1
|
Kalalah AA, Koenig SSK, Feng P, Bosilevac JM, Bono JL, Eppinger M. Pathogenomes of Shiga Toxin Positive and Negative Escherichia coli O157:H7 Strains TT12A and TT12B: Comprehensive Phylogenomic Analysis Using Closed Genomes. Microorganisms 2024; 12:699. [PMID: 38674643 PMCID: PMC11052207 DOI: 10.3390/microorganisms12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Peter Feng
- U.S. Food and Drug Administration (FDA), College Park, MD 20740, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng† P, Eppinger M. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of Escherichia coli O113:H21. Microb Genom 2022; 8. [PMID: 35394418 PMCID: PMC9453080 DOI: 10.1099/mgen.0.000796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections with globally disseminated Shiga toxin-producing Escherichia coli (STEC) of the O113:H21 serotype can progress to severe clinical complications, such as hemolytic uremic syndrome (HUS). Two phylogeographically distinct clonal complexes have been established by multi locus sequence typing (MLST). Infections with ST-820 isolates circulating exclusively in Australia have caused severe human disease, such as HUS. Conversely, ST-223 isolates prevalent in the US and outside Australia seem to rarely cause severe human disease but are frequent contaminants. Following a genomic epidemiology approach, we wanted to gain insights into the underlying cause for this disparity. We examined the plasticity in the genome make-up and Shiga toxin production in a collection of 20 ST-820 and ST-223 strains isolated from produce, the bovine reservoir, and clinical cases. STEC are notorious for assembly into fragmented draft sequences when using short-read sequencing technologies due to the extensive and partly homologous phage complement. The application of long-read technology (LRT) sequencing yielded closed reference chromosomes and plasmids for two representative ST-820 and ST-223 strains. The established high-resolution framework, based on whole genome alignments, single nucleotide polymorphism (SNP)-typing and MLST, includes the chromosomes and plasmids of other publicly available O113:H21 sequences and allowed us to refine the phylogeographical boundaries of ST-820 and ST-223 complex isolates and to further identify a historic non-shigatoxigenic strain from Mexico as a quasi-intermediate. Plasmid comparison revealed strong correlations between the strains' featured pO113 plasmid genotypes and chromosomally inferred ST, which suggests coevolution of the chromosome and virulence plasmids. Our pathogenicity assessment revealed statistically significant differences in the Stx2a-production capabilities of ST-820 as compared to ST-223 strains under RecA-induced Stx phage mobilization, a condition that mimics Stx-phage induction. These observations suggest that ST-820 strains may confer an increased pathogenic potential in line with the strain-associated epidemiological metadata. Still, some of the tested ST-223 cultures sourced from contaminated produce or the bovine reservoir also produced Stx at levels comparable to those of ST-820 isolates, which calls for awareness and for continued surveillance of this lineage.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Ricardo A. Martinez
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Armando L. Rodriguez
- University of Texas at San Antonio, Research Computing Support Group, San Antonio, TX, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Peter Feng†
- U.S. Food and Drug Administration (FDA), College Park, MD, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
- *Correspondence: Mark Eppinger,
| |
Collapse
|
3
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021; 10:404. [PMID: 33805526 PMCID: PMC8065619 DOI: 10.3390/pathogens10040404] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Nadja Haarmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maike Schwidder
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| |
Collapse
|
4
|
Kawase J, Hirai S, Yokoyama E, Hayashi F, Kurosaki M, Kawakami Y, Fukuma A, Sakai T, Kotani M, Asakura H. Phylogeny, Prevalence, and Shiga Toxin (Stx) Production of Clinical Escherichia coli O157 Clade 2 Strains Isolated in Shimane Prefecture, Japan. Curr Microbiol 2020; 78:265-273. [PMID: 33095293 DOI: 10.1007/s00284-020-02252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
This study investigated the genetic and pathogenic variation of the subgroups of clade 2 strains of Shiga toxin (Stx)-producing Escherichia coli (STEC) O157. A total of 111 strains of STEC O157 isolated in Shimane prefecture, Japan, were classified in clade 2 (n = 39), clade 3 (n = 16), clade 4/5 (n = 3), clade 7 (n = 14), clade 8 (n = 17), and clade 12 (n = 22) by single-nucleotide polymorphism analysis and lineage-specific polymorphism assay-6. These results showed a distinct difference from our previous study in which clade 3 strains were the most prevalent strains in three other prefectures in Japan, indicating that the clade distribution of O157 strains was different in different geographic areas in Japan. Phylogenetic analysis using insertion sequence (IS) 629 distribution data showed that clade 2 strains formed two clusters, designated 2a and 2b. Stx2 production by cluster 2b strains was significantly higher than by cluster 2a strains (P < 0.01). In addition, population genetic analysis of the clade 2 strains showed significant linkage disequilibrium in the IS629 distribution of the strains in clusters 2a and 2b (P < 0.05). The ΦPT values calculated using the IS629 distribution data indicated that strains in clusters 2a and 2b were genetically different (P < 0.001). Cluster 2b strains are a highly pathogenic phylogenetic group and their geographic spread may be a serious public health concern.
Collapse
Affiliation(s)
- Jun Kawase
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan.
| | - Shinichiro Hirai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama City, Tokyo, 208-0011, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba City, Chiba, 260-8715, Japan
| | - Fumi Hayashi
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Morito Kurosaki
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Yuta Kawakami
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Aiko Fukuma
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Tomotake Sakai
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Mayuko Kotani
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan
| |
Collapse
|
5
|
Quiguanás-Guarín E, Granobles-Velandia C, Arango-Gil B, Giraldo-Rubio V, Castaño-Osorio J. Aislamiento de Escherichia coli productora de toxina Shiga (STEC) en heces de ganado y detección de factores de virulencia asociados con su patogénesis. INFECTIO 2020. [DOI: 10.22354/in.v25i1.906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objetivo: Aislar STEC en las heces del ganado bovino en el municipio de Ulloa, Valle del Cauca y detectar factores de virulencia asociados con la patogénesis. Materiales y métodos: Se tomaron 21 muestras provenientes de bovinos, las cuales fueron tomadas directamente del recto del animal mediante hisopos. Las muestras se procesaron hasta obtener colonias puras a las cuales se les evaluó la presencia de los genes stx1, stx2, eae, saa y hlyA mediante PCR y posteriormente, se evaluó el efecto citotóxico de las muestras positivas sobre células Vero (ATCC-CCL-81.4). Resultados: De las 21 muestras de heces de bovinos,12 presentaron bacterias con uno o ambos genes stx. Se obtuvieron 106 aislamientos totales de STEC y se observaron diferencias en cuanto a la presencia y ausencia de los genes de virulencia evaluados en los aislamientos de cada bovino, obteniendo cinco combinaciones de genes. 48 aislamientos presentaron únicamente el gen stx2 y 58 presentaron tanto el gen stx1 como el gen stx2; de los 106 aislamientos, se detectaron 44 con el gen hlyA y 57 con el gen saa. Conclusiones: Todos los sobrenadantes de STEC analizados mostraron actividad citotóxica sobre las células Vero, mientras que en ausencia de STEC las células formaron monocapa después de 48 h de incubación. Este trabajo es el primer reporte en Colombia que aporta información sobre la presencia de STEC en el ganado bovino, la presencia de factores de virulencia y el potencial efecto citotóxico que poseen estas cepas nativas.
