1
|
Huang H, Chen M, Liu X, Xiong X, Zhou L, Su Z, Lu Y, Liang B. A novel variant in the GJB6 gene in a large Chinese family with a unique phenotype of Clouston syndrome. Front Med 2023; 17:330-338. [PMID: 36645631 DOI: 10.1007/s11684-022-0933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/21/2022] [Indexed: 01/17/2023]
Abstract
Clouston syndrome (OMIM #129500), also known as hidrotic ectodermal dysplasia type 2, is a rare autosomal dominant skin disorder. To date, four mutations in the GJB6 gene, G11R, V37E, A88V, and D50N, have been confirmed to cause this condition. In previous studies, the focus has been mainly on gene sequencing, and there has been a lack of research on clinical manifestations and pathogenesis. To confirm the diagnosis of this pedigree at the molecular level and summarize and analyse the clinical phenotype of patients and to provide a basis for further study of the pathogenesis of the disease, we performed whole-exome and Sanger sequencing on a large Chinese Clouston syndrome pedigree. Detailed clinical examination included histopathology, hair microscopy, and scanning electron microscopy. We found a novel heterozygous missense variant (c.134G>C:p.G45A) for Clouston syndrome. We identified a new clinical phenotype involving all nail needling pain in all patients and found a special honeycomb hole structure in the patients' hair under scanning electron microscopy. Our data reveal that a novel variant (c.134G>C:p.G45A) plays a likely pathogenic role in this pedigree and highlight that genetic testing is necessary for the diagnosis of Clouston syndrome.
Collapse
Affiliation(s)
- Hequn Huang
- Institute of Dermatology and Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230000, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230000, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230000, China
| | - Mengyun Chen
- Institute of Dermatology and Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230000, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230000, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230000, China
| | - Xia Liu
- Huai'an District Skin Disease Prevention and Treatment Hospital, Huai'an, 223000, China
| | - Xixi Xiong
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Lanbo Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhonglan Su
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230000, China.
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230000, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230000, China.
- Department of Clinical Laboratory, The First Affiliated Hospital, Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
2
|
Liao MY, Peng H, Li LN, Yang T, Xiong SY, Ye XY. Hidrotic ectodermal dysplasia in a Chinese pedigree: A case report. World J Clin Cases 2023; 11:1403-1409. [PMID: 36926140 PMCID: PMC10013106 DOI: 10.12998/wjcc.v11.i6.1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/26/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND We report on a large family of Chinese Han individuals with hidrotic ectodermal dysplasia (HED) with a variation in GJB6 (c.31G>A). The patients in the family had a triad of clinical manifestations of varying degrees. Although the same variation locus have been reported, the clinical manifestations of this family were difficult to distinguish from those of congenital thick nail disorder, palmoplantar keratosis, and congenital hypotrichosis.
CASE SUMMARY This investigation involved a large Chinese family of 46 members across five generations and included 12 patients with HED. The proband (IV4) was a male patient with normal sweat gland function and dental development, no skeletal dysplasia, no cognitive disability, and no hearing impairments. His parents were not consanguineously married. Physical examination of the proband revealed thinning hair and thickened grayish-yellow nails and toenails with some longitudinal ridges, in addition to mild bilateral palmoplantar hyperkeratosis. GJB6, GJB2, and GJA1 have been reported to be the causative genes of HED; therefore, we subjected the patient’s samples to Sanger sequencing of these three genes. In this family, the variation locus was at GJB6 (c.31G>A, p.Gly11Arg). Overexpression vectors of wild-type GJB6 and its variants were established and transfected into HaCaT cell models, and the related mRNA and protein expression changes were determined using real-time reverse transcriptase-polymerase chain reaction and Western blot, respectively.
CONCLUSION We report another HED phenotype associated with GJB6 variations, which can help clinicians to diagnose HED despite its varying presentations.
