1
|
De-Simone SG, Napoleão-Pêgo P, Gonçalves PS, Lechuga GC, Cardoso SV, Provance DW, Morel CM, da Silva FR. B-Cell Epitope Mapping of the Vibrio cholera Toxins A, B, and P and an ELISA Assay. Int J Mol Sci 2022; 24:531. [PMID: 36613974 PMCID: PMC9820764 DOI: 10.3390/ijms24010531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Oral immunization with the choleric toxin (CT) elicits a high level of protection against its enterotoxin activities and can control cholera in endemic settings. However, the complete B-cell epitope map of the CT that is responsible for protection remains to be clarified. A library of one-hundred, twenty-two 15-mer peptides covering the entire sequence of the three chains of the CT protein (CTP) was prepared by SPOT synthesis. The immunoreactivity of membrane-bound peptides with sera from mice vaccinated with an oral inactivated vaccine (Schankol™) allowed the mapping of continuous B-cell epitopes, topological studies, multi-antigen peptide (MAP) synthesis, and Enzyme-Linked Immunosorbent Assay (ELISA) development. Eighteen IgG epitopes were identified; eight in the CTA, three in the CTB, and seven in the protein P. Three V. cholera specific epitopes, Vc/TxA-3, Vc/TxB-11, and Vc/TxP-16, were synthesized as MAP4 and used to coat ELISA plates in order to screen immunized mouse sera. Sensitivities and specificities of 100% were obtained with the MAP4s of Vc/TxA-3 and Vc/TxB-11. The results revealed a set of peptides whose immunoreactivity reflects the immune response to vaccination. The array of peptide data can be applied to develop improved serological tests in order to detect cholera toxin exposure, as well as next generation vaccines to induce more specific antibodies against the cholera toxin.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Molecular and Cellular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-036, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Priscilla S. Gonçalves
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Molecular and Cellular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-036, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Sergian V. Cardoso
- Department of Health, Graduate Program in Translational Biomedicine (BIOTRANS), University of Grande Rio (UNIGRANRIO), Caxias 25071-202, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Flavio R. da Silva
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
2
|
Chowdhury F, Akter A, Bhuiyan TR, Biswas R, Firoj MG, Tauheed I, Harris JB, Larocque RC, Ross AG, McMillan NAJ, Charles RC, Ryan ET, Calderwood SB, Qadri F. Long-term sialidase-specific immune responses after natural infection with cholera: Findings from a longitudinal cohort study in Bangladesh. Front Immunol 2022; 13:1067737. [PMID: 36618409 PMCID: PMC9813220 DOI: 10.3389/fimmu.2022.1067737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Immune responses that target sialidase occur following natural cholera and have been associated with protection against cholera. Sialidase is a neuraminidase that facilitates the binding of cholera toxin (CT) to intestinal epithelial cells. Despite this, little is known about age-related sialidase-specific immune responses and the impact of nutritional status and co-infection on sialidase-specific immunity. Methods We enrolled 50 culture-confirmed Vibrio cholerae O1 cholera cases presenting to the icddr,b Dhaka hospital with moderate to severe dehydration. We evaluated antibody responses out to 18 months (day 540) following cholera. We assessed immune responses targeting sialidase, lipopolysaccharide (LPS), cholera toxin B subunit (CtxB), and vibriocidal responses. We also explored the association of sialidase-specific immune responses to nutritional parameters and parasitic co-infection of cases. Results This longitudinal cohort study showed age-dependent differences in anti-sialidase immune response after natural cholera infection. Adult patients developed plasma anti-sialidase IgA and IgG responses after acute infection (P<0.05), which gradually decreased from day 30 on. In children, no significant anti-sialidase IgA, IgM, and IgG response was seen with the exception of a late IgG response at study day 540 (p=0.05 compared to adults). There was a correlation between anti-sialidase IgA with vibriocidal titers, as well as anti-sialidase IgA and IgG with anti-LPS and anti-CtxB antibody responses in adult patients, whereas in children, a significant positive correlation was seen only between anti-sialidase IgA and CtxB IgA responses. Stunted children showed significantly lower anti-sialidase IgA, IgG, and IgM antibody responses and higher LPS IgG and IgM antibody responses than healthy children. The anti-sialidase IgA and IgG responses were significantly higher in cases with concomitant parasitic infection. Conclusion Our data suggest that cholera patients develop age-distinct systemic and mucosal immune responses against sialidase. The stunted children have a lower anti-sialidase antibody response which may be associated with gut enteropathy and the neuraminidase plays an important role in augmented immune response in cholera patients infected with parasites.