Collapse
|
6
|
Nyong EC, Zaia SR, Allué-Guardia A, Rodriguez AL, Irion-Byrd Z, Koenig SSK, Feng P, Bono JL, Eppinger M. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Front Microbiol 2020; 11:619. [PMID: 32351476 PMCID: PMC7175801 DOI: 10.3389/fmicb.2020.00619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.
Collapse
Affiliation(s)
- Emmanuel C. Nyong
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sam R. Zaia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Armando L. Rodriguez
- Research Computing Support Group, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zaina Irion-Byrd
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | | | - James L. Bono
- United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture (ARS-USDA), Clay Center, NE, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| |
Collapse
|
7
|
Burgán J, Krüger A, Lucchesi PMA. Comparable stx 2a expression and phage production levels between Shiga toxin-producing Escherichia coli strains from human and bovine origin. Zoonoses Public Health 2019; 67:44-53. [PMID: 31868306 DOI: 10.1111/zph.12653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/21/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause diarrhoea and severe diseases in humans, such as haemolytic uraemic syndrome. STEC virulence is considered to correlate with the amount of Shiga toxins (Stx) produced, especially Stx2, whose subtype Stx2a is most frequently associated with high virulence. Stx are encoded in prophages, which play an important role in STEC pathogenesis. The aim of this study was to evaluate stx2a expression levels and Stx2a phage production using qPCR and the double-agar-layer method in 29 STEC strains, corresponding to serotypes O26:H11 (6), O91:H21 (1), O145:H- (11) and O157:H7 (11), isolated from cattle and humans. Results were then tested for possible associations with serotype, origin or some genetic features. We observed heterogeneous levels of stx2a expression and Stx2a phage production. However, statistical comparisons identified a higher stx2a expression in response to mitomycin C in strains isolated from cattle than in those from humans. At the same time, compared to stx2a /stx2c strains, stx2a strains showed a higher increase in phage production under induced conditions. Notably, most of the strains studied, regardless of serotype and origin, carried inducible Stx2a phages and evidenced expression of stx2a that increased along with phage production levels under induced conditions.
Collapse
Affiliation(s)
- Julia Burgán
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Alejandra Krüger
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Paula M A Lucchesi
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| |
Collapse
|
8
|
Zhang LX, Simpson DJ, McMullen LM, Gänzle MG. Comparative Genomics and Characterization of the Late Promoter pR' from Shiga Toxin Prophages in Escherichia coli. Viruses 2018; 10:v10110595. [PMID: 30384416 PMCID: PMC6266700 DOI: 10.3390/v10110595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 02/02/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded stx genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the stx genes is directly under the control of the late promoter pR’, thus the sequence diversity of the region between Q and stx, here termed the pR’ region, may affect Stx toxin production. Here, we compared the gene structure of the pR’ region and the stx subtypes of nineteen STECs. The sequence alignment and phylogenetic analysis suggested that the pR’ region tends to be more heterogeneous than the promoter itself, even if the prophages harbor the same stx subtype. Furthermore, we established and validated transcriptional fusions of the pR’ region to the DsRed reporter gene using mitomycin C (MMC) induction. Finally, these constructs were transformed into native and non-native strains and examined with flow cytometry. The results showed that induction levels changed when pR’ regions were placed under different regulatory systems. Moreover, not every stx gene could be induced in its native host bacteria. In addition to the functional genes, the diversity of the pR’ region plays an important role in determining the level of toxin induction.
Collapse
Affiliation(s)
- Ling Xiao Zhang
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - David J Simpson
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Lynn M McMullen
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Michael G Gänzle
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
9
|
Rahman M, Nabi A, Asadulghani M, Faruque SM, Islam MA. Toxigenic properties and stx phage characterization of Escherichia coli O157 isolated from animal sources in a developing country setting. BMC Microbiol 2018; 18:98. [PMID: 30170562 PMCID: PMC6119239 DOI: 10.1186/s12866-018-1235-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background In many Asian countries including Bangladesh E. coli O157 are prevalent in animal reservoirs and in the food chain, but the incidence of human infection due to E. coli O157 is rare. One of the reasons could be inability of the organism from animal origin to produce sufficient amount of Shiga toxin (Stx), which is the main virulence factor associated with the severe sequelae of infection. This study aimed to fill out this knowledge gap by investigating the toxigenic properties and characteristics of stx phage of E. coli O157 isolated from animal sources in Bangladesh. Results We analysed 47 stx2 positive E. coli O157 of food/animal origin for stx2 gene variants, Shiga toxin production, presence of other virulence genes, stx phage insertion sites, presence of genes associated with functionality of stx phages (Q933 and Q21) and stx2 upstream region. Of the 47 isolates, 46 were positive for both stx2a and stx2d while the remaining isolate was positive for stx2d only. Reverse Passive Latex Agglutination assay (RPLA) showed that 42/47 isolates produced little or no toxin, while 5 isolates produced a high titre of toxin (64 to 128). 39/47 isolates were positive for the Toxin Non-Producing (TNP) specific regions in the stx2 promoter. Additionally, all isolates were negative for antiterminator Q933while a majority of isolates were positive for Q21 gene suggesting the presence of defective stx phage. Of the yehV and wrbA phage insertion sites, yehV was found occupied in 11 isolates while wrbA site was intact in all the isolates. None of the isolates was positive for the virulence gene, cdt but all were positive for hlyA, katP, etpD and eae genes. Isolates that produced high titre Stx (n = 5) produced complete phage particles capable of infecting multiple bacterial hosts. One of these phages was shown to produce stable lysogens in host strains rendering the Stx2 producing ability. Conclusion Despite low frequency in the tested isolates, E. coli O157 isolates in Bangladesh carry inducible stx phages and have the capacity to produce Stx2, indicating a potential risk of E. coli O157 infection in humans.