Collapse
Affiliation(s)
- Ming-Yi Liao
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Hui Peng
- Department of Dermatology, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Long-Nian Li
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Tao Yang
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Shi-Yin Xiong
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xiao-Ying Ye
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
3
|
Gaete PS, Lillo MA, López W, Liu Y, Jiang W, Luo Y, Harris AL, Contreras JE. A novel voltage-clamp/dye uptake assay reveals saturable transport of molecules through CALHM1 and connexin channels. J Gen Physiol 2021; 152:211474. [PMID: 33074302 PMCID: PMC7579738 DOI: 10.1085/jgp.202012607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Large-pore channels permeable to small molecules such as ATP, in addition to atomic ions, are emerging as important regulators in health and disease. Nonetheless, their mechanisms of molecular permeation and selectivity remain mostly unexplored. Combining fluorescence microscopy and electrophysiology, we developed a novel technique that allows kinetic analysis of molecular permeation through connexin and CALHM1 channels in Xenopus oocytes rendered translucent. Using this methodology, we found that (1) molecular flux through these channels saturates at low micromolar concentrations, (2) kinetic parameters of molecular transport are sensitive to modulators of channel gating, (3) molecular transport and ionic currents can be differentially affected by mutation and gating, and (4) N-terminal regions of these channels control transport kinetics and permselectivity. Our methodology allows analysis of how human disease-causing mutations affect kinetic properties and permselectivity of molecular signaling and enables the study of molecular mechanisms, including selectivity and saturability, of molecular transport in other large-pore channels.
Collapse
Affiliation(s)
- Pablo S Gaete
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - William López
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Yu Liu
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Wenjuan Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA
| | - Yun Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA
| | - Andrew L Harris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Jorge E Contreras
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| |
Collapse
|
4
|
The Complex and Critical Role of Glycine 12 (G12) in Beta-Connexins of Human Skin. Int J Mol Sci 2021; 22:ijms22052615. [PMID: 33807656 PMCID: PMC7961983 DOI: 10.3390/ijms22052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
Glycine is an amino acid with unique properties because its side chain is composed of a single hydrogen atom. It confers conformational flexibility to proteins and conserved glycines are often indicative of protein domains involving tight turns or bends. All six beta-type connexins expressed in human epidermis (Cx26, Cx30, Cx30.3, Cx31, Cx31.1 and Cx32) contain a glycine at position 12 (G12). G12 is located about halfway through the cytoplasmic amino terminus and substitutions alter connexin function in a variety of ways, in some cases altering protein interactions and leading to cell death. There is also evidence that alteration of G12 changes the structure of the amino terminus in connexin- and amino acid- specific ways. This review integrates structural, functional and physiological information about the role of G12 in connexins, focusing on beta-connexins expressed in human epidermis. The importance of G12 substitutions in these beta-connexins is revealed in two hereditary skin disorders, keratitis ichthyosis and erythrokeratodermia variabilis, both of which result from missense mutations affecting G12.
Collapse
|
5
|
Zhan Y, Luo S, Pi Z, Zhang G. A recurrent mutation of GJB6 in a big Chinese family with Hidrotic ectodermal dysplasia. Hereditas 2020; 157:34. [PMID: 32843087 PMCID: PMC7446134 DOI: 10.1186/s41065-020-00148-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/13/2020] [Indexed: 12/02/2022] Open
Abstract
Hidrotic ectodermal dysplasia (HED) is a rare inherited syndrome characterised by nail dystrophy, palmoplantar hyperkeratosis and alopecia. Four mutations (p.G11R, p.A88V, p.V37E and p.D50N) in gap junction beta 6 (GJB6) gene, which codes connexin30 protein, have been found to cause HED in different populations. Here, we reported a big Chinese family in which 24 patients over five generations were suffered with HED. Sequence analysis identified all 24 patients carry a recurrent missense mutation c.263C > T (p.A88V) in GJB6. Our results reveal gene testing of GJB6 is important for diagnosis, prenatal diagnosis and future gene treatment of HED.
Collapse
Affiliation(s)
- Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Shuaihantian Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Guiying Zhang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
6
|
Kuang Y, Zorzi V, Buratto D, Ziraldo G, Mazzarda F, Peres C, Nardin C, Salvatore AM, Chiani F, Scavizzi F, Raspa M, Qiang M, Chu Y, Shi X, Li Y, Liu L, Shi Y, Zonta F, Yang G, Lerner RA, Mammano F. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine 2020; 57:102825. [PMID: 32553574 PMCID: PMC7378960 DOI: 10.1016/j.ebiom.2020.102825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.
Collapse
Affiliation(s)
- Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Science, Roma3 University, 00146 Rome, Italy
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | | | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yaru Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, U.S.A..
