodontal ligaments. J Biomech 2011; 44:1831-8. [DOI: 10.1016/j.jbiomech.2011.03.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
35
|
Chamoli U, Wroe S. Allometry in the distribution of material properties and geometry of the felid skull: why larger species may need to change and how they may achieve it. J Theor Biol 2011; 283:217-26. [PMID: 21651916 DOI: 10.1016/j.jtbi.2011.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 11/26/2022]
Abstract
Extant members of the cat family (Felidae) have been considered behaviourally and morphologically conservative, i.e., despite great differences in size, there is relatively little variation in either the shape of the felid skull and dentition across species, or in the way in which these structures are used to kill and dismember prey. Consequently felids have been considered an appropriate focus for a number of investigations into the influence of allometry on craniomandibular mechanics and morphology. However, although previous treatments have considered the role of shape, they have not investigated the influence of differences in the distribution of relatively stiff cortical and more compliant cancellous bone on performance. Here, using models that incorporate material properties for both cortical and cancellous bone, we apply three-dimensional (3D) finite element analysis (FEA) to models representing the skulls of seven extant felid species. Our objectives being to determine allometric trends regarding both overall geometry and the relative distributions of cortical and cancellous bone tissue. We also more comprehensively assess variation in the efficiency with which muscular force is converted to bite force and the capacity to resist associated stresses. Our results show that the cheetah (Acinonyx jubatus) may be exceptional regarding both the efficiency with which muscular force is converted to bite force and the distribution of stress. We found a negative allometric trend between cortical bone volume and total skull bone volume, and positive allometry between the total skull bone volume and skull surface area. Results gained from mathematical modelling of beam analogies suggest that these trends reflect a need for larger species to respond to physical challenges associated with increased size, and, that changes in skull shape, bone composition, or a combination of both may be required to accommodate these challenges. With geometrical scaling stress increases by the same factor, and displacement by the same factor squared, but the ultimate failure stress of the material is invariant. We find that as species become larger, overall skull bone volume relative to surface area increases by adding a higher proportion of less dense and more compliant cancellous bone. This results in an increased cross-sectional area and second moment of inertia, which acts to reduce the overall stresses. An overall saving in mass is a likely additional consequence. Although we do find evidence that skull stiffness does diminish with size, we also argue that this is at least in part mitigated through the influence of these allometric trends. We further suggest that these trends and the explanations for them may be universal for vertebrates.
Collapse
Affiliation(s)
- Uphar Chamoli
- Computational Biomechanics Research Group, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington campus, Sydney, NSW 2052, Australia
| | | |
Collapse
|
36
|
Model sensitivity and use of the comparative finite element method in mammalian jaw mechanics: mandible performance in the gray wolf. PLoS One 2011; 6:e19171. [PMID: 21559475 PMCID: PMC3084775 DOI: 10.1371/journal.pone.0019171] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
Finite Element Analysis (FEA) is a powerful tool gaining use in studies of biological form and function. This method is particularly conducive to studies of extinct and fossilized organisms, as models can be assigned properties that approximate living tissues. In disciplines where model validation is difficult or impossible, the choice of model parameters and their effects on the results become increasingly important, especially in comparing outputs to infer function. To evaluate the extent to which performance measures are affected by initial model input, we tested the sensitivity of bite force, strain energy, and stress to changes in seven parameters that are required in testing craniodental function with FEA. Simulations were performed on FE models of a Gray Wolf (Canis lupus) mandible. Results showed that unilateral bite force outputs are least affected by the relative ratios of the balancing and working muscles, but only ratios above 0.5 provided balancing-working side joint reaction force relationships that are consistent with experimental data. The constraints modeled at the bite point had the greatest effect on bite force output, but the most appropriate constraint may depend on the study question. Strain energy is least affected by variation in bite point constraint, but larger variations in strain energy values are observed in models with different number of tetrahedral elements, masticatory muscle ratios and muscle subgroups present, and number of material properties. These findings indicate that performance measures are differentially affected by variation in initial model parameters. In the absence of validated input values, FE models can nevertheless provide robust comparisons if these parameters are standardized within a given study to minimize variation that arise during the model-building process. Sensitivity tests incorporated into the study design not only aid in the interpretation of simulation results, but can also provide additional insights on form and function.