Collapse
Affiliation(s)
- Mahdia Rahman
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Ashikun Nabi
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.,Present Address: Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Md Asadulghani
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Shah M Faruque
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.,Present Address: Department of Mathematics and Natural Sciences, BRAC University, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Aminul Islam
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
10
|
Silva CJ. Food Forensics: Using Mass Spectrometry To Detect Foodborne Protein Contaminants, as Exemplified by Shiga Toxin Variants and Prion Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8435-8450. [PMID: 29860833 DOI: 10.1021/acs.jafc.8b01517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Food forensicists need a variety of tools to detect the many possible food contaminants. As a result of its analytical flexibility, mass spectrometry is one of those tools. Use of the multiple reaction monitoring (MRM) method expands its use to quantitation as well as detection of infectious proteins (prions) and protein toxins, such as Shiga toxins. The sample processing steps inactivate prions and Shiga toxins; the proteins are digested with proteases to yield peptides suitable for MRM-based analysis. Prions are detected by their distinct physicochemical properties and differential covalent modification. Shiga toxin analysis is based on detecting peptides derived from the five identical binding B subunits comprising the toxin. 15N-labeled internal standards are prepared from cloned proteins. These examples illustrate the power of MRM, in that the same instrument can be used to safely detect and quantitate protein toxins, prions, and small molecules that might contaminate our food.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service , United States Department of Agriculture , Albany , California 94710 , United States
| |
Collapse
|
11
|
Tanaro JD, Pianciola LA, D'Astek BA, Piaggio MC, Mazzeo ML, Zolezzi G, Rivas M. Virulence profile of Escherichia coli O157 strains isolated from surface water in cattle breeding areas. Lett Appl Microbiol 2018; 66:484-490. [PMID: 29500840 DOI: 10.1111/lam.12873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/24/2018] [Indexed: 01/31/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a worldwide concern. Cattle are their main reservoir and may contaminate watercourses through manure. We characterized a collection of 38 STEC O157:H7 strains isolated from surface water in feedlots areas (puddles inside pens formed after the rainfall or by spill around drinking troughs, and small water courses and lagoons, formed by runoff). Nineteen (50·0%) strains harboured stx2a /stx2c genes, 18 (47·4%) stx2c and one stx1a /stx2c . All strains harboured eae, ehxA, rfbO157 and fliCH7 genes, and the putative virulence determinants ECSP_0242, ECSP_2687 and ECSP_3620. All isolates tested as Lineage I/II by lineage-specific polymorphism assay-6. Nineteen (50%) belonged to the high virulent clade 8. The q21 allele was found in all strains and q933 /q21 alleles in 17 (44·7%). By XbaI-pulsed-field gel electrophoresis, 29 strains were grouped into seven clusters. Four clusters grouped isolates from distant places separated by 150-250 km. This may be related to vectors, like birds, involved in their spread. Otherwise, three clusters contained isolates recovered at same places with intervals of 1-9 months. This could be explained by the high environmental persistence of STEC O157:H7. These strains recovered from surface water showed similar genotypes to those found in the bovine reservoir and in human diseases, and could be linked to the high incidence of haemolytic uremic syndrome in Argentina. SIGNIFICANCE AND IMPACT OF THE STUDY The challenge for the growing global demand for food is to find sustained production strategies without collateral effects. Intensive livestock operations generate large volumes of manure that can contaminate a finite resource, the water. This study shows how water contaminated by confined feeding operations can transport dangerous pathogens and warns to pay more attention to control and sanitation systems to prevent this type of pollution.
Collapse
Affiliation(s)
- J D Tanaro
- Cátedra de Microbiología, Facultad De Bromatología, Universidad Nacional de Entre Ríos, Gualeguaychú, Argentina
| | - L A Pianciola
- Laboratorio Central, Subsecretaría de Salud de Neuquén, Neuquén, Argentina
| | - B A D'Astek
- Servicio Fisiopatogenia, Departamento Bacteriología, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - M C Piaggio
- Cátedra de Microbiología, Facultad De Bromatología, Universidad Nacional de Entre Ríos, Gualeguaychú, Argentina
| | - M L Mazzeo
- Laboratorio Central, Subsecretaría de Salud de Neuquén, Neuquén, Argentina
| | - G Zolezzi
- Servicio Fisiopatogenia, Departamento Bacteriología, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - M Rivas
- Servicio Fisiopatogenia, Departamento Bacteriología, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| |
Collapse
|
12
|
Amigo N, Zhang Q, Amadio A, Zhang Q, Silva WM, Cui B, Chen Z, Larzabal M, Bei J, Cataldi A. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain. PLoS One 2016; 11:e0166883. [PMID: 27880834 PMCID: PMC5120812 DOI: 10.1371/journal.pone.0166883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Natalia Amigo
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Qi Zhang
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Ariel Amadio
- Rafaela Experimental Station, National Institute of Agricultural Technology. Rafaela, Santa Fe, Argentina
| | - Qunjie Zhang
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Wanderson M. Silva
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Baiyuan Cui
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Zhongjian Chen
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Mariano Larzabal
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| | - Jinlong Bei
- AGRO-Biological Gene Research Center, Guangdong `Academy of Agricultural Sciences (GDAAS), Guangzhou, China
- * E-mail:
| | - Angel Cataldi
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology. Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
13
|
Olavesen KK, Lindstedt BA, Løbersli I, Brandal LT. Expression of Shiga toxin 2 (Stx2) in highly virulent Stx-producing Escherichia coli (STEC) carrying different anti-terminator (q) genes. Microb Pathog 2016; 97:1-8. [PMID: 27208749 DOI: 10.1016/j.micpath.2016.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022]
Abstract
Shiga toxins (Stx) are key virulence factors of Shiga toxin-producing Escherichia coli (STEC) during development of haemolytic uremic syndrome (HUS). It has been suggested that not only specific stx2 subtypes, but also the amount of Stx2 expressed might be essential for STEC pathogenicity. We aimed to investigate if various anti-terminator (q) genes might influence the expression level of Stx2 in highly virulent STEC. A multiplex PCR detecting q933, q21, and qO111 was run on 20 stx2a-positive STEC strains, of which 18 were HUS associated serotypes (HAS) and two non-HAS. Relative expression of Stx2 mRNA was assessed for all strains, both in non-induced and induced (mitomycin C) state. The HAS STEC carried either q933 (n = 8), qO111 (n = 8), or both (n = 2). In basal state, no STEC strains showed higher expression of Stx2 mRNA than the calibrator EDL933 (non-sorbitol fermenting (NSF) O157:H7carrying q933). Variations among strains were not associated with different q genes present, but rather related to specific serogroups. In induced state, O104:H4 strains (q933) showed higher Stx2 mRNA level than EDL933, whereas sorbitol fermenting (SF) O157:H- (qO111) and O121:H? (q933) STEC showed levels comparable with EDL933. An association between the presence of q933 and higher Stx2 level was seen within some HAS, but not all. Interestingly, the O103:H25 STEC strains, responsible for a HUS outbreak in Norway, carried both q933 and qO111. However, the Stx2 mRNA level in these strains was significantly lower than EDL933 in both states, indicating that other factors than the level of Stx2 might explain the aggressiveness of these bacteria. The two non-HAS STEC did not carry any of the examined q genes. In induced state, these bacteria showed the lowest Stx2 mRNA level compared to EDL933. One of the non-HAS STEC was not induced by mitomycin C, suggesting that stx2a might be located on a defect bacteriophage. No association between specific q genes and Stx2 mRNA expression level was revealed in stx2a-positive HAS STEC. Our results suggest that other factor(s) than specific q genes might influence the level of Stx2 produced in highly virulent STEC.