Collapse
Affiliation(s)
- Fahima Chowdhury
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Afroza Akter
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rajib Biswas
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
- Department of Biology, Xavier University of Louisiana, New Orleans, AK, United States
| | - Md. Golam Firoj
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Jason B. Harris
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
| | - Regina C. Larocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Allen G. Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia
| | | | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Firdausi Qadri
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| |
Collapse
|
3
|
Bahroudi M, Bakhshi B, Soudi S, Najar-Peerayeh S. Immunomodulatory effects of mesenchymal stem cell-conditioned media on lipopolysaccharide of Vibrio cholerae as a vaccine candidate. Stem Cell Res Ther 2021; 12:564. [PMID: 34732259 PMCID: PMC8567566 DOI: 10.1186/s13287-021-02622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vibrio cholerae is the causative agent of cholera, which is commonly associated with high morbidity and mortality, and presents a major challenge to healthcare systems throughout the world. Lipopolysaccharide (LPS) is required for full protection against V. cholerae but can induce inflammation and septic shock. Mesenchymal stem cells (MSCs) are currently used to treat infectious and inflammatory diseases. Therefore, this study aimed to evaluate the immune-modulating effects of the LPS-MSC-conditioned medium (CM) on V. cholerae LPS immunization in a murine model. METHODS After preconditioning MSCs with LPS, mice were immunized intraperitoneally on days 0 and 14 with the following combinations: LPS + LPS-MSC-CM; detoxified LPS (DLPS) + MSC-CM; LPS + MSC sup; LPS; LPS-MSC-CM; MSC supernatant (MSC sup); and PBS. The mouse serum and saliva samples were collected to evaluate antibody (serum IgG and saliva IgA) and cytokine responses (TNF-α, IL-10, IL-6, TGF-β, IL-4, IL-5, and B-cell activating factor (BAFF)). RESULTS The LPS + LPS-MSC-CM significantly increased total IgG and IgA compared to other combinations (P < 0.001). TNF-α levels, in contrast to IL-10 and TGF-β, were reduced significantly in mice receiving the LPS + LPS-MSC-CM compared to mice receiving only LPS. IL-4, IL-5, and BAFF levels significantly increased in mice receiving increased doses of LPS + LPS-MSC-CM compared to those who received only LPS. The highest vibriocidal antibody titer (1:64) was observed in LPS + LPS-MSC-CM-immunized mice and resulted in a significant improvement in survival in infant mice infected by V. cholerae O1. CONCLUSIONS The LPS-MSC-CM modulates the immune response to V. cholerae LPS by regulating inflammatory and anti-inflammatory responses and inducing vibriocidal antibodies, which protect neonate mice against V. cholerae infection.
Collapse
Affiliation(s)
- Mahboube Bahroudi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| |
Collapse
|
4
|
Antibody-Dependent Enhancement of Bacterial Disease: Prevalence, Mechanisms, and Treatment. Infect Immun 2021; 89:IAI.00054-21. [PMID: 33558319 DOI: 10.1128/iai.00054-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement (ADE) of viral disease has been demonstrated for infections caused by flaviviruses and influenza viruses; however, antibodies that enhance bacterial disease are relatively unknown. In recent years, a few studies have directly linked antibodies with exacerbation of bacterial disease. This ADE of bacterial disease has been observed in mouse models and human patients with bacterial infections. This antibody-mediated enhancement of bacterial infection is driven by various mechanisms that are disparate from those found in viral ADE. This review aims to highlight and discuss historic evidence, potential molecular mechanisms, and current therapies for ADE of bacterial infection. Based on specific case studies, we report how plasmapheresis has been successfully used in patients to ameliorate infection-related symptomatology associated with bacterial ADE. A greater understanding and appreciation of bacterial ADE of infection and disease could lead to better management of infections and inform current vaccine development efforts.
