1
|
Sowersby W, Eckerström-Liedholm S, Rowiński PK, Balogh J, Eiler S, Upstone JD, Gonzalez-Voyer A, Rogell B. The relative effects of pace of life-history and habitat characteristics on the evolution of sexual ornaments: A comparative assessment. Evolution 2021; 76:114-127. [PMID: 34545942 DOI: 10.1111/evo.14358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022]
Abstract
Selection may favor greater investment into sexual ornaments when opportunities for future reproduction are limited, for example, under high adult mortality. However, predation, a key driver of mortality, typically selects against elaborate sexual ornaments. Here, we examine the evolution of sexual ornaments in killifishes, which have marked contrasts in life-history strategy among species and inhabit environments that differ in accessibility to aquatic predators. We first assessed if the size of sexual ornaments (unpaired fins) influenced swimming performance. Second, we investigated whether the evolution of larger ornamental fins is driven primarily by the pace of life-history (investment into current vs. future reproduction) or habitat type (a proxy for predation risk). We found that larger fins negatively affected swimming performance. Further, males from species inhabiting ephemeral habitats, with lower predation risk, had larger fins and greater sexual dimorphism in fin size, compared to males from more accessible permanent habitats. We show that enlarged ornamental fins, which impair locomotion, evolve more frequently in environments that are less accessible to predators, without clear associations to life-history strategy. Our results provide a rare link between the evolution of sexual ornaments, effects on locomotion performance, and natural selection on ornament size potentially through habitat differences in predation risk.
Collapse
Affiliation(s)
- Will Sowersby
- Department of Zoology, Stockholm University, Stockholm, SE-11418, Sweden.,Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Simon Eckerström-Liedholm
- Department of Zoology, Stockholm University, Stockholm, SE-11418, Sweden.,Wild Animal Initiative, Washington, D.C., 20010
| | - Piotr K Rowiński
- Department of Zoology, Stockholm University, Stockholm, SE-11418, Sweden
| | - Julia Balogh
- Department of Zoology, Stockholm University, Stockholm, SE-11418, Sweden
| | - Stefan Eiler
- Department of Zoology, Stockholm University, Stockholm, SE-11418, Sweden
| | - Joseph D Upstone
- Department of Zoology, Stockholm University, Stockholm, SE-11418, Sweden
| | - Alejandro Gonzalez-Voyer
- Department of Zoology, Stockholm University, Stockholm, SE-11418, Sweden.,Instituto de Ecología, Universidad Nacional Autónoma de México, México City, 04510, Mexico
| | - Björn Rogell
- Department of Zoology, Stockholm University, Stockholm, SE-11418, Sweden.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, SE-17893, Sweden
| |
Collapse
|
2
|
Costa WJEM, Amorim PF. A new miniature cryptic species of the seasonal killifish genus Spectrolebias from the Tocantins River basin, central Brazil (Cyprinodontiformes, Aplocheilidae). ZOOSYST EVOL 2018. [DOI: 10.3897/zse.94.28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The miniature seasonal killifish Spectrolebiascostae, first described for the middle Araguaia River basin, has been also recorded from two areas in the middle Tocantins River basin, from where male specimens exhibit some differences in their colour pattern. Analyses directed to species delineation (GMYC and bPTP), using a fragment of the mitochondrial gene COI, strongly support two species, S.costae from the Araguaia River basin and a new species from the Tocantins River basin. Spectrolebiasgracilis sp. n. is described on the basis of specimens collected from two localities separated by about 530 km, Canabrava River floodplains near Alvorada do Tocantins and Tocantins River floodplains near Palmeirante. Field inventories were unsuccessful in finding additional populations in the region, which is attributed to the high environmental degradation, including several large dams that have permanently inundated typical killifish habitats. Spectrolebiasgracilis is member of a clade also including S.costae, S.inaequipinnatus, and S.semiocellatus, diagnosed by having the dorsal and anal fins in males with iridescent dots restricted to their basal portion, caudal fin in males hyaline, and caudal-fin base with two pairs of neuromasts. Within this clade, a single miniaturisation event is supported for the most recent common ancestor of the subclade comprising S.costae and S.gracilis, which differ from other congeners by reaching only about 20 mm standard length as maximum adult size.