Collapse
Affiliation(s)
- Kristoffer K Olavesen
- Department of Foodborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Inger Løbersli
- Department of Foodborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Lin T Brandal
- Department of Foodborne Infections, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
14
|
Regulatory elements of stx2 gene and the expression level of Shiga-like toxin 2 in Escherichia coli O157:H7. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 51:132-140. [PMID: 27317410 DOI: 10.1016/j.jmii.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/19/2015] [Accepted: 04/25/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND/PURPOSE Shiga-like toxin (Stx) is an important factor in the pathogenesis of Escherichia coli O157:H7 infection and is responsible for some severe complications. Stx2 is usually associated with hemolytic uremic syndrome in humans. Its expression is regulated by elements located upstream of the stx2 gene, including stx2-promoter sequence, ribosome binding site, and the antiterminator q gene. The present study aimed to find the correlation between regulatory elements and the expression level of Stx2 in two local isolates of E. coli O157:H7. METHODS Two local E. coli O157:H7 strains SM-25(1) and KL-48(2), originating from human and cattle feces, respectively, and an E. coli reference strain, ATCC 43894, were investigated. The complete stx2 gene covering the sequences of promoter, ribosome binding site, and open reading frame and q gene of each strain was analyzed. The magnitude of Stx2 production was detected with a reverse passive latex agglutination method and Stx mediated cellular damage was determined with the Vero cell assay. RESULTS A comparison of the complete stx2 gene contained stx2-promoter, ribosome binding site, and q genes of two local strains KL-48(2) and SM25(1), and the E. coli ATCC 43894 showed that the amino acid sequences were identical. Both local isolates were Stx negative in the reverse passive latex agglutination test and nontoxic in the Vero cell assay. CONCLUSION The expression level of Shiga-like toxin of the two local isolates of E. coli O157:H7 did not only depend on the regulatory elements of the stx2 gene.
Collapse
|
15
|
Khalil RKS, Skinner C, Patfield S, He X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog Dis 2016; 74:ftw037. [PMID: 27109772 DOI: 10.1093/femspd/ftw037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 10/21/2022] Open
Abstract
Enterobacter cloacae M12X01451 strain recently identified from a clinical specimen produces a new Stx1 subtype (Stx1e) that was not neutralized by existing anti-Stx1 monoclonal antibodies. Acquisition of stx by Ent. cloacae is rare and origin/stability of stx1e in M12X01451 is not known. In this study, we confirmed the ability of Stx1a- and Stx1e-converting phages from an Escherichia coli O157:H7 strain RM8530 and M12X01451 respectively to infect several E. coli and Ent. cloacae strains. stx1e was detected in 97.5% and 72.5% of progenies of strains lysogenized by stx1e phage after 10 (T10) and 20 (T20) subcultures, versus 65% and 17.5% for stx1a gene. Infection of M12X01451 and RM8530 with each other's phages generated double lysogens containing both phages. stx1a was lost after T10, whereas the stx1e was maintained even after T20 in M12X01451 lysogens. In RM8530 lysogens, the acquired stx1e was retained with no mutations, but 20% of stx1a was lost after T20 ELISA and western blot analyses demonstrated that Stx1e was produced in all strains lysogenized by stx1e phage; however, Stx1a was not detected in any lysogenized strain. The study results highlight the potential risks of emerging Stx-producing strains via bacteriophages either in the human gastrointestinal tract or in food production environments, which are matters of great concern and may have serious impacts on human health.
Collapse
Affiliation(s)
- Rowaida K S Khalil
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Craig Skinner
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| | - Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|
16
|
Characterization of Shiga Toxigenic Escherichia coli O157 and Non-O157 Isolates from Ruminant Feces in Malaysia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:382403. [PMID: 26539484 PMCID: PMC4619789 DOI: 10.1155/2015/382403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
Shiga toxigenic Escherichia coli (STEC) O157 and several other serogroups of non-O157 STEC are causative agents of severe disease in humans world-wide. The present study was conducted to characterize STEC O157 and non-O157 serogroups O26, O103, O111, O121, O45, and O145 in ruminants in Malaysia. A total of 136 ruminant feces samples were collected from 6 different farms in Peninsular Malaysia. Immunomagnetic beads were used to isolate E. coli O157 and non-O157 serogroups, while PCR was used for the detection and subtyping of STEC isolates. STEC O157:H7 was isolated from 6 (4%) feces samples and all isolates obtained carried stx 2c, eaeA-γ1, and ehxA. Non-O157 STEC was isolated from 2 (1.5%) feces samples with one isolate carrying stx 1a, stx 2a, stx 2c, and ehxA and the other carrying stx 1a alone. The presence of STEC O157 and non-O157 in a small percentage of ruminants in this study together with their virulence characteristics suggests that they may have limited impact on public health.