Collapse
|
5
|
Akter Z, Haque A, Hossain MS, Ahmed F, Islam MA. Aggregation Prone Regions in Antibody Sequences Raised Against Vibrio cholerae: A Bioinformatic Approach. Curr Bioinform 2021. [DOI: 10.2174/1574893615666200106120504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background:
Cholera, a diarrheal illness, causes millions of deaths worldwide due to
large outbreaks. The monoclonal antibody used as therapeutic purposes of cholera is prone to be
unstable due to various factors including self-aggregation.
Objectives:
In this bioinformatic analysis, we identified the aggregation prone regions (APRs) of
antibody sequences of different immunogens (i.e., CTB, ZnM-CTB, ZnP-CTB, TcpA-CT-CTB,
ZnM-TcpA-CT-CTB, ZnP-TcpA-CT-CTB, ZnM-TcpA, ZnP-TcpA, TcpA-CT-TcpA, ZnM-TcpACT-
TcpA, ZnP-TcpA-CT-TcpA, Ogawa, Inaba and ZnM-Inaba) raised against Vibrio cholerae.
Methods:
To determine APRs in antibody sequences that were generated after immunizing Vibrio
cholerae immunogens on Mus musculus, a total of 94 sequences were downloaded as FASTA
format from a protein database and the algorithms such as Tango, Waltz, PASTA 2.0, and
AGGRESCAN were followed to analyze probable APRs in all of the sequences.
Results:
A remarkably high number of regions in the monoclonal antibodies were identified to be
APRs which could explain a cause of instability/short term protection of the anticholera vaccine.
Conclusion:
To increase the stability, it would be interesting to eliminate the APR residues from
the therapeutic antibodies in such a way that the antigen-binding sites or the complementarity
determining region loops involved in antigen recognition are not disrupted.
Collapse
Affiliation(s)
- Zakia Akter
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | - Anamul Haque
- Biomedical Data Science and Informatics Program, School of Computing, Clemson University, Clemson, SC, United States
| | - Md. Sabir Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Firoz Ahmed
- Molecular and Serodiagnostic Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
6
|
Yang JS, An SJ, Jang MS, Song M, Han SH. IgM specific to lipopolysaccharide of Vibrio cholerae is a surrogate antibody isotype responsible for serum vibriocidal activity. PLoS One 2019; 14:e0213507. [PMID: 30845262 PMCID: PMC6405115 DOI: 10.1371/journal.pone.0213507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/24/2019] [Indexed: 12/21/2022] Open
Abstract
Serum vibriocidal antibody assays have long been used to evaluate the immunogenicity of cholera vaccines formulated with killed whole-cell Vibrio cholerae. However, the antibody isotypes responsible for the serum vibriocidal activity are not fully characterized. In this study, we examined 20 clinical serum samples obtained from human subjects who had been vaccinated with a killed, whole-cell cholera vaccine and a positive control, human convalescent sera with high vibriocidal activity, to determine which isotype antibody is associated with the vibriocidal activity. Antibody isotypes from pooled convalescent sera were fractionated by size-exclusion column chromatography, and the major vibriocidal activity was detected in the IgM fraction. Depletion of IgM antibodies in the convalescent sera produced a significant (P<0.05) decrease in vibriocidal activity (16-fold decrease), whereas only a small change was observed with depletion of IgG or IgA. In addition, anti-LPS IgM antibody showed the highest correlation with vibriocidal activity (Spearman correlation coefficient r = 0.846) among antibody isotypes against heat-killed V. cholerae, lipopolysaccharide (LPS), or major outer membrane protein (Omp U), while total IgG, IgA, or IgM antibody level was not correlated with vibriocidal activity in the 20 human clinical serum samples. Furthermore, human convalescent sera significantly (P<0.001) inhibited the attachment of V. cholerae to HT-29, a human intestinal epithelial cell in vitro. Interestingly, IgM-depleted convalescent sera could not effectively inhibit bacterial adherence compared with non-depleted sera (P<0.05). Finally, bacterial adhesion was significantly inhibited by sera with high vibriocidal titer compared with low-titer sera (P = 0.014). Collectively, we demonstrated that anti-V. cholerae LPS IgM is highly correlated with serum vibriocidal activity and it could be a surrogate antibody isotype representing protective antibodies against V. cholerae.
