1
|
Yu ZH, Zhang YP, Lan XG, Wang YN, Guo RR, Li K, Gao L, Qi XL, Cui HY, Wang XM, Gao YL, Liu CJ. Differences in Pathogenicity and Vaccine Resistance Discovered between Two Epidemic Strains of Marek's Disease Virus in China. Viruses 2023; 15:v15040945. [PMID: 37112925 PMCID: PMC10145439 DOI: 10.3390/v15040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Despite highly effective vaccines, Marek's disease (MD) causes great economic loss to the poultry industry annually, largely due to the continuous emergence of new MD virus (MDV) strains. To explore the pathogenic characteristics of newly emerged MDV strains, we selected two strains (AH/1807 and DH/18) with clinically different pathotypes. We studied each strain's infection process and pathogenicity and observed differences in immunosuppression and vaccine resistance. Specific pathogen-free chickens, unvaccinated or vaccinated with CVI988, were challenged with AH/1807 or DH/18. Both infections induced MD damage; however, differences were observed in terms of mortality (AH/1807: 77.8%, DH/18: 50%) and tumor rates (AH/1807: 50%, DH/18: 33.3%). The immune protection indices of the vaccine also differed (AH/1807: 94.1, DH/18: 61.1). Additionally, while both strains caused interferon-β and interferon-γ expression to decline, DH/18 infection caused stronger immunosuppression than AH/1807. This inhibition persisted even after vaccination, leading to increased replication of DH/18 that ultimately broke through vaccine immune protection. These results indicate that both strains have different characteristics, and that strains such as DH/18, which cause weaker pathogenic damage but can break through vaccine immune protection, require further attention. Our findings increase the understanding of the differences between epidemic strains and factors underlying MD vaccination failure in China.
Collapse
Affiliation(s)
- Zheng-Hao Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yan-Ping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xing-Ge Lan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ya-Nan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rong-Rong Guo
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiao-Le Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hong-Yu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiao-Mei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yu-Long Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chang-Jun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
2
|
Fujisawa S, Murata S, Isezaki M, Win SY, Sato T, Oishi E, Taneno A, Maekawa N, Okagawa T, Konnai S, Ohashi K. Suppressive modulation of host immune responses by Dermanyssus gallinae infestation. Poult Sci 2023; 102:102532. [PMID: 36796246 PMCID: PMC9958498 DOI: 10.1016/j.psj.2023.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The poultry red mite (Dermanyssus gallinae, PRM) is a blood-sucking ectoparasite in chickens and is one of the most serious threats to poultry farms. Mass infestation with PRMs causes various health problems in chickens, resulting in significant productivity reduction in the poultry industry. Infestation with hematophagous ectoparasites, such as ticks, induces host inflammatory and hemostatic reactions. On the other hand, several studies have reported that hematophagous ectoparasites secrete various immunosuppressants from their saliva to suppress host immune responses to maintain blood sucking. Here, we examined the expression of cytokines in peripheral blood cells to investigate whether PRM infestation affects immunological states in chickens. In PRM-infested chickens, anti-inflammatory cytokines, IL-10 and TGF-β1, and immune checkpoint molecules, CTLA-4 and PD-1, were highly expressed compared to noninfested chickens. PRM-derived soluble mite extracts (SME) upregulated the gene expression of IL-10 in peripheral blood cells and HD-11 chicken macrophages. In addition, SME suppressed the expression of interferons and inflammatory cytokines in HD-11 chicken macrophages. Moreover, SME induces the polarization of macrophages into anti-inflammatory phenotypes. Collectively, PRM infestation could affect host immune responses, especially suppress the inflammatory responses. Further studies are warranted to fully understand the influence of PRM infestation on host immunity.