Collapse
|
37
|
Davis JL, Dumont ER, Strait DS, Grosse IR. An efficient method of modeling material properties using a thermal diffusion analogy: an example based on craniofacial bone. PLoS One 2011; 6:e17004. [PMID: 21347288 PMCID: PMC3037934 DOI: 10.1371/journal.pone.0017004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/13/2011] [Indexed: 11/25/2022] Open
Abstract
The ability to incorporate detailed geometry into finite element models has allowed researchers to investigate the influence of morphology on performance aspects of skeletal components. This advance has also allowed researchers to explore the effect of different material models, ranging from simple (e.g., isotropic) to complex (e.g., orthotropic), on the response of bone. However, bone's complicated geometry makes it difficult to incorporate complex material models into finite element models of bone. This difficulty is due to variation in the spatial orientation of material properties throughout bone. Our analysis addresses this problem by taking full advantage of a finite element program's ability to solve thermal-structural problems. Using a linear relationship between temperature and modulus, we seeded specific nodes of the finite element model with temperatures. We then used thermal diffusion to propagate the modulus throughout the finite element model. Finally, we solved for the mechanical response of the finite element model to the applied loads and constraints. We found that using the thermal diffusion analogy to control the modulus of bone throughout its structure provides a simple and effective method of spatially varying modulus. Results compare favorably against both experimental data and results from an FE model that incorporated a complex (orthotropic) material model. This method presented will allow researchers the ability to easily incorporate more material property data into their finite element models in an effort to improve the model's accuracy.
Collapse
Affiliation(s)
- Julian L Davis
- Department of Engineering, University of Southern Indiana, Evansville, Indiana, United States of America.
| | | | | | | |
Collapse
|
38
|
Wroe S, Ferrara TL, McHenry CR, Curnoe D, Chamoli U. The craniomandibular mechanics of being human. Proc Biol Sci 2010; 277:3579-86. [PMID: 20554545 PMCID: PMC2982237 DOI: 10.1098/rspb.2010.0509] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/03/2010] [Indexed: 11/12/2022] Open
Abstract
Diminished bite force has been considered a defining feature of modern Homo sapiens, an interpretation inferred from the application of two-dimensional lever mechanics and the relative gracility of the human masticatory musculature and skull. This conclusion has various implications with regard to the evolution of human feeding behaviour. However, human dental anatomy suggests a capacity to withstand high loads and two-dimensional lever models greatly simplify muscle architecture, yielding less accurate results than three-dimensional modelling using multiple lines of action. Here, to our knowledge, in the most comprehensive three-dimensional finite element analysis performed to date for any taxon, we ask whether the traditional view that the bite of H. sapiens is weak and the skull too gracile to sustain high bite forces is supported. We further introduce a new method for reconstructing incomplete fossil material. Our findings show that the human masticatory apparatus is highly efficient, capable of producing a relatively powerful bite using low muscle forces. Thus, relative to other members of the superfamily Hominoidea, humans can achieve relatively high bite forces, while overall stresses are reduced. Our findings resolve apparently discordant lines of evidence, i.e. the presence of teeth well adapted to sustain high loads within a lightweight cranium and mandible.
Collapse
Affiliation(s)
- Stephen Wroe
- Computational Biomechanics Research Group, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
39
|
Ross CF, Berthaume MA, Dechow PC, Iriarte-Diaz J, Porro LB, Richmond BG, Spencer M, Strait D. In vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates. J Anat 2010; 218:112-41. [PMID: 21105871 DOI: 10.1111/j.1469-7580.2010.01322.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hypotheses regarding patterns of stress, strain and deformation in the craniofacial skeleton are central to adaptive explanations for the evolution of primate craniofacial form. The complexity of craniofacial skeletal morphology makes it difficult to evaluate these hypotheses with in vivo bone strain data. In this paper, new in vivo bone strain data from the intraorbital surfaces of the supraorbital torus, postorbital bar and postorbital septum, the anterior surface of the postorbital bar, and the anterior root of the zygoma are combined with published data from the supraorbital region and zygomatic arch to evaluate the validity of a finite-element model (FEM) of a macaque cranium during mastication. The behavior of this model is then used to test hypotheses regarding the overall deformation regime in the craniofacial haft of macaques. This FEM constitutes a hypothesis regarding deformation of the facial skeleton during mastication. A simplified verbal description of the deformation regime in the macaque FEM is as follows. Inferior bending and twisting of the zygomatic arches about a rostrocaudal axis exerts inferolaterally directed tensile forces on the lateral orbital wall, bending the wall and the supraorbital torus in frontal planes and bending and shearing the infraorbital region and anterior zygoma root in frontal planes. Similar deformation regimes also characterize the crania of Homo and Gorilla under in vitro loading conditions and may be shared among extant catarrhines. Relatively high strain magnitudes in the anterior root of the zygoma suggest that the morphology of this region may be important for resisting forces generated during feeding.