Collapse
Affiliation(s)
- Jae Seung Yang
- Clinical Research Laboratory, International Vaccine Institute, Seoul, Republic of Korea
| | - So Jung An
- Vaccine Process Development, International Vaccine Institute, Seoul, Republic of Korea
| | - Mi Seon Jang
- Clinical Research Laboratory, International Vaccine Institute, Seoul, Republic of Korea
| | - Manki Song
- Clinical Research Laboratory, International Vaccine Institute, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Fasihi-Ramandi M, Ghobadi-Ghadikolaee H, Ahmadi-Renani S, Ahmadi K. Serum Anti-Vibrio cholerae Immunoglobulin Isotype in BALB/c Mice Immunized With ompW-Loaded Chitosan. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2016. [DOI: 10.17795/ijep33137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Pastor M, Esquisabel A, Marquínez I, Talavera A, Pedraz JL. Cellulose acetate phthalate microparticles containing Vibrio cholerae: steps toward an oral cholera vaccine. J Drug Target 2014; 22:478-87. [PMID: 24731056 DOI: 10.3109/1061186x.2014.888071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oral cholera vaccine (OCV) has been recommended in some endemic areas and epidemic situations since 1999. Although safe and effective vaccines are currently on the market, the burden of transport and storage remains an issue. Herein, we report an approach to develop an alternative OCV in the form of a gastro-resistant powder. Heat-killed Vibrio cholerae (VC) was encapsulated with a spray-drying technique at different temperatures. Cellulose acetate phthalate (Aquacoat® CPD) was chosen as the core polymer and the addition of alginate was studied. The microparticles (MPs) produced were characterized by surface morphology, particle size, drug loading, antigenicity and gastro resistance. The MPs obtained were 6 µm in size and had appropriate drug content, ranging from 8.16 to 8.64%. Furthermore, antigenicity was maintained, never dropping below 85%, and enteric properties were achieved for all the formulations. Next, an in vivo study was carried out with Aquacoat® CPD MP prepared at 80 °C with and without alginate. Two different doses were assayed, 30 and 60 mg, and compared to the VC suspension. The evoked immune responses showed that alginate containing MPs, especially at the 30 mg dose, displayed values that were very similar to those of VC. In conclusion, spray-dried alginate VC MPs seem to be a promising step toward a powder-form cholera vaccination.
Collapse
Affiliation(s)
- Marta Pastor
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy , Vitoria-Gasteiz , Spain
| | | | | | | | | |
Collapse
|
9
|
Majumder PP, Sarkar-Roy N, Staats H, Ramamurthy T, Maiti S, Chowdhury G, Whisnant CC, Narayanasamy K, Wagener DK. Genomic correlates of variability in immune response to an oral cholera vaccine. Eur J Hum Genet 2013; 21:1000-6. [PMID: 23249958 PMCID: PMC3746254 DOI: 10.1038/ejhg.2012.278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/23/2012] [Accepted: 11/20/2012] [Indexed: 11/09/2022] Open
Abstract
Cholera is endemic to many countries. Recent major outbreaks of cholera have prompted World Health Organization to recommend oral cholera vaccination as a public-health strategy. Variation in percentage of seroconversion upon cholera vaccination has been recorded across populations. Vaccine-induced responses are influenced by host genetic differences. We have investigated association between single-nucleotide polymorphic (SNP) loci in and around 296 immunologically relevant genes and total anti-lipopolysaccharide (LPS) antibody response to a killed whole-cell vaccine, comprising LPS from multiple strains of Vibrio cholerae. Titers derived from standard vibriocidal assays were also analyzed to gain further insights on validated SNP associations. Vaccination was administered to 1000 individuals drawn from India. Data on two independent random subsets, each comprising ∼500 vaccinees, were used for discovery of genomic associations and validation, respectively. Significant associations of four SNPs and haplotypes in three genes (MARCO, TNFAIP3 and CXCL12) with AR were discovered and validated, of which two in TNFAIP3 and CXCL12 were also significantly associated with immunity (fourfold increase in vibriocidal titers). CXCL12 is a neutrophil and lymphocyte chemoattractant that is upregulated in response to V. cholerae infection. LPS in the vaccine possibly provides signals that mimic those of the live bacterium. TNFAIP3 promotes intestinal epithelial barrier integrity and provides tight junction protein regulation; possible requirements for adequate response to the vaccine. LPS is a potent activator of innate immune responses and a ligand of MARCO. Variants in this gene have been found to be associated with LPS response, but not with high vibriocidal titer level.