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy.
| |
Collapse
|
7
|
Kelly JJ, Abitbol JM, Hulme S, Press ER, Laird DW, Allman BL. The connexin 30 A88V mutant reduces cochlear gap junction expression and confers long-term protection against hearing loss. J Cell Sci 2019; 132:jcs.224097. [PMID: 30559251 DOI: 10.1242/jcs.224097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022] Open
Abstract
Mutations in the genes that encode the gap junction proteins connexin 26 (Cx26, encoded by GJB2) and Cx30 (GJB6) are the leading cause of hereditary hearing loss. That said, the Cx30 p.Ala88Val (A88V) mutant causes Clouston syndrome, but not hearing loss. Here, we report that the Cx30-A88V mutant, despite being toxic to inner ear-derived HEI-OC1 cells, conferred remarkable long-term protection against age-related high frequency hearing loss in Cx30A88V/A88V mice. During early development, there were no overt structural differences in the cochlea between genotypes, including a normal complement of hair cells; however, the supporting cell Cx30 gap junction plaques in mutant mice were reduced in size. In adulthood, Cx30A88V/A88V mutant mice had a reduction of cochlear Cx30 mRNA and protein, yet a full complement of hair cells. Conversely, the age-related high frequency hearing loss in Cx30+/+ and Cx30+/A88V mice was due to extensive loss of outer hair cells. Our data suggest that the Cx30-A88V mutant confers long-term hearing protection and prevention of hair cell death, possibly via a feedback mechanism that leads to the reduction of total Cx30 gap junction expression in the cochlea.
Collapse
Affiliation(s)
- John J Kelly
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julia M Abitbol
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Stephanie Hulme
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Eric R Press
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
8
|
Shi X, Li D, Chen M, Liu Y, Yan Q, Yu X, Zhu Y, Li Y. GJB6 mutation A88V for hidrotic ectodermal dysplasia in a Chinese family. Int J Dermatol 2019; 58:1462-1465. [PMID: 30620052 PMCID: PMC6905398 DOI: 10.1111/ijd.14341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/05/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaofeng Shi
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dongya Li
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Chen
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yichen Liu
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qi Yan
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xianqiu Yu
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Zhu
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yumei Li
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
Lu Y, Zhang R, Wang Z, Zhou S, Song Y, Chen L, Chen N, Liu W, Ji C, Wu W, Zhang L. Mechanistic effect of the human GJB6 gene and its mutations in HaCaT cell proliferation and apoptosis. ACTA ACUST UNITED AC 2018; 51:e7560. [PMID: 30043857 PMCID: PMC6065815 DOI: 10.1590/1414-431x20187560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
We constructed lentiviral vectors containing the human wild-type GJB6 gene and the mutant variants A88V and G11R. The three proteins were stably expressed by the Tet-on system in the HaCaT cell line and used to study the functional effect of the variants. The CCK-8 assay and flow cytometric analyses were used to determine the levels of cell proliferation and apoptosis. Western blot analyses were performed to analyze the relevant clinical indicators of hidrotic ectodermal dysplasia and markers of apoptosis in transfected HaCaT cells. The CCK8 assay and the flow cytometry results showed a significant increase (P<0.05) in the apoptosis of HaCaT cells expressing the A88V and G11R mutants. In addition, we demonstrated that the A88V and G11R mutants induced the apoptosis of transfected HaCaT cells via the activation of caspase-3, -8, -9, and PARA. No change was observed in the activity of BAX compared with the control. This study provides further clarification on the mechanisms underlying the effect of the mutant variants A88V and G11R of the GJB6 gene on the induction of HaCaT cell apoptosis.