Collapse
Affiliation(s)
- Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shwe Yee Win
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | | | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan,International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Matsuyama-Kato A, Shojadoost B, Boodhoo N, Raj S, Alizadeh M, Fazel F, Fletcher C, Zheng J, Gupta B, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Activated Chicken Gamma Delta T Cells Are Involved in Protective Immunity against Marek's Disease. Viruses 2023; 15:v15020285. [PMID: 36851499 PMCID: PMC9962238 DOI: 10.3390/v15020285] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Gamma delta (γδ) T cells play a significant role in the prevention of viral infection and tumor surveillance in mammals. Although the involvement of γδ T cells in Marek's disease virus (MDV) infection has been suggested, their detailed contribution to immunity against MDV or the progression of Marek's disease (MD) remains unknown. In the current study, T cell receptor (TCR)γδ-activated peripheral blood mononuclear cells (PBMCs) were infused into recipient chickens and their effects were examined in the context of tumor formation by MDV and immunity against MDV. We demonstrated that the adoptive transfer of TCRγδ-activated PBMCs reduced virus replication in the lungs and tumor incidence in MDV-challenged chickens. Infusion of TCRγδ-activated PBMCs induced IFN-γ-producing γδ T cells at 10 days post-infection (dpi), and degranulation activity in circulating γδ T cell and CD8α+ γδ T cells at 10 and 21 dpi in MDV-challenged chickens. Additionally, the upregulation of IFN-γ and granzyme A gene expression at 10 dpi was significant in the spleen of the TCRγδ-activated PBMCs-infused and MDV-challenged group compared to the control group. Taken together, our results revealed that TCRγδ stimulation promotes the effector function of chicken γδ T cells, and these effector γδ T cells may be involved in protection against MD.
Collapse
Affiliation(s)
- Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bahram Shojadoost
- Ceva Animal Health Inc., Research Park Centre, Guelph, ON N1G 4T2, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Charlotte Fletcher
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jiayu Zheng
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bhavya Gupta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Brandon L. Plattner
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54641); Fax: +1-519-824-5930
| |
Collapse
|
4
|
Matsuyama-Kato A, Iseki H, Boodhoo N, Bavananthasivam J, Alqazlan N, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Phenotypic characterization of gamma delta (γδ) T cells in chickens infected with or vaccinated against Marek's disease virus. Virology 2022; 568:115-125. [DOI: 10.1016/j.virol.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
|
5
|
Hao X, Li S, Li J, Yang Y, Qin A, Shang S. An Anti-Tumor Vaccine Against Marek's Disease Virus Induces Differential Activation and Memory Response of γδ T Cells and CD8 T Cells in Chickens. Front Immunol 2021; 12:645426. [PMID: 33659011 PMCID: PMC7917234 DOI: 10.3389/fimmu.2021.645426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. The most efficacious vaccine, CVI988/Rispens (CVI988), against MD has been used for several decades. However, the mechanisms leading to protective immunity following vaccination are not fully understood. In this study, employing multi-parameter flow cytometry, we performed a comprehensive analysis of T cell responses in CVI988-vaccinated chickens. CVI988 vaccination induced significant expansion of γδ T cells and CD8α+ T cells but not CD4+ T cells in spleen, lung and blood at early time-points. The expansion of these cells was CVI988-specific as infection with very virulent MDV RB1B did not elicit expansion of either γδ or CD8α+ T cells. Phenotypic analysis showed that CVI988 vaccination elicited preferential proliferation of CD8α+ γδ T cells and CD8αα co-receptor expression was upregulated on γδ T cells and CD8α+ T cells after immunization. Additionally, cell sorting and quantitative RT-PCR showed that CVI988 vaccination activated γδ T cells and CD8α+ T cells which exhibited differential expression of cytotoxic and T cell-related cytokines. Lastly, secondary immunization with CVI988 induced the expansion of CD8+ T cells but not γδ T cells at higher magnitude, compared to primary immunization, suggesting CVI988 did induce memory CD8+ T cells but not γδ T cells in chickens. Our results, for the first time, reveal a potential role of γδ T cells in CVI988-induced immune protection and provide new insights into the mechanism of immune protection against oncogenic MDV.
Collapse
Affiliation(s)
- Xiaoli Hao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiaqi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Aijian Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China.,Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Yang Y, Dong M, Hao X, Qin A, Shang S. Revisiting cellular immune response to oncogenic Marek's disease virus: the rising of avian T-cell immunity. Cell Mol Life Sci 2020; 77:3103-3116. [PMID: 32080753 PMCID: PMC7391395 DOI: 10.1007/s00018-020-03477-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. Although Marek's disease (MD) is well controlled by current vaccines, the evolution of MDV field viruses towards increasing virulence is concerning as a better vaccine to combat very virulent plus MDV is still lacking. Our understanding of molecular and cellular immunity to MDV and its immunopathogenesis has significantly improved, but those findings about cellular immunity to MDV are largely out-of-date, hampering the development of more effective vaccines against MD. T-cell-mediated cellular immunity was thought to be of paramount importance against MDV. However, MDV also infects macrophages, B cells and T cells, leading to immunosuppression and T-cell lymphoma. Additionally, there is limited information about how uninfected immune cells respond to MDV infection or vaccination, specifically, the mechanisms by which T cells are activated and recognize MDV antigens and how the function and properties of activated T cells correlate with immune protection against MDV or MD tumor. The current review revisits the roles of each immune cell subset and its effector mechanisms in the host immune response to MDV infection or vaccination from the point of view of comparative immunology. We particularly emphasize areas of research requiring further investigation and provide useful information for rational design and development of novel MDV vaccines.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Maoli Dong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoli Hao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Aijian Qin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China.