Collapse
|
10
|
Kang SS, Yang JS, Kim KW, Yun CH, Holmgren J, Czerkinsky C, Han SH. Anti-bacterial and anti-toxic immunity induced by a killed whole-cell-cholera toxin B subunit cholera vaccine is essential for protection against lethal bacterial infection in mouse pulmonary cholera model. Mucosal Immunol 2013; 6:826-37. [PMID: 23187318 DOI: 10.1038/mi.2012.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lack of appropriate animal model for studying protective immunity has limited vaccine development against cholera. Here, we demonstrate a pulmonary cholera model conferred by intranasal administration of mice with live Vibrio cholerae. The bacterial components, but not cholera toxin, caused lethal and acute pneumonia by inducing massive inflammation. Intranasal immunization with Dukoral, comprising killed whole bacteria and recombinant cholera toxin B subunit (rCTB), developed both mucosal and systemic antibody responses with protection against the lethal challenge. Either rCTB-free Dukoral or rCTB alone partially protected the mice against the challenge. However, reconstitution of rCTB-free Dukoral with rCTB restored full protection. Parenteral immunization with Dukoral evoked strong systemic immunity without induction of mucosal immunity or protection from the challenge. These results suggest that both anti-bacterial and anti-toxic immunity are required for protection against V. cholerae-induced pneumonia, and this animal model is useful for pre-clinical evaluation of candidate cholera vaccines.
Collapse
Affiliation(s)
- S-S Kang
- Laboratory Sciences Division, International Vaccine Institute, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
An approach to a cold chain free oral cholera vaccine: in vitro and in vivo characterization of Vibrio cholerae gastro-resistant microparticles. Int J Pharm 2013; 448:247-58. [DOI: 10.1016/j.ijpharm.2013.02.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
|
12
|
Lipopolysaccharide modifications of a cholera vaccine candidate based on outer membrane vesicles reduce endotoxicity and reveal the major protective antigen. Infect Immun 2013; 81:2379-93. [PMID: 23630951 DOI: 10.1128/iai.01382-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The causative agent of the life-threatening gastrointestinal infectious disease cholera is the Gram-negative, facultative human pathogen Vibrio cholerae. We recently started to investigate the potential of outer membrane vesicles (OMVs) derived from V. cholerae as an alternative approach for a vaccine candidate against cholera and successfully demonstrated the induction of a long-lasting, high-titer, protective immune response upon immunization with OMVs using the mouse model. In this study, we present immunization data using lipopolysaccharide (LPS)-modified OMVs derived from V. cholerae, which allowed us to improve and identify the major protective antigen of the vaccine candidate. Our results indicate that reduction of endotoxicity can be achieved without diminishing the immunogenic potential of the vaccine candidate by genetic modification of lipid A. Although the protective potential of anti-LPS antibodies has been suggested many times, this is the first comprehensive study that uses defined LPS mutants to characterize the LPS-directed immune response of a cholera vaccine candidate in more detail. Our results pinpoint the O antigen to be the essential immunogenic structure and provide a protective mechanism based on inhibition of motility, which prevents a successful colonization. In a detailed analysis using defined antisera, we can demonstrate that only anti-O antigen antibodies, but not antibodies directed against the major flagellar subunit FlaA or the most abundant outer membrane protein, OmpU, are capable of effectively blocking the motility by binding to the sheathed flagellum and provide protection in a passive immunization assay.