Collapse
|
17
|
Escherichia coli Capsular Polysaccharide Synthesis, Antibiotic Susceptibility, and Red Blood Cell Agglutination. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.jecm.2014.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Harada T, Hirai Y, Itou T, Hayashida M, Seto K, Taguchi M, Kumeda Y. Laboratory investigation of an Escherichia coli O157:H7 strain possessing a vtx2c gene with an IS1203 variant insertion sequence isolated from an asymptomatic food handler in Japan. Diagn Microbiol Infect Dis 2013; 77:176-8. [DOI: 10.1016/j.diagmicrobio.2013.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/08/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
|
19
|
Fernandez-Brando RJ, Miliwebsky E, Mejías MP, Baschkier A, Panek CA, Abrey-Recalde MJ, Cabrera G, Ramos MV, Rivas M, Palermo MS. Shiga toxin-producing Escherichia coli O157 : H7 shows an increased pathogenicity in mice after the passage through the gastrointestinal tract of the same host. J Med Microbiol 2012; 61:852-859. [DOI: 10.1099/jmm.0.041251-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Romina J. Fernandez-Brando
- División Inmunología, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Elizabeth Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas – ANLIS ‘Dr Carlos G. Malbrán’, Buenos Aires, Argentina
| | - María Pilar Mejías
- División Inmunología, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ariela Baschkier
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas – ANLIS ‘Dr Carlos G. Malbrán’, Buenos Aires, Argentina
| | - Cecilia A. Panek
- División Inmunología, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Jimena Abrey-Recalde
- División Inmunología, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gabriel Cabrera
- División Inmunología, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- División Inmunología, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marta Rivas
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas – ANLIS ‘Dr Carlos G. Malbrán’, Buenos Aires, Argentina
| | - Marina S. Palermo
- División Inmunología, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
20
|
Phylogenetically related Argentinean and Australian Escherichia coli O157 isolates are distinguished by virulence clades and alternative Shiga toxin 1 and 2 prophages. Appl Environ Microbiol 2012; 78:4724-31. [PMID: 22544241 DOI: 10.1128/aem.00365-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Shiga toxigenic Escherichia coli O157 is the leading cause of hemolytic uremic syndrome (HUS) worldwide. The frequencies of stx genotypes and the incidences of O157-related illness and HUS vary significantly between Argentina and Australia. Locus-specific polymorphism analysis revealed that lineage I/II (LI/II) E. coli O157 isolates were most prevalent in Argentina (90%) and Australia (88%). Argentinean LI/II isolates were shown to belong to clades 4 (28%) and 8 (72%), while Australian LI/II isolates were identified as clades 6 (15%), 7 (83%), and 8 (2%). Clade 8 was significantly associated with Shiga toxin bacteriophage insertion (SBI) type stx(2) (locus of insertion, argW) in Argentinean isolates (P < 0.0001). In Argentinean LI/II strains, stx(2) is carried by a prophage inserted at argW, whereas in Australian LI/II strains the argW locus is occupied by the novel stx(1) prophage. In both Argentinean and Australian LI/II strains, stx(2c) is almost exclusively carried by a prophage inserted at sbcB. However, alternative q(933)- or q(21)-related alleles were identified in the Australian stx(2c) prophage. Argentinean LI/II isolates were also distinguished from Australian isolates by the presence of the putative virulence determinant ECSP_3286 and the predominance of motile O157:H7 strains. Characteristics common to both Argentinean and Australian LI/II O157 strains included the presence of putative virulence determinants (ECSP_3620, ECSP_0242, ECSP_2687, ECSP_2870, and ECSP_2872) and the predominance of the tir255T allele. These data support further understanding of O157 phylogeny and may foster greater insight into the differential virulence of O157 lineages.
Collapse
|
21
|
Haugum K, Lindstedt BA, Løbersli I, Kapperud G, Brandal LT. Identification of the anti-terminator qO111:H)- gene in Norwegian sorbitol-fermenting Escherichia coli O157:NM. FEMS Microbiol Lett 2012; 329:102-10. [PMID: 22268961 DOI: 10.1111/j.1574-6968.2012.02505.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/30/2022] Open
Abstract
Sorbitol-fermenting Escherichia coli O157:NM (SF O157) is an emerging pathogen suggested to be more virulent than nonsorbitol-fermenting Escherichia coli O157:H7 (NSF O157). Important virulence factors are the Shiga toxins (stx), encoded by stx1 and/or stx2 located within prophages integrated in the bacterial genome. The stx genes are expressed from p(R) (') as a late protein, and anti-terminator activity from the Q protein is necessary for read through of the late terminator t(R) (') and activation of p(R) (') . We investigated the regulation of stx2(EDL933) expression at the genomic level in 17 Norwegian SF O157. Sequencing of three selected SF O157 strains revealed that the anti-terminator q gene and genes upstream of stx2(EDL933) were identical or similar to the ones observed in the E. coli O111:H- strain AP010960, but different from the ones observed in the NSF O157 strain EDL933 (AE005174). This suggested divergent stx2(EDL933) -encoding bacteriophages between NSF O157 and the SF O157 strains (FR874039-41). Furthermore, different DNA structures were detected in the SF O157 strains, suggesting diversity among bacteriophages also within the SF O157 group. Further investigations are needed to elucidate whether the q(O111:H) (-) gene observed in all our SF O157 contributes to the increased virulence seen in SF O157 compared to NSF O157. An assay for detecting q(O111:H) (-) was developed.
Collapse
Affiliation(s)
- Kjersti Haugum
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | |
Collapse
|
22
|
Neupane M, Abu-Ali GS, Mitra A, Lacher DW, Manning SD, Riordan JT. Shiga toxin 2 overexpression in Escherichia coli O157:H7 strains associated with severe human disease. Microb Pathog 2011; 51:466-70. [PMID: 21864671 DOI: 10.1016/j.micpath.2011.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022]
Abstract
Variation in disease severity among Escherichia coli O157:H7 infections may result from differential expression of Shiga toxin 2 (Stx2). Eleven strains belonging to four prominent phylogenetic clades, including clade 8 strains representative of the 2006 U.S. spinach outbreak, were examined for stx2 expression by real-time PCR and western blot analysis. Clade 8 strains were shown to overexpress stx2 basally, and following induction with ciprofloxacin when compared to strains from clades 1-3. Differences in stx2 expression generally correlated with Stx2 protein levels. Single-nucleotide polymorphisms identified in regions upstream of stx2AB in clade 8 strains were largely absent in non-clade 8 strains. This study concludes that stx2 overexpression is common to strains from clade 8 associated with hemolytic uremic syndrome, and describes SNPs which may affect stx2 expression and which could be useful in the genetic differentiation of highly-virulent strains.