Collapse
Affiliation(s)
- Yuting Lu
- Department of Dermatology, Huadu District People's Hospital of Guangzhou, Guangzhou, China.,Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Ruili Zhang
- Department of Dermatology, Weihai Municipal Hospital, Yantai, China
| | - Zhenying Wang
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Shuhua Zhou
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Yali Song
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Lamei Chen
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Nan Chen
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Wenmin Liu
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Canan Ji
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Wangli Wu
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Li Zhang
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
10
|
Hu YH, Lin YC, Hwu WL, Lee YM. Pincer nail deformity as the main manifestation of Clouston syndrome. Br J Dermatol 2015; 173:581-3. [PMID: 25677863 DOI: 10.1111/bjd.13703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Y-H Hu
- Department of Dermatology, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| | - Y-C Lin
- Department of Dermatology, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| | - W-L Hwu
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Y-M Lee
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Berger AC, Kelly JJ, Lajoie P, Shao Q, Laird DW. Mutations in Cx30 that are linked to skin disease and non-syndromic hearing loss exhibit several distinct cellular pathologies. J Cell Sci 2014; 127:1751-64. [DOI: 10.1242/jcs.138230] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
Connexin 30 (Cx30), a member of the large gap-junction protein family, plays a role in the homeostasis of the epidermis and inner ear through gap junctional intercellular communication (GJIC). Here, we investigate the underlying mechanisms of four autosomal dominant Cx30 gene mutations that are linked to hearing loss and/or various skin diseases. First, the T5M mutant linked to non-syndromic hearing loss formed functional gap junction channels and hemichannels, similar to wild-type Cx30. The loss-of-function V37E mutant associated with Clouston syndrome or keratitis-ichthyosis-deafness syndrome was retained in the endoplasmic reticulum and significantly induced apoptosis. The G59R mutant linked to the Vohwinkel and Bart-Pumphrey syndromes was retained primarily in the Golgi apparatus and exhibited loss of gap junction channel and hemichannel function but did not cause cell death. Lastly, the A88V mutant, which is linked to the development of Clouston syndrome, also significantly induced apoptosis but through an endoplasmic-reticulum-independent mechanism. Collectively, we discovered that four unique Cx30 mutants might cause disease through different mechanisms that also likely include their selective trans-dominant effects on coexpressed connexins, highlighting the overall complexity of connexin-linked diseases and the importance of GJIC in disease prevention.
Collapse
Affiliation(s)
- Amy C. Berger
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - John J. Kelly
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Dale W. Laird
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
12
|
Fujimoto A, Kurban M, Nakamura M, Farooq M, Fujikawa H, Kibbi AG, Ito M, Dahdah M, Matta M, Diab H, Shimomura Y. GJB6, of which mutations underlie Clouston syndrome, is a potential direct target gene of p63. J Dermatol Sci 2012; 69:159-66. [PMID: 23219093 DOI: 10.1016/j.jdermsci.2012.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Clouston syndrome is a rare autosomal dominant condition characterized by hypotrichosis, nail dystrophy, and occasionally palmoplantar keratoderma. The disease is caused by mutations in GJB6 gene, which encodes a gap junction protein connexin 30 (Cx30). OBJECTIVE To disclose the molecular basis of Clouston syndrome in a Lebanese-German family, and also to determine precise expression of Cx30 in normal skin of humans and mice, as well as transcriptional regulation for the GJB6 expression. METHODS We searched for mutations in the GJB6 gene using DNA of the family members with Clouston syndrome. We performed immunostaining to localize the Cx30 expression in normal human skin and mouse embryos. In addition, we did a series of in vitro studies to investigate if the GJB6 could be a direct transcriptional target gene of p63. RESULTS We identified a recurrent heterozygous mutation c.31G>C (p.Gly11Arg) in the GJB6 gene in the Lebanese-German family with Clouston syndrome. Immunostaining in normal human skin sections demonstrated predominant expression of Cx30 in hair follicles, nails, and palmoplantar epidermis, which partially overlapped with p63 expression. We also showed co-expression of Cx30 and p63 in developing mouse hair follicles and nail units. In cultured cells, the GJB6 expression was significantly upregulated by ΔNp63α isoform. Further in vitro analyses suggested that ΔNp63α was potentially involved in the GJB6 expression via binding to the sequences in intron 1 of the GJB6 gene. CONCLUSION Our data further underscore the crucial roles of Cx30 in morphogenesis and development of skin and its appendages.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Laboratory of Genetic Skin Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen P, Chen H, Fu S, Chen G, Dong J. Prevalence of GJB6 mutations in Chinese patients with non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol 2012; 76:265-7. [PMID: 22186156 DOI: 10.1016/j.ijporl.2011.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To investigate the distribution of GJB6 mutations in Central Chinese population with non-syndromic hearing loss. METHOD Totally 655 hearing impaired patients in Hubei province of China were screened for del(GJB6-D13S1830) deletions by using multiplex PCR and sequencing of GJB6 whole coding region. RESULT The del(GJB6-D13S1830) and other mutations in GJB6 gene were not observed in our study cohort. CONCLUSION The results suggest that GJB6 mutations is not a common cause among Central Chinese population and screening for the mutations of GJB6 can be ranked as unconventional deaf gene test for this population.
Collapse
Affiliation(s)
- Peiwei Chen
- Department of Pediatrics, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 445000 Enshi, Hubei Province, China
| | | | | | | | | |
Collapse
|