Collapse
Affiliation(s)
- Callum F Ross
- Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Brusatte SL, Norell MA, Carr TD, Erickson GM, Hutchinson JR, Balanoff AM, Bever GS, Choiniere JN, Makovicky PJ, Xu X. Tyrannosaur paleobiology: new research on ancient exemplar organisms. Science 2010; 329:1481-5. [PMID: 20847260 DOI: 10.1126/science.1193304] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tyrannosaurs, the group of dinosaurian carnivores that includes Tyrannosaurus rex and its closest relatives, are icons of prehistory. They are also the most intensively studied extinct dinosaurs, and thanks to large sample sizes and an influx of new discoveries, have become ancient exemplar organisms used to study many themes in vertebrate paleontology. A phylogeny that includes recently described species shows that tyrannosaurs originated by the Middle Jurassic but remained mostly small and ecologically marginal until the latest Cretaceous. Anatomical, biomechanical, and histological studies of T. rex and other derived tyrannosaurs show that large tyrannosaurs could not run rapidly, were capable of crushing bite forces, had accelerated growth rates and keen senses, and underwent pronounced changes during ontogeny. The biology and evolutionary history of tyrannosaurs provide a foundation for comparison with other dinosaurs and living organisms.
Collapse
Affiliation(s)
- Stephen L Brusatte
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang Q, Smith AL, Strait DS, Wright BW, Richmond BG, Grosse IR, Byron CD, Zapata U. The global impact of sutures assessed in a finite element model of a macaque cranium. Anat Rec (Hoboken) 2010; 293:1477-91. [PMID: 20652940 DOI: 10.1002/ar.21203] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biomechanical significance of cranial sutures in primates is an open question because their global impact is unclear, and their material properties are difficult to measure. In this study, eight suture-bone functional units representing eight facial sutures were created in a finite element model of a monkey cranium. All the sutures were assumed to have identical isotropic linear elastic material behavior that varied in different modeling experiments, representing either fused or unfused sutures. The values of elastic moduli employed in these trials ranged over several orders of magnitude. Each model was evaluated under incisor, premolar, and molar biting conditions. Results demonstrate that skulls with unfused sutures permitted more deformations and experienced higher total strain energy. However, strain patterns remained relatively unaffected away from the suture sites, and bite reaction force was likewise barely affected. These findings suggest that suture elasticity does not substantially alter load paths through the macaque skull or its underlying rigid body kinematics. An implication is that, for the purposes of finite element analysis, omitting or fusing sutures is a reasonable modeling approximation for skulls with small suture volume fraction if the research objective is to observe general patterns of craniofacial biomechanics under static loading conditions. The manner in which suture morphology and ossification affect the mechanical integrity of skulls and their ontogeny and evolution awaits further investigation, and their viscoelastic properties call for dynamic simulations.