Collapse
Affiliation(s)
- Mahesh Neupane
- Microbial Evolution and Epidemiology Laboratory, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | | | | | | | | | | |
Collapse
|
23
|
Genome signatures of Escherichia coli O157:H7 isolates from the bovine host reservoir. Appl Environ Microbiol 2011; 77:2916-25. [PMID: 21421787 DOI: 10.1128/aem.02554-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cattle comprise a main reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC). The significant differences in host prevalence, transmissibility, and virulence phenotypes among strains from bovine and human sources are of major interest to the public health community and livestock industry. Genomic analysis revealed divergence into three lineages: lineage I and lineage I/II strains are commonly associated with human disease, while lineage II strains are overrepresented in the asymptomatic bovine host reservoir. Growing evidence suggests that genotypic differences between these lineages, such as polymorphisms in Shiga toxin subtypes and synergistically acting virulence factors, are correlated with phenotypic differences in virulence, host ecology, and epidemiology. To assess the genomic plasticity on a genome-wide scale, we have sequenced the whole genome of strain EC869, a bovine-associated E. coli O157:H7 isolate. Comparative phylogenomic analysis of this key isolate enabled us to place accurately bovine lineage II strains within the genetically homogenous E. coli O157:H7 clade. Identification of polymorphic loci that are anchored both in the chromosomal backbone and horizontally acquired regions allowed us to associate bovine genotypes with altered virulence phenotypes and host prevalence. This study catalogued numerous novel lineage II-specific genome signatures, some of which appear to be associated intimately with the altered pathogenic potential and niche adaptation within the bovine rumen. The presented extended list of polymorphic markers is valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies of this emerging human pathogen.
Collapse
|
24
|
Phylogenetic analysis and Shiga toxin production profiling of Shiga toxin-producing/enterohemorrhagic Escherichia coli clinical isolates. Microb Pathog 2010; 49:246-51. [DOI: 10.1016/j.micpath.2010.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/31/2010] [Accepted: 06/07/2010] [Indexed: 01/01/2023]
|
25
|
Taylor EV, Shi X, Alam MJ, Peterson G, Narayanan SK, Renter DG, Nagaraja TG. Genetic variations in Shiga toxin-producing abilities of bovine and human Escherichia coli O157:H7. Zoonoses Public Health 2010; 58:185-91. [PMID: 20819202 DOI: 10.1111/j.1863-2378.2010.01337.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cattle are a primary reservoir of Escherichia coli O157:H7, a major foodborne pathogen. The organism causes haemorrhagic colitis which can lead to serious complications, including haemolytic-uraemic syndrome. Although E. coli O157:H7 is widely prevalent in cattle and cattle environments, the number of human cases remain relatively low, suggesting possible strain diversity and differences in virulence between human and bovine strains. Shiga toxins, Stx1 and Stx2, are the major virulence factors. Differences in Stx2 production between human and bovine strains have been demonstrated previously, and isolates possessing the stx2 gene, but not producing Stx2 [toxin non-producing (TNP) strains] have been identified. In this study, 150 isolates (56 human, 94 bovine) were tested by PCR for stx2 upstream regions associated with TNP and the Q933 gene, which has been previously associated with toxin production. A reverse passive latex agglutination test was used to evaluate 107 isolates (50 human, 57 bovine) for Stx1 and Stx2 production. The percentages of human and bovine isolates positive for presence of the TNP regions were similar (57.1% and 53.1% respectively), while a higher percentage of human isolates was positive for Q933 gene (89.3% versus 54.3%). Stx2 production of ≥ 1:8 was found in 86.0% of human isolates compared with 26.3% of bovine isolates. Bovine isolates with the presence of the TNP regions were associated with significantly lower Stx2 production (P < 0.05), while the Q933 gene was associated with higher Stx2 production (P < 0.05). However, the presence of the TNP region was not associated (P > 0.05) with low Stx2 production in human isolates. Therefore, Q933 was a better indicator of high Stx2 production by human and bovine isolates and may be a useful screening method to assess their potential to cause human disease.
Collapse
Affiliation(s)
- E V Taylor
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5606, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Different classes of antibiotics differentially influence shiga toxin production. Antimicrob Agents Chemother 2010; 54:3790-8. [PMID: 20585113 DOI: 10.1128/aac.01783-09] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin (Stx) in Escherichia coli O157:H7 is encoded as a late gene product by temperate bacteriophage integrated into the chromosome. Phage late genes, including stx, are silent in the lysogenic state. However, stress signals, including some induced by antibiotics, trigger the phage to enter the lytic cycle, and phage replication and Stx production occur concurrently. In addition to the Stx produced by O157:H7, phage produced by O157:H7 can infect harmless intestinal E. coli and recruit them to produce Shiga toxin. To understand how antibiotics influence Stx production, Stx lysogens were treated with different classes of antibiotics in the presence or absence of phage-sensitive E. coli, and Stx-mediated inhibition of protein synthesis was monitored using luciferase-expressing Vero cells. Growth-inhibitory levels of antibiotics suppressed Stx production. Subinhibitory levels of antibiotics that target DNA synthesis, including ciprofloxacin (CIP) and trimethoprim-sulfamethoxazole, increased Stx production, while antibiotics that target the cell wall, transcription, or translation did not. More Stx was produced when E. coli O157:H7 was incubated in the presence of phage-sensitive E. coli than when grown as a pure culture. Remarkably, very high levels of Stx were detected even when growth of O157:H7 was completely suppressed by CIP. In contrast, azithromycin significantly reduced Stx levels even when O157:H7 viability remained high.