Collapse
|
13
|
Fernández S, Año G, Castaño J, Pino Y, Uribarri E, Riverón LA, Cedré B, Valmaseda T, Falero G, Pérez JL, Infante JF, García LG, Solís RL, Sierra G, Talavera A. Evaluation of enteric-coated tablets as a whole cell inactivated vaccine candidate against Vibrio cholerae. Travel Med Infect Dis 2013; 11:103-9. [DOI: 10.1016/j.tmaid.2012.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 10/04/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
14
|
Unterweger D, Kitaoka M, Miyata ST, Bachmann V, Brooks TM, Moloney J, Sosa O, Silva D, Duran-Gonzalez J, Provenzano D, Pukatzki S. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One 2012; 7:e48320. [PMID: 23110230 PMCID: PMC3482179 DOI: 10.1371/journal.pone.0048320] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae – the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.
Collapse
Affiliation(s)
- Daniel Unterweger
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Maya Kitaoka
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah T. Miyata
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Verena Bachmann
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Teresa M. Brooks
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica Moloney
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Oscar Sosa
- Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas, United States of America
| | - David Silva
- Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas, United States of America
| | - Jorge Duran-Gonzalez
- Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas, United States of America
| | - Daniele Provenzano
- Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas, United States of America
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
15
|
Comparison of immune responses to the O-specific polysaccharide and lipopolysaccharide of Vibrio cholerae O1 in Bangladeshi adult patients with cholera. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1712-21. [PMID: 22993410 DOI: 10.1128/cvi.00321-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immunity against Vibrio cholerae O1 is serogroup specific, and serogrouping is defined by the O-specific polysaccharide (OSP) part of lipopolysaccharide (LPS). Despite this, human immune responses to V. cholerae OSP have not previously been characterized. We assessed immune responses against V. cholerae OSP in adults with cholera caused by V. cholerae O1 El Tor serotype Inaba or Ogawa in Dhaka, Bangladesh, using O1 OSP-core-bovine serum albumin (OSPc:BSA) conjugates; responses targeted OSP in these conjugates. Responses of Inaba-infected patients to Inaba OSP and LPS increased significantly in IgG, IgM, and IgA isotypes from the acute to convalescent phases of illness, and the responses correlated well between OSP and LPS (R = 0.86, 0.73, and 0.91, respectively; P < 0.01). Plasma IgG, IgM, and IgA responses to Ogawa OSP and LPS in Ogawa-infected patients also correlated well with each other (R = 0.60, 0.60, and 0.92, respectively; P < 0.01). Plasma IgM responses to Inaba OSP and Ogawa OSP correlated with the respective serogroup-specific vibriocidal antibodies (R = 0.80 and 0.66, respectively; P < 0.001). Addition of either OSPc:BSA or LPS, but not BSA, to vibriocidal assays inhibited vibriocidal responses in a comparable and concentration-dependent manner. Mucosal IgA immune responses to OSP and LPS were also similar. Our study is the first to characterize anti-OSP immune responses in patients with cholera and suggests that responses targeting V. cholerae LPS, including vibriocidal responses that correlate with protection against cholera, predominantly target OSP. Induction of anti-OSP responses may be associated with protection against cholera, and our results may support the development of a vaccine targeting V. cholerae OSP.
Collapse
|
16
|
Paulovičová E, Korcová J, Machová E, Bystrický S. Immunomodulation of T-cell responses withVibrio choleraeO135 capsular polysaccharide and its protein conjugate, novel cholera vaccine study models. ACTA ACUST UNITED AC 2012; 65:422-30. [DOI: 10.1111/j.1574-695x.2012.00957.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 01/05/2012] [Accepted: 03/16/2012] [Indexed: 11/30/2022]
|
17
|
Muse M, Grandjean C, Wade TK, Wade WF. A one dose experimental cholera vaccine. ACTA ACUST UNITED AC 2012; 66:98-115. [DOI: 10.1111/j.1574-695x.2012.00993.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Terri K. Wade
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon; NH; USA
| | - William F. Wade
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon; NH; USA
| |
Collapse
|
18
|
Año G, Esquisabel A, Pastor M, Talavera A, Cedré B, Fernández S, Sifontes S, Aranguren Y, Falero G, García L, Solís RL, Pedraz JL. A new oral vaccine candidate based on the microencapsulation by spray-drying of inactivated Vibrio cholerae. Vaccine 2011; 29:5758-64. [DOI: 10.1016/j.vaccine.2011.05.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 12/31/2022]
|
19
|
Kitaoka M, Miyata ST, Unterweger D, Pukatzki S. Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 2011; 60:397-407. [PMID: 21252269 DOI: 10.1099/jmm.0.023051-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As the causative agent of cholera, the bacterium Vibrio cholerae represents an enormous public health burden, especially in developing countries around the world. Cholera is a self-limiting illness; however, antibiotics are commonly administered as part of the treatment regimen. Here we review the initial identification and subsequent evolution of antibiotic-resistant strains of V. cholerae. Antibiotic resistance mechanisms, including efflux pumps, spontaneous chromosomal mutation, conjugative plasmids, SXT elements and integrons, are also discussed. Numerous multidrug-resistant strains of V. cholerae have been isolated from both clinical and environmental settings, indicating that antibiotic use has to be restricted and alternative methods for treating cholera have to be implemented.