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Shaobin Shang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China.
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Hajam IA, Kirthika P, Hewawaduge C, Jawalagatti V, Park S, Senevirathne A, Lee JH. Oral immunization with an attenuated Salmonella Gallinarum encoding the H9N2 haemagglutinin and M2 ectodomain induces protective immune responses against H9N2 infection in chickens. Avian Pathol 2020; 49:486-495. [PMID: 32483989 DOI: 10.1080/03079457.2020.1775782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H9N2, a low pathogenic avian influenza virus, causes significant economic losses in the poultry industry worldwide. Herein, we describe the construction of an attenuated Salmonella Gallinarum (SG) strain for expression and delivery of H9N2 haemagglutinin (HA) 1 (SG-HA1), HA2 (SG-HA2) and/or the conserved matrix protein 2 ectodomain (SG-M2e). We demonstrated that recombinant SG strains expressing HA1, HA2 and M2e antigens were immunogenic and safe in a chicken model. Chickens (n = 8) were vaccinated once orally with SG alone, SG-HA1, SG-HA2, SG-M2e, or mixture of SG-HA1, SG-HA2 and SG-M2e, or vaccinated once intramuscularly with an oil-adjuvant inactivated H9N2 vaccine. Our results demonstrated that vaccination with SG mutants encoding influenza antigens, administered individually or as a mixture, elicited significantly (P < 0.05) greater antigen-specific humoral and cell-mediated immune responses in chickens compared with those vaccinated with SG alone. A conventional H9N2 vaccine induced significantly (P < 0.05) greater HA1 and HA2 antibody responses than SG-based H9N2 vaccine strains, but significantly (P < 0.05) less robust M2e-specific responses. Upon challenge with the virulent H9N2 virus on day 28 post-vaccination, chickens vaccinated with either the SG-based H9N2 or conventional H9N2 vaccines exhibited comparable lung inflammation and viral loads, although both were significantly lower (P < 0.05) than in the group vaccinated with SG alone. In conclusion, our results showed that SG-based vaccination stimulated efficient immune responses against virulent H9N2. Further studies are needed to fully develop this approach as a preventive strategy for low pathogenic avian influenza viruses affecting poultry. RESEARCH HIGHLIGHTS S. gallinarum expressing HA1, HA2 and M2e antigens are immunogenic and safe. Salmonella has dual function of acting as a delivery system and as a natural adjuvant. Vaccine constructs elicit specific humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | | | - SungWoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
8
|
Adjuvant Effects of Platycodin D on Immune Responses to Infectious Bronchitis Vaccine in Chickens. J Poult Sci 2020; 57:160-167. [PMID: 32461731 PMCID: PMC7248007 DOI: 10.2141/jpsa.0180089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adjuvants are common vaccine components. Novel adjuvants may improve the protective immunity conferred by vaccines against poultry diseases. Here, a less-hemolytic saponin, platycodin D (PD), isolated from the root of Platycodon grandiflorum was investigated as a potential alternative adjuvant. PD was tested as an adjuvant in the infectious bronchitis (IB) vaccine, because the existing IB vaccine has often failed to induce effective immune responses. The adjuvant activity of PD in conjunction with IB vaccine was evaluated in this study. Compared to control treatment, PD treatment significantly increased the proliferation of chicken peripheral blood mononuclear cells, concentration of interferon-γ in culture supernatants, and anti-IB antibody titer. In chickens pre-challenged with the Mass 41 infectious bronchitis virus (IBV), PD administration resulted in fewer and less severe clinical signs, lower mortality rate, and higher protection compared to control treatment. Histopathological examination showed that the lungs and kidneys of PD-treated chickens displayed fewer pathological lesions than those of control chickens. Our results also demonstrated that this new vaccine adjuvant improved chicken humoral and cellular immune responses without any side effects. Hence, our findings suggest that PD might serve as an effective adjuvant in IBV vaccines.