Collapse
|
27
|
Abu-Ali GS, Ouellette LM, Henderson ST, Lacher DW, Riordan JT, Whittam TS, Manning SD. Increased adherence and expression of virulence genes in a lineage of Escherichia coli O157:H7 commonly associated with human infections. PLoS One 2010; 5:e10167. [PMID: 20422047 PMCID: PMC2858043 DOI: 10.1371/journal.pone.0010167] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/22/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a food and waterborne pathogen, can be classified into nine phylogenetically distinct lineages, as determined by single nucleotide polymorphism genotyping. One lineage (clade 8) was found to be associated with hemolytic uremic syndrome (HUS), which can lead to kidney failure and death in some cases, particularly young children. Another lineage (clade 2) differs considerably in gene content and is phylogenetically distinct from clade 8, but caused significantly fewer cases of HUS in a prior study. Little is known, however, about how these two lineages vary with regard to phenotypic traits important for disease pathogenesis and in the expression of shared virulence genes. METHODOLOGY/PRINCIPAL FINDINGS Here, we quantified the level of adherence to and invasion of MAC-T bovine epithelial cells, and examined the transcriptomes of 24 EHEC O157:H7 strains with varying Shiga toxin profiles from two common lineages. Adherence to epithelial cells was >2-fold higher for EHEC O157:H7 strains belonging to clade 8 versus clade 2, while no difference in invasiveness was observed between the two lineages. Whole-genome 70-mer oligo microarrays, which probe for 6088 genes from O157:H7 Sakai, O157:H7 EDL 933, pO157, and K12 MG1655, detected significant differential expression between clades in 604 genes following co-incubation with epithelial cells for 30 min; 186 of the 604 genes had a >1.5 fold change difference. Relative to clade 2, clade 8 strains showed upregulation of major virulence genes, including 29 of the 41 locus of enterocyte effacement (LEE) pathogenicity island genes, which are critical for adherence, as well as Shiga toxin genes and pO157 plasmid-encoded virulence genes. Differences in expression of 16 genes that encode colonization factors, toxins, and regulators were confirmed by qRT-PCR, which revealed a greater magnitude of change than microarrays. CONCLUSIONS/SIGNIFICANCE These findings demonstrate that the EHEC O157:H7 lineage associated with HUS expresses higher levels of virulence genes and has an enhanced ability to attach to epithelial cells relative to another common lineage.
Collapse
Affiliation(s)
- Galeb S. Abu-Ali
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Lindsey M. Ouellette
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Scott T. Henderson
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - David W. Lacher
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - James T. Riordan
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Thomas S. Whittam
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Shannon D. Manning
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
28
|
Lineage and host source are both correlated with levels of Shiga toxin 2 production by Escherichia coli O157:H7 strains. Appl Environ Microbiol 2009; 76:474-82. [PMID: 19948861 DOI: 10.1128/aem.01288-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Escherichia coli O157:H7 strains fall into three major genetic lineages that differ in their distribution among humans and cattle. Several recent studies have reported differences in the expression of virulence factors between E. coli O157:H7 strains from these two host species. In this study, we wished to determine if important virulence-associated "mobile genetic elements" such as Shiga toxin 2 (Stx2)-encoding prophage are lineage restricted or are host source related and acquired independently of the pathogen genotype. DNA sequencing of the stx(2) flanking region from a lineage II (LII) strain, EC970520, revealed that the transcriptional activator gene Q in LI strain EDL933 (upstream of stx(2)) is replaced by a pphA (serine/threonine phosphatase) homologue and an altered Q gene in this and all other LII strains tested. In addition, nearly all LI strains carried stx(2), whereas all LII strains carried variant stx(2c) and 4 of 14 LI/II strains had copies of both stx(2) and variant stx(2c). Real-time PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that LI and LI/II strains produce significantly more stx(2) mRNA and Stx2 than LII strains. However, among LI strains significantly more Stx2 is also produced by strains from humans than from cattle. Therefore, lineage-associated differences among E. coli O157:H7 strains such as prophage content, toxin type, and toxin expression may contribute to host isolation bias. However, the level of Stx2 production alone may also play an important role in the within-lineage association of E. coli O157:H7 strains with human clinical disease.
Collapse
|
29
|
Kotewicz ML, Mammel MK, LeClerc JE, Cebula TA. Optical mapping and 454 sequencing of Escherichia coli O157 : H7 isolates linked to the US 2006 spinach-associated outbreak. MICROBIOLOGY-SGM 2008; 154:3518-3528. [PMID: 18957604 DOI: 10.1099/mic.0.2008/019026-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Optical maps for five representative clinical, food-borne and bovine-derived isolates from the 2006 Escherichia coli O157 : H7 outbreak linked to fresh spinach in the United States showed a common set of 14 distinct chromosomal markers that define the outbreak strain. Partial 454 DNA sequencing was used to characterize the optically mapped chromosomal markers. The markers included insertions, deletions, substitutions and a simple single nucleotide polymorphism creating a BamHI site. The Shiga toxin gene profile of the spinach-associated outbreak isolates (stx1(-) stx2(+) stx2c(+)) correlated with prophage insertions different from those in the prototypical EDL933 and Sakai reference strains (stx1(+) stx2(+) stx2c(-)). The prophage occupying the yehV chromosomal position in the spinach-associated outbreak isolates was similar to the stx1(+) EDL933 cryptic prophage V, but it lacked the stx1 gene. In EDL933, the stx2 genes are within prophage BP933-W at the wrbA chromosomal locus; this locus was unoccupied in the spinach outbreak isolates. Instead, the stx2 genes were found within a chimeric BP933-W-like prophage with a different integrase, inserted at the argW locus in the outbreak isolates. An extra set of Shiga toxin genes, stx2c, was found in the outbreak isolates within a prophage integrated at the sbcB locus. The optical maps of two additional clinical isolates from the outbreak showed a single, different prophage variation in each, suggesting that changes occurred in the source strain during the course of this widespread, multi-state outbreak.
Collapse
Affiliation(s)
- Michael L Kotewicz
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Mark K Mammel
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - J Eugene LeClerc
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Thomas A Cebula
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
30
|
Maurer C, Lazizzera C, Madec JY. Characterization of inducible stx2-positive Escherichia coli O157:H7/H7- strains isolated from cattle in France. J Appl Microbiol 2008; 104:1569-76. [DOI: 10.1111/j.1365-2672.2007.03692.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Evaluation of major types of Shiga toxin 2E-producing Escherichia coli bacteria present in food, pigs, and the environment as potential pathogens for humans. Appl Environ Microbiol 2008; 74:4806-16. [PMID: 18515483 DOI: 10.1128/aem.00623-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin 2e (Stx2e)-producing strains from food (n = 36), slaughtered pigs (n = 25), the environment (n = 21), diseased pigs (n = 19), and humans (n = 9) were investigated for production of Stx2e by enzyme-linked immunosorbent assay, for virulence markers by PCR, and for their serotypes to evaluate their role as potential human pathogens. Stx2e production was low in 64% of all 110 strains. Stx2e production was inducible by mitomycin C but differed considerably between strains. Analysis by nucleotide sequencing and transcription of stx(2e) genes in high- and low-Stx2e-producing strains showed that toxin production correlated with transcription rates of stx(2e) genes. DNA sequences specific for the int, Q, dam, and S genes of the stx(2e) bacteriophage P27 were found in 109 strains, indicating cryptic P27-like prophages, although 102 of these were not complete for all genes tested. Genes encoding intimin (eae), enterohemorrhagic Escherichia coli hemolysin (ehx), or other stx(1) or stx(2) variants were not found, whereas genes for heat-stable enterotoxins STI, STII, or EAST1 were present in 54.5% of the strains. Seven major serotypes that were associated with diseased pigs (O138:H14, O139:H1, and O141:H4) or with slaughter pigs, food, and the environment (O8:H4, O8:H9, O100:H30, and O101:H9) accounted for 60% of all Stx2e strains. The human Stx2e isolates did not belong to these major serotypes of Stx2e strains, and high production of Stx2e in human strains was not related to diarrheal disease. The results from this study and other studies do not point to Stx2e as a pathogenicity factor for diarrhea and hemolytic uremic syndrome in humans.