Collapse
Affiliation(s)
- Qian Wang
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Noto CR, Grossman A. Broad-scale patterns of late jurassic dinosaur paleoecology. PLoS One 2010; 5:e12553. [PMID: 20838442 PMCID: PMC2933236 DOI: 10.1371/journal.pone.0012553] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/11/2010] [Indexed: 11/23/2022] Open
Abstract
Background There have been numerous studies on dinosaur biogeographic distribution patterns. However, these distribution data have not yet been applied to ecological questions. Ecological studies of dinosaurs have tended to focus on reconstructing individual taxa, usually through comparisons to modern analogs. Fewer studies have sought to determine if the ecological structure of fossil assemblages is preserved and, if so, how dinosaur communities varied. Climate is a major component driving differences between communities. If the ecological structure of a fossil locality is preserved, we expect that dinosaur assemblages from similar environments will share a similar ecological structure. Methodology/Principal Findings This study applies Ecological Structure Analysis (ESA) to a dataset of 100+ dinosaur taxa arranged into twelve composite fossil assemblages from around the world. Each assemblage was assigned a climate zone (biome) based on its location. Dinosaur taxa were placed into ecomorphological categories. The proportion of each category creates an ecological profile for the assemblage, which were compared using cluster and principal components analyses. Assemblages grouped according to biome, with most coming from arid or semi-arid/seasonal climates. Differences between assemblages are tied to the proportion of large high-browsing vs. small ground-foraging herbivores, which separates arid from semi-arid and moister environments, respectively. However, the effects of historical, taphonomic, and other environmental factors are still evident. Conclusions/Significance This study is the first to show that the general ecological structure of Late Jurassic dinosaur assemblages is preserved at large scales and can be assessed quantitatively. Despite a broad similarity of climatic conditions, a degree of ecological variation is observed between assemblages, from arid to moist. Taxonomic differences between Asia and the other regions demonstrate at least one case of ecosystem convergence. The proportion of different ecomorphs, which reflects the prevailing climatic and environmental conditions present during fossil deposition, may therefore be used to differentiate Late Jurassic dinosaur fossil assemblages. This method is broadly applicable to different taxa and times, allowing one to address questions of evolutionary, biogeographic, and climatic importance.
Collapse
Affiliation(s)
- Christopher R Noto
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan, United States of America.
| | | |
Collapse
|
43
|
YOUNG MARKT, BRUSATTE STEPHENL, RUTA MARCELLO, DE ANDRADE MARCOBRANDALISE. The evolution of Metriorhynchoidea (mesoeucrocodylia, thalattosuchia): an integrated approach using geometric morphometrics, analysis of disparity, and biomechanics. Zool J Linn Soc 2010. [DOI: 10.1111/j.1096-3642.2009.00571.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Strait DS, Grosse IR, Dechow PC, Smith AL, Wang Q, Weber GW, Neubauer S, Slice DE, Chalk J, Richmond BG, Lucas PW, Spencer MA, Schrein C, Wright BW, Byron C, Ross CF. The Structural Rigidity of the Cranium of Australopithecus africanus: Implications for Diet, Dietary Adaptations, and the Allometry of Feeding Biomechanics. Anat Rec (Hoboken) 2010; 293:583-93. [DOI: 10.1002/ar.21122] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Arbour VM, Snively E. Finite element analyses of ankylosaurid dinosaur tail club impacts. Anat Rec (Hoboken) 2009; 292:1412-26. [PMID: 19711475 DOI: 10.1002/ar.20987] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ankylosaurid dinosaurs have modified distal caudal vertebrae (the handle) and large terminal caudal osteoderms (the knob) that together form a tail club. Three-dimensional digital models of four tail clubs referred to Euoplocephalus tutus were created from computed tomography scans of fossil specimens. We propose to use finite element modeling to examine the distribution of stress in simulated tail club impacts in order to determine the biological feasibility of hypothesized tail clubbing behavior. Results show that peak stresses were artificially high at the rigid constraint. The data suggest that tail clubs with small and average-sized knobs were unlikely to fail during forceful impacts, but large clubs may have been at risk of fracture cranial to the knob. The modified handle vertebrae were capable of supporting the weight of even very large knobs. Long prezygapophyses and neural spines in the handle vertebrae helped distribute stress evenly along the handle. We conclude that tail swinging-behavior may have been possible in Euoplocephalus, but more sophisticated models incorporating flexible constraints are needed to support this hypothesis.