Collapse
|
9
|
Effect of Cordyceps militaris Hot Water Extract on Immunomodulation-associated Gene Expression in Broilers, Gallus gallus. J Poult Sci 2019; 56:128-139. [PMID: 32055207 PMCID: PMC7005407 DOI: 10.2141/jpsa.0180067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cordyceps militaris is a well-known Chinese medicinal fungus that has been used as a nutraceutical food in several Asian countries. Cordycepin (3′-deoxyadenosine), a secondary metabolite produced from Cordyceps militaris, has been demonstrated to exert a wide spectrum of pharmacological activities, such as anti-microbial and antitumor activities. However, the effect of cordycepin on immunomodulation in broilers is poorly investigated. In the current study, we investigated the effect of cordycepin (9.69, 19.38, and 38.76 mg) from Cordyceps militaris hot water extract (CMHW) on growth performance and immunocompetence in broilers. Results showed that CMHW significantly decreased inducible nitric oxide synthase (iNOS) mRNA levels in the bursa of Fabricius after 4 weeks of feeding (P<0.05). CMHW treatment reduced cyclooxygenase-2 (COX-2) mRNA levels in the spleen and bursa of Fabricius after 4 weeks of feeding (P<0.05). Supplementation of CMHW for 3 days after vaccination reduced iNOS mRNA level in the spleen of 14 and 28 day-old broilers (P<0.05). Prior to vaccination, CMHW pretreatment significantly down-regulated COX-2 mRNA levels in the spleen and bursa of Fabricius of 14-day-old broilers (P<0.05). Furthermore, CMHW significantly reduced lipopolysaccharide (LPS)-induced iNOS and COX-2 mRNA levels in the spleen and bursa of Fabricius (P<0.05). CMHW treatment attenuated LPS-induced IFN-γ expression in the spleen and bursa of Fabricius, whereas CMHW induced IL-4 expression in these organs in response to LPS challenge (P<0.05). Taken together, these observations demonstrate that CMHW exerts an immunomodulatory role in broilers. CMHW is a potential novel feed additive with applications in inflammation-related diseases and bacterial infection in broilers.
Collapse
|
10
|
Co-expulsion of Ascaridia galli and Heterakis gallinarum by chickens. Int J Parasitol 2018; 48:1003-1016. [PMID: 30240707 DOI: 10.1016/j.ijpara.2018.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023]
Abstract
Worm expulsion is known to occur in mammalian hosts exposed to mono-species helminth infections, whilst this phenomenon is poorly described in avian hosts. Mono-species infections, however, are rather rare under natural circumstances. Therefore, we quantified the extent and duration of worm expulsion by chickens experimentally infected with both Ascaridia galli and Heterakis gallinarum, and investigated the accompanying humoral and cell-mediated host immune responses in association with population dynamics of the worms. Results demonstrated the strong co-expulsion of the two ascarid species in three phases. The expulsion patterns were characterized by non-linear alterations separated by species-specific time thresholds. Ascaridia galli burden decreased at a daily expulsion rate (e) of 4.3 worms up to a threshold of 30.5 days p.i., followed by a much lower second expulsion rate (e = 0.46), which resulted in almost, but not entirely, complete expulsion. Heterakis gallinarum was able to induce reinfection within the experimental period (9 weeks). First generation H. gallinarum worms were expelled at a daily rate of e = 0.8 worms until 36.4 days p.i., and thereafter almost no expulsion occurred. Data on both humoral and tissue-specific cellular immune responses collectively indicated that antibody production in chickens with multispecies ascarid infections is triggered by Th2 polarisation. Local Th2 immune responses and mucin-regulating genes are associated with the regulation of worm expulsion. In conclusion, the chicken host is able to eliminate the vast majority of both A. galli and H. gallinarum in three distinct phases. Worm expulsion was strongly associated with the developmental stages of the worms, where the elimination of juvenile stages was specifically targeted. A very small percentage of worms was nevertheless able to survive, reach maturity and induce reinfection if given sufficient time to complete their life cycle. Both humoral and local immune responses were associated with worm expulsion.