Collapse
Affiliation(s)
- Maya Kitaoka
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah T Miyata
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Unterweger
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Stefan Pukatzki
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Oberli MA, Tamborrini M, Tsai YH, Werz DB, Horlacher T, Adibekian A, Gauss D, Möller HM, Pluschke G, Seeberger PH. Molecular analysis of carbohydrate-antibody interactions: case study using a Bacillus anthracis tetrasaccharide. J Am Chem Soc 2010; 132:10239-41. [PMID: 20614885 DOI: 10.1021/ja104027w] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The process for selecting potent and effective carbohydrate antigens is not well-established. A combination of synthetic glycan microarray screening, surface plasmon resonance analysis, and saturation transfer difference NMR spectroscopy was used to dissect the antibody-binding surface of a carbohydrate antigen, revealing crucial binding elements with atomic-level detail. This analysis takes the first step toward uncovering the rules for structure-based design of carbohydrate antigens.
Collapse
Affiliation(s)
- Matthias A Oberli
- Department of Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, 14476 Potsdam, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ligand identification of carbohydrate-binding proteins employing a biotinylated glycan binding assay and tandem mass spectrometry. Anal Biochem 2010; 406:132-40. [DOI: 10.1016/j.ab.2010.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/22/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022]
|
22
|
Immunomodulative properties of conjugates composed of detoxified lipopolysaccharide and capsular polysaccharide of Vibrio cholerae O135 bound to BSA-protein carrier. Biologia (Bratisl) 2010. [DOI: 10.2478/s11756-010-0092-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Wade TK, Wade WF. Variable gene family usage of protective and non-protective anti-Vibrio cholerae O1 LPS antibody heavy chains. Microbiol Immunol 2009; 52:611-20. [PMID: 19120975 DOI: 10.1111/j.1348-0421.2008.00078.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vibrio cholerae causes cholera, an enteric disease of humans that is a worldwide problem. The O1 serogroup of Vibrio cholerae contains two predominant serotypes (Inaba and Ogawa) of LPS, a proven protective antigen for humans and experimental animals. We generated B-cell hybridomas from mice immunized with either: (i) two doses of purified Inaba LPS; (ii) two doses of an Inaba hexasaccharide conjugate (terminal six perosamine bound to a protein carrier), (iii) four doses of purified Inaba LPS; or (iv) a low dose of purified Inaba LPS followed by a booster with the Inaba conjugate. We showed previously that the first and third immunization protocols induce vibriocidal antibodies, as does the fourth; the second protocol induces antibodies that bind Inaba and Ogawa LPS but are not vibriocidal. Anti-LPS mAbs derived from hybridomas resulting from each immunization protocol were characterized for binding to Inaba and Ogawa LPS, their vibriocidal or protective capacity, and the variable heavy chain family they expressed. LPS immunogens selected different LPS-specific B cells expressing six different Vh chain families. Protective and non-protective mAbs could express variable regions from the same family. One mAb was specific for Inaba LPS, the other mAbs were cross-reactive with both LPS serotypes. Sequence comparison suggests that the pairing of a specific light chain, somatic mutation, or the specific VDJ recombination can modulate the protective capacity of mAbs that express a common variable heavy chain family member.