Collapse
Affiliation(s)
- Victoria M Arbour
- Department of Biological Sciences, Biological Sciences Centre, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
46
|
TSENG ZHIJIEJACK, BINDER WENDYJ. Mandibular biomechanics of Crocuta crocuta, Canis lupus, and the late Miocene Dinocrocuta gigantea (Carnivora, Mammalia). Zool J Linn Soc 2009. [DOI: 10.1111/j.1096-3642.2009.00555.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Sereno PC, Tan L, Brusatte SL, Kriegstein HJ, Zhao X, Cloward K. Tyrannosaurid Skeletal Design First Evolved at Small Body Size. Science 2009; 326:418-22. [DOI: 10.1126/science.1177428] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Paul C. Sereno
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Lin Tan
- Long Hao Institute of Geology and Paleontology, Bureau of Land and Resources, 010010 Hohhot, People’s Republic of China (PRC)
| | - Stephen L. Brusatte
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | | | - Xijin Zhao
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, PRC
| | - Karen Cloward
- Western Paleontological Laboratories, Lehi, UT 84043, USA
| |
Collapse
|
48
|
|
49
|
Jasinoski SC, Rayfield EJ, Chinsamy A. Comparative feeding biomechanics of Lystrosaurus and the generalized dicynodont Oudenodon. Anat Rec (Hoboken) 2009; 292:862-74. [PMID: 19462456 DOI: 10.1002/ar.20906] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Differences in cranial morphology among the Dicynodontia have been correlated with changes in masticatory function, and hence, dietary preference. Although the derived masticatory apparatus of dicynodonts allowed propaliny, it has previously been hypothesized that Lystrosaurus primarily utilized powerful orthal jaw movements to process fibrous vegetation. Cranial specializations of Lystrosaurus, such as shortened and deepened cranium and a mobile premaxilla-nasal suture, are thought to have increased the efficiency of its masticatory system compared with generalized Permian dicynodonts. Here we aim to test this assertion using biomechanical modeling techniques. We use finite element analysis (FEA) and a study of cranial functional morphology to compare the biomechanical performance of the crania of Lystrosaurus and Oudenodon, a generalized dicynodont, during orthal bite simulations. Muscle forces were estimated for each dicynodont using the dry skull method and applied to each cranium to produce a reaction force at a bite point. Patterns and average magnitude of Von Mises stress in each dicynodont cranium and in segmented regions of interest were assessed. During orthal bite simulations, higher stress occurs throughout the Oudenodon cranium, indicating that the cranium of Lystrosaurus is more resistant to normal, static feeding loads. Despite this difference in stress magnitude, patterns of stress are similar within both taxa. The FE-stress results, along with mechanical advantage of adductor musculature, a broad symphyseal contact, and other cranial features suggest that Lystrosaurus may have used a snapping bite to cope with tough fibrous vegetation.
Collapse
Affiliation(s)
- Sandra C Jasinoski
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom.
| | | | | |
Collapse
|
50
|
Moazen M, Curtis N, Evans SE, O'Higgins P, Fagan MJ. Combined finite element and multibody dynamics analysis of biting in a Uromastyx hardwickii lizard skull. J Anat 2008; 213:499-508. [PMID: 19014357 PMCID: PMC2667544 DOI: 10.1111/j.1469-7580.2008.00980.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2008] [Indexed: 11/26/2022] Open
Abstract
Lizard skulls vary greatly in shape and construction, and radical changes in skull form during evolution have made this an intriguing subject of research. The mechanics of feeding have surely been affected by this change in skull form, but whether this is the driving force behind the change is the underlying question that we are aiming to address in a programme of research. Here we have implemented a combined finite element analysis (FEA) and multibody dynamics analysis (MDA) to assess skull biomechanics during biting. A skull of Uromastyx hardwickii was assessed in the present study, where loading data (such as muscle force, bite force and joint reaction) for a biting cycle were obtained from an MDA and applied to load a finite element model. Fifty load steps corresponding to bilateral biting towards the front, middle and back of the dentition were implemented. Our results show the importance of performing MDA as a preliminary step to FEA, and provide an insight into the variation of stress during biting. Our findings show that higher stress occurs in regions where cranial sutures are located in functioning skulls, and as such support the hypothesis that sutures may play a pivotal role in relieving stress and producing a more uniform pattern of stress distribution across the skull. Additionally, we demonstrate how varying bite point affects stress distributions and relate stress distributions to the evolution of metakinesis in the amniote skull.
Collapse
Affiliation(s)
- M Moazen
- Department of Engineering, University of Hull, Hull, UK.
| | | | | | | | | |
Collapse
|