Collapse
|
32
|
Koitabashi T, Cui S, Kamruzzaman M, Nishibuchi M. Isolation and characterization of the Shiga toxin gene (stx)-bearing Escherichia coli O157 and non-O157 from retail meats in Shandong Province, China, and characterization of the O157-derived stx2 phages. J Food Prot 2008; 71:706-13. [PMID: 18468023 DOI: 10.4315/0362-028x-71.4.706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infection by Shiga toxin (Stx)-producing Escherichia coli of non-O157 and O157 serotypes are rare in China, but infection by O157 serotype was found in Shandong Province and three other provinces in China. To understand the reason for these rare infections and to determine the safety of retail meats in Shandong Province, we examined the distribution of Shiga toxin gene (stx)-bearing E. coli in retail meats and characterized the isolated stx-bearing strains. We used hybridization with DNA probes and isolated stx1- and/or stx2-positive E. coli from 31 (58%) of 53 retail meat samples, with beef showing the highest frequency (68%). Of 42 stx-positive isolates, none belonged to O157. Using the O157-specific immunomagnetic bead technique, we isolated E. coli O157 carrying the eae and stx2 genes from eight beef samples (26%). These strains produced little or no Stx2 and carried a unique q gene. Replication of the stx2 phages was detected in these strains, whereas stx2 phage replication was not detected in our previous study in which we examined similar stx2-bearing E. coli O157 strains from other Asian countries. Analysis of E. coli C600 lysogenized with the stx2 phages found in this study suggests that the lack of Stx2 production is due to changes in non-q gene region(s) of the phage genome or chromosomal mutation(s) in the host. Our data and reports by other workers suggest it is necessary to determine if various stx2-bearing E. coli O157 strains producing Stx2 to varying degrees are distributed in meats in various locations in China.
Collapse
Affiliation(s)
- Tsutomu Koitabashi
- Qingdao Chengyu Research Institute of Food-Safety, Chengyang District, Qingdao, Shandong Province, China
| | | | | | | |
Collapse
|
33
|
Kotewicz ML, Jackson SA, LeClerc JE, Cebula TA. Optical maps distinguish individual strains of Escherichia coli O157 : H7. MICROBIOLOGY-SGM 2007; 153:1720-1733. [PMID: 17526830 DOI: 10.1099/mic.0.2006/004507-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Optical maps of 11 Escherichia coli O157 : H7 strains have been generated by the assembly of contiguous sets of restriction fragments across their entire 5.3 to 5.6 Mbp chromosomes. Each strain showed a distinct, highly individual configuration of 500-700 BamHI fragments, yielding a map resembling a DNA 'bar code'. The accuracy of optical mapping was assessed by comparing directly the in silico restriction maps of two wholly sequenced reference genomes of E. coli O157 : H7, i.e. EDL933 and the Sakai isolate (RIMD 0509952), with the optical maps of the same strains. The optical maps of nine other E. coli O157 : H7 strains were compared similarly, using the sequence-based maps of the Sakai and EDL933 strains as references. A total of 91 changes at 28 loci were positioned and sized; these included complex chromosomal inversions, insertions, deletions, substitutions, as well as a number of simple RFLPs. The optical maps defined unique genome landmarks in each of the strains and demonstrated the ability of optical mapping to distinguish and differentiate, at the individual level, strains of this important pathogen.
Collapse
Affiliation(s)
- Michael L Kotewicz
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Scott A Jackson
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - J Eugene LeClerc
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Thomas A Cebula
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
34
|
Ochoa TJ, Chen J, Walker CM, Gonzales E, Cleary TG. Rifaximin does not induce toxin production or phage-mediated lysis of Shiga toxin-producing Escherichia coli. Antimicrob Agents Chemother 2007; 51:2837-41. [PMID: 17526759 PMCID: PMC1932515 DOI: 10.1128/aac.01397-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diarrhea in children is often caused by enteropathogen infections that might benefit from early empirical antibiotic therapy. However, when the definition of the pathogen requires sophisticated laboratory studies, the etiology of enteritis is not known early in illness. Empirical therapy may be dangerous if the child is infected with a Shiga toxin-producing Escherichia coli (STEC) strain because antimicrobials may increase Shiga toxin (Stx) release, resulting in increased risk of microangiopathic hemolytic anemia with acute renal failure (hemolytic-uremic syndrome [HUS]) and death. There is a need for antimicrobials that would be effective against multiple bacterial enteropathogens yet not induce Stx release or increase the risk of HUS. Rifaximin has been evaluated in adults for treatment of bacterial enteritis and has a good record for safety and efficacy, but it has not been evaluated extensively in children with gastroenteritis. We therefore evaluated rifaximin's potential for phage induction, drug-induced bacteriolysis, and toxin release in 57 STEC strains (26 O157 and 31 non-O157 strains). Growth in ciprofloxacin, a known Stx phage inducer, caused bacteriolysis and release of toxin in 25/26 (96%) O157 strains and 15/31 (48%) non-O157 strains. In contrast, rifaximin did not induce phage replication or lysis in any strain. Toxin release in the presence of rifaximin was not different from release in the absence of antibiotic. Rifaximin, unlike many antibiotics used to treat pediatric gastroenteritis, does not induce phage-mediated bacteriolysis and Stx release.
Collapse
Affiliation(s)
- Theresa J Ochoa
- University of Texas School of Public Health, Center for Infectious Diseases, Houston, TX 77225, USA
| | | | | | | | | |
Collapse
|