Collapse
|
11
|
Bai SP, Huang Y, Luo YH, Wang LL, Ding XM, Wang JP, Zeng QF, Zhang KY. Effect of dietary nonphytate phosphorus content on ileal lymphocyte subpopulations and cytokine expression in the cecal tonsils and spleen of laying hens that were or were not orally inoculated withSalmonellaTyphimurium. Am J Vet Res 2015. [DOI: 10.2460/ajvr.76.8.710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Bai SP, Huang Y, Luo YH, Wang LL, Ding XM, Wang JP, Zeng QF, Zhang KY. Alteration in lymphocytes responses, cytokine and chemokine profiles in laying hens infected with Salmonella Typhimurium. Vet Immunol Immunopathol 2014; 160:235-43. [PMID: 24986046 DOI: 10.1016/j.vetimm.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 11/24/2022]
Abstract
Salmonella Typhimurium has been reported to contaminate egg production across the world, but the exact nature of the immune mechanisms protective against Salmonella infection in laying hens has not been characterized at the molecular level. The experiment was conducted to determine Salmonella colonization and lymphocytes subpopulation in the ileum and spleen, and the mRNA expression of pro-inflammatory cytokines [interleukin (IL)-1β and IL-6], chemokine IL-8, and T helper (Th)1/Th2 cytokines [Interferon (IFN)-γ, IL-12 and IL-18; IL-4 and IL-10 respectively] in the cecal tonsil and spleen of Salmonella challenged hens. Forty Salmonella-free laying hens were challenged orally with Salmonella Typhimurium or phosphate-buffered saline (PBS; control). The Salmonella challenged or non-challenged hens (n=10) were sacrificed at 2 and 7 days post-infection (DPI). The lymphocyte subpopulation was determined via flow cytometric analysis in the ileum and spleen. The cecal tonsil and spleen samples were collected for mRNA expression through quantitative-RT-PCR. The Salmonella counts were higher (P<0.05) in the ileum than that in the spleen at 2 and 7DPI, and were higher (P<0.05) at 7DPI than that at 2DPI in the spleen. Salmonella challenge increased (P<0.05) ileal CD4+ and CD8α+ cells ratios at 2 and 7DPI, whereas it increased (P<0.05) splenic CD8α+ cells ratio only at 7DPI. The magnitude of increase in ileal CD8α+ cells ratio was higher (P<0.05) than that in CD4+ cells ratio. The mRNA expression of IL-1β, IL-6, IL-8, IFN-γ, IL-12 and IL-18 were significantly up-regulated in the cecal tonsil of Salmonella challenged hens, and the magnitude of increases in IL-6, IL-8 and IL-12 were significantly higher at 7DPI than that at 2DPI. However, Salmonella challenge increased (P<0.05) the mRNA expression of IL-1β, IL-10 and IL-18 at 2 and 7DPI, and IL-8 and IFN-γ mRNA only at 7DPI in the spleen. These findings demonstrated that there appeared the induction of cellular immune responses, and a Th1-cytokines reaction in the intestine and spleen of laying hens infected with Salmonella Typhimurium.
Collapse
Affiliation(s)
- Shi P Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yu H Luo
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Lei L Wang
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xue M Ding
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Jian P Wang
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Qiu F Zeng
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Ke Y Zhang
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, PR China.
| |
Collapse
|
13
|
Kapczynski DR, Jiang HJ, Kogut MH. Characterization of cytokine expression induced by avian influenza virus infection with real-time RT-PCR. Methods Mol Biol 2014; 1161:217-33. [PMID: 24899432 DOI: 10.1007/978-1-4939-0758-8_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Knowledge of how birds react to infection from avian influenza virus is critical to understanding disease pathogenesis and host response. The use of real-time (R) RT-PCR to measure innate immunity, including cytokine and interferon gene expression, has become a standard technique employed by avian immunologists interested in examining these responses. This technique utilizes nucleotide primers and fluorescent reporter molecules to measure amplification of the gene of interest. The use of RRT-PCR negates the need for northern blot analysis or DNA sequencing. It is simple, specific and sensitive for the gene of interest. However, it is dependent on knowing the target sequence prior to testing so that the optimal primers can be designed. The recent publication of genomic sequences of Gallus gallus, Meleagris gallopavo, and Anas platyrhynchos species makes it possible to measure cytokine expression in chicken, turkey, and duck species, respectively. Although these tests do not measure functionally expressed protein, the lack of antibodies to identify and quantify avian cytokines from different avian species makes this technique critical to any characterization of innate immune responses through cytokine and interferon activation or repression.