Collapse
|
3
|
Costa WJEM. Comparative morphology, phylogeny and classification of African seasonal killifishes of the tribe Nothobranchiini (Cyprinodontiformes: Aplocheilidae). Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zlx102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Wilson J E M Costa
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, Caixa Postal 68049, CEP 21941–971, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Loureiro M, Sá RD, Serra SW, Alonso F, Lanés LEK, Volcan MV, Calviño P, Nielsen D, Duarte A, Garcia G. Review of the family Rivulidae (Cyprinodontiformes, Aplocheiloidei) and a molecular and morphological phylogeny of the annual fish genus Austrolebias Costa 1998. NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20180007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The family Rivulidae is the fourth most diverse clade of Neotropical fishes. Together with some genera of the related African family Nothobranchiidae, many rivulids exhibit a characteristic annual life cycle, with diapausing eggs and delayed embryonic development, which allows them to survive in the challenging seasonal ponds that they inhabit. Rivulidae also includes two species known as the only the self-fertilizing vertebrates and some species with internal fertilization. The first goal of this article is to review the systematics of the family considering phylogenetic relationships and synapomorphies of subfamilial clades, thus unifying information that is dispersed throughout the literature. From this revision, it is clear that phylogenetic relationships within Rivulidae are poorly resolved, especially in one of the large clades that compose it, the subfamily Rivulinae, where conflicting hypotheses of relationships of non-annual and annual genera are evident. The second goal of this work is to present an updated phylogenetic hypothesis (based on mitochondrial, nuclear, and morphological information) for one of the most speciose genus of Rivulidae, Austrolebias. Our results confirm the monophyly of the genus and of some subgeneric clades already diagnosed, but propose new relationships among them and their species composition, particularly in the subgenus Acrolebias.
Collapse
Affiliation(s)
| | | | | | - Felipe Alonso
- CONICET, Argentina; Grupo de Investigación y Conservación de Killis, Argentina
| | | | | | - Pablo Calviño
- Grupo de Investigación y Conservación de Killis, Argentina
| | | | | | | |
Collapse
|
5
|
Costa WJEM, Amorim PF, Mattos JLO. Molecular phylogeny and timing of diversification in South American Cynolebiini seasonal killifishes. Mol Phylogenet Evol 2017; 116:61-68. [PMID: 28754241 DOI: 10.1016/j.ympev.2017.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 11/17/2022]
Abstract
The rich biological diversity of South America has motivated a series of studies associating evolution of endemic taxa with the dramatic geologic and climatic changes that occurred during the Cainozoic. The organism here studied is the killifish tribe Cynolebiini, a group of seasonal fishes uniquely inhabiting temporary pools formed during the rainy seasons. The Cynolebiini are found in open vegetation areas inserted in the main tropical and subtropical South American phytogeographical regions east of the Andes. Here, we present the first molecular phylogeny sampling all the eight genera of the Cynolebiini, using fragments of two mitochondrial and four nuclear genes for 35 species of Cynolebiini plus 19 species as outgroups. The dataset, 4448bp, was analysed under Bayesian and maximum likelihood approaches, providing a relatively well solved tree, which retrieves high support values for the Cynolebiini and most included clades. The resulting tree was used to estimate the time of divergence in included lineages using two cyprinodontiform fossils to calibrate the tree. We further investigated historical biogeography through the likelihood-based DEC model. Our estimates indicate that divergence between the clades comprising New World and Old World aplocheiloids occurred during the Eocene, about 50Mya, much more recent than the Gondwanan fragmentation scenario assumed in previous studies. This estimation is nearly synchronous to estimated splits involving other South American and African vertebrate clades, which have been explained by transoceanic dispersal through an ancient Atlantic island chain during the Palaeogene. We estimate that Cynolebiini split from its sister group Cynopoecilini in the Oligocene, about 25Mya and that Cynolebiini started to diversify giving origin to the present genera during the Miocene, about 20-14Mya. The Cynolebiini had an ancestral origin in the Atlantic Forest and probably were not present in the open vegetation formations of central and northeastern South America until the Middle Miocene, when expansion of dry open vegetation was favoured by cool temperatures and strike seasonality. Initial splitting between the genera Cynolebias and Simpsonichthys during the Miocene (about 14Mya) is attributed to the uplift of the Central Brazilian Plateau.
Collapse
Affiliation(s)
- Wilson J E M Costa
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, Caixa Postal 68049, CEP 21944-970 Rio de Janeiro, RJ, Brazil.
| | - Pedro F Amorim
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, Caixa Postal 68049, CEP 21944-970 Rio de Janeiro, RJ, Brazil.
| | - José Leonardo O Mattos
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, Caixa Postal 68049, CEP 21944-970 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Costa WJEM. Inferring Evolution of Habitat Usage and Body Size in Endangered, Seasonal Cynopoeciline Killifishes from the South American Atlantic Forest through an Integrative Approach (Cyprinodontiformes: Rivulidae). PLoS One 2016; 11:e0159315. [PMID: 27428070 PMCID: PMC4948875 DOI: 10.1371/journal.pone.0159315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/30/2016] [Indexed: 11/23/2022] Open
Abstract
Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho), provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms under intense pressure from loss of habitat.