Collapse
Affiliation(s)
- Terri K Wade
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | |
Collapse
|
24
|
Grandjean C, Boutonnier A, Dassy B, Fournier JM, Mulard LA. Investigation towards bivalent chemically defined glycoconjugate immunogens prepared from acid-detoxified lipopolysaccharide of Vibrio cholerae O1, serotype Inaba. Glycoconj J 2008; 26:41-55. [PMID: 18648931 DOI: 10.1007/s10719-008-9160-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/04/2008] [Accepted: 06/09/2008] [Indexed: 11/24/2022]
Abstract
A free amino group present on the acid-detoxified lipopolysaccharide (pmLPS) of V. cholerae O1 serotype Inaba was investigated for site-specific conjugation. Chemoselective pmLPS biotinylation afforded the corresponding mono-functionalized derivative, which retained antigenicity. Thus, pmLPS was bound to carrier proteins using thioether conjugation chemistry. Induction of an anti-LPS antibody (Ab) response in BALB/c mice was observed for all conjugates. Interestingly, the sera had vibriocidal activity against both Ogawa and Inaba strains opening the way to a possible bivalent vaccine. However, the level of this Ab response was strongly affected by both the nature of the linker and of the carrier. Furthermore, no switch from IgM to IgG, i.e. from a T cell-independent to a T cell-dependent immune response was detected, a result tentatively explained by the possible presence of free polysaccharide in the formulation. Taken together, these results encourage further investigation towards the development of potent pmLPS-based neoglycoconjugate immunogens, fully aware of the challenge faced in the development of a cholera vaccine that will provide efficient serogroup coverage.
Collapse
Affiliation(s)
- Cyrille Grandjean
- Unité de Chimie Organique, URA CNRS 2128, Institut Pasteur, 25-28, Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
25
|
Dharmasena MN, Jewell DA, Taylor RK. Development of peptide mimics of a protective epitope of Vibrio cholerae Ogawa O-antigen and investigation of the structural basis of peptide mimicry. J Biol Chem 2007; 282:33805-33816. [PMID: 17881351 DOI: 10.1074/jbc.m707314200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an alternative approach toward the development of a cholera vaccine, the potential of peptide mimics of Vibrio cholerae lipopolysaccharide (LPS) to elicit cross-reactive immune responses against LPS was investigated. Two closely related protective monoclonal antibodies, S-20-4 and A-20-6, which are specific for Ogawa O-antigen (O-specific polysaccharide; O-SP) of V. cholerae O1, were used as the target antibodies (Abs) to pan phage display libraries under different elution conditions. Six phage clones identified from S-20-4 panning showed significant binding to both S-20-4 and A-20-6. Thus, it is likely that these phage-displayed peptides mimic an important conformational epitope of Ogawa antigens and are not simply functionally recognized by S-20-4. Each of the six phage clones that could bind to both monoclonal antibodies also competed with LPS for binding to S-20-4, suggesting that the peptides bind close to the paratope of the Ab. In order to predict how these peptide mimics interact with S-20-4 compared with its carbohydrate counterpart, one peptide mimic, 4P-8, which is one of the highest affinity binders and shares motifs with several other peptide mimics, was selected for further studies using computer modeling methods and site-directed mutagenesis. These studies suggest that 4P-8 is recognized as a hairpin structure that mimics some O-SP interactions with S-20-4 and also makes unique ligand interactions with S-20-4. In addition, 4P-8-KLH was able to elicit anti-LPS Abs in mice, but the immune response was not vibriocidal or protective. However, boosting with 4P-8-KLH after immunizing with LPS prolonged the LPS-reactive IgG and IgM Ab responses as well as vibriocidal titers and provided a much greater degree of protection than priming with LPS alone.
Collapse
Affiliation(s)
- Madushini N Dharmasena
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, 03755
| | - David A Jewell
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Ronald K Taylor
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, 03755.
| |
Collapse
|
26
|
Ahmed F, André-Leroux G, Haouz A, Boutonnier A, Delepierre M, Qadri F, Nato F, Fournier JM, Alzari PM. Crystal structure of a monoclonal antibody directed against an antigenic determinant common to Ogawa and Inaba serotypes of Vibrio cholerae O1. Proteins 2007; 70:284-8. [PMID: 17876834 DOI: 10.1002/prot.21609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Firoz Ahmed
- Institut Pasteur and CNRS URA 2185, 25/28 rue du Dr. Roux, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|