Collapse
Affiliation(s)
- Wilson J. E. M. Costa
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
7
|
Costa WJEM. Comparative morphology, phylogeny, and classification of West African callopanchacine killifishes (Teleostei: Cyprinodontiformes: Nothobranchiidae). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wilson J. E. M. Costa
- Laboratory of Systematics and Evolution of Teleost Fishes; Institute of Biology; Federal University of Rio de Janeiro; Caixa Postal 68049 CEP 21944-970 Rio de Janeiro RJ Brazil
| |
Collapse
|
8
|
Karyotype patterns of Hypsolebias antenori (Cyprinodontiformes: Rivulidae): an endangered killifish of the semiarid region of Brazil. ScientificWorldJournal 2014; 2014:862434. [PMID: 24693249 PMCID: PMC3944648 DOI: 10.1155/2014/862434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 12/31/2013] [Indexed: 11/17/2022] Open
Abstract
Annual fish which belong to the order Cyprinodontiformes constitute an excellent model for evolutionary studies. their short life cycle, distribution in ecologically dynamic environments, and low agility make them favorable for genetic analyses. The species Hypsolebias antenori (Rivulidae), encountered in seasonal pools located in the semiarid region of Northeastern Brazil, has been the object of surveys with a view to study its ecological and behavioral aspects. This study reports on the karyotype patterns of this species, which represents the first contribution to the cytogenetics of this genus. The karyotype of this species is composed of 2n = 48 chromosomes (6m + 4 sm + 36 st; NF = 96); the heterochromatic regions are located in centromeric or pericentromeric position and are more pronounced in the nucleolar organizer regions. Two sites Ag-NORs/CMA+/DAPI were identified in the short arms of pairs 2 (metacentric) and 21 (subtelocentric). Unlike the other species of this family which show an evolution modulated by events of centric fusions, H. antenori shows the maintenance of a basal diploid number and the large number of bibrachial elements indicates karyotypic diversification derived by pericentric inversions. Cytogenetic analyzes in this species will provide new taxonomic markers capable of being utilized in conservation issues and systematics.
Collapse
|
9
|
Smith UE, Hendricks JR. Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells. Syst Biol 2013; 62:366-85. [PMID: 23325808 DOI: 10.1093/sysbio/syt002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite being the objects of numerous macroevolutionary studies, many of the best represented constituents of the fossil record-including diverse examples such as foraminifera, brachiopods, and mollusks-have mineralized skeletons with limited discrete characteristics, making morphological phylogenies difficult to construct. In contrast to their paucity of phylogenetic characters, the mineralized structures (tests and shells) of these fossil groups frequently have distinctive shapes that have long proved useful for their classification. The recent introduction of methodologies for including continuous data directly in a phylogenetic analysis has increased the number of available characters, making it possible to produce phylogenies based, in whole or part, on continuous character data collected from such taxa. Geometric morphometric methods provide tools for accurately characterizing shape variation and can produce quantitative data that can therefore now be included in a phylogenetic matrix in a nonarbitrary manner. Here, the marine gastropod genus Conus is used to evaluate the ability of continuous characters-generated from a geometric morphometric analysis of shell shape-to contribute to a total evidence phylogenetic hypothesis constructed using molecular and morphological data. Furthermore, the ability of continuous characters derived from geometric morphometric analyses to place fossil taxa with limited discrete characters into a phylogeny with their extant relatives was tested by simulating the inclusion of fossil taxa. This was done by removing the molecular partition of individual extant species to produce a "cladistic pseudofossil" with only the geometric morphometric derived characters coded. The phylogenetic position of each cladistic pseudofossil taxon was then compared with its placement in the total evidence tree and a symmetric resampling tree to evaluate the degree to which morphometric characters alone can correctly place simulated fossil species. In 33-45% of the test cases (depending upon the approach used for measuring success), it was possible to place the pseudofossil taxon into the correct regions of the phylogeny using only the morphometric characters. This suggests that the incorporation of extinct Conus taxa into phylogenetic hypotheses will be possible, permitting a wide range of macroevolutionary questions to be addressed within this genus. This methodology also has potential to contribute to phylogenetic reconstructions for other major components of the fossil record that lack numerous discrete characters.
Collapse
Affiliation(s)
- Ursula E Smith
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|