Collapse
Affiliation(s)
- Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, US Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA,
| | | | | |
Collapse
|
14
|
Haq K, Schat KA, Sharif S. Immunity to Marek's disease: where are we now? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:439-446. [PMID: 23588041 DOI: 10.1016/j.dci.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
Marek's disease (MD) in chickens was first described over a century ago and the causative agent of this disease, Marek's disease virus (MDV), was first identified in the 1960's. There has been extensive and intensive research over the last few decades to elucidate the underlying mechanisms of the interactions between the virus and its host. We have also made considerable progress in terms of developing efficacious vaccines against MD. The advent of the chicken genetic map and genome sequence as well as development of approaches for chicken transcriptome and proteome analyses, have greatly facilitated the process of illuminating underlying genetic mechanisms of resistance and susceptibility to disease. However, there are still major gaps in our understanding of MDV pathogenesis and mechanisms of host immunity to the virus and to the neoplastic events caused by this virus. Importantly, vaccines that can disrupt virus transmission in the field are lacking. The current review explores mechanisms of host immunity against Marek's disease and makes an attempt to identify the areas that are lacking in this field.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | | | | |
Collapse
|
15
|
Kuribayashi S, Sakoda Y, Kawasaki T, Tanaka T, Yamamoto N, Okamatsu M, Isoda N, Tsuda Y, Sunden Y, Umemura T, Nakajima N, Hasegawa H, Kida H. Excessive cytokine response to rapid proliferation of highly pathogenic avian influenza viruses leads to fatal systemic capillary leakage in chickens. PLoS One 2013; 8:e68375. [PMID: 23874602 PMCID: PMC3706397 DOI: 10.1371/journal.pone.0068375] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause lethal infection in chickens. Severe cases of HPAIV infections have been also reported in mammals, including humans. In both mammals and birds, the relationship between host cytokine response to the infection with HPAIVs and lethal outcome has not been well understood. In the present study, the highly pathogenic avian influenza viruses A/turkey/Italy/4580/1999 (H7N1) (Ty/Italy) and A/chicken/Netherlands/2586/2003 (H7N7) (Ck/NL) and the low pathogenic avian influenza virus (LPAIV) A/chicken/Ibaraki/1/2005 (H5N2) (Ck/Ibaraki) were intranasally inoculated into chickens. Ty/Italy replicated more extensively than Ck/NL in systemic tissues of the chickens, especially in the brain, and induced excessive mRNA expression of inflammatory and antiviral cytokines (IFN-γ, IL-1β, IL-6, and IFN-α) in proportion to its proliferation. Using in situ hybridization, IL-6 mRNA was detected mainly in microglial nodules in the brain of the chickens infected with Ty/Italy. Capillary leakage assessed by Evans blue staining was observed in multiple organs, especially in the brains of the chickens infected with Ty/Italy, and was not observed in those infected with Ck/NL. In contrast, LPAIV caused only local infection in the chickens, with neither apparent cytokine expression nor capillary leakage in any tissue of the chickens. The present results indicate that an excessive cytokine response is induced by rapid and extensive proliferation of HPAIV and causes fatal multiple organ failure in chickens.
Collapse
Affiliation(s)
- Saya Kuribayashi
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Kawasaki
- Research Office Concerning the Health of Human and Birds, Abashiri, Japan
| | - Tomohisa Tanaka
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Yamamoto
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimi Tsuda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Sunden
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Umemura
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
16
|
Expression pattern of genes of RLR-mediated antiviral pathway in different-breed chicken response to Marek's disease virus infection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:419256. [PMID: 23710447 PMCID: PMC3654640 DOI: 10.1155/2013/419256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/03/2013] [Indexed: 12/24/2022]
Abstract
It has been known that the chicken's resistance to disease was affected by chicken's genetic background. And RLR-mediated antiviral pathway plays an important role in detection of viral RNA. However, little is known about the interaction of genetic background with RLR-mediated antiviral pathway in chicken against MDV infection. In this study, we adopted economic line-AA broilers and native Erlang mountainous chickens for being infected with MDV. Upon infection with MDV, the expression of MDA-5 was upregulated in two-breed chickens at 4, 7, and 21 d.p.i. It is indicated that MDA-5 might be involved in detecting MDV in chicken. Interestingly, the expression of IRF-3 and IFN-β genes was decreased in spleen and thymus of broilers at 21 d.p.i, but it was upregulated in immune tissues of Erlang mountainous chickens. And the genome load of MDV in spleen of broiler is significantly higher than that in Erlang mountainous chickens. Meanwhile, we observed that the death of broiler mainly also occurred in this phase. Collectively, these present results demonstrated that the expression patters of IRF-3 and IFN-β genes in chicken against MDV infection might be affected by the genetic background which sequently influence the resistance of chicken response to MDV.
Collapse
|
17
|
Chien KY, Blackburn K, Liu HC, Goshe MB. Proteomic and phosphoproteomic analysis of chicken embryo fibroblasts infected with cell culture-attenuated and vaccine strains of Marek's disease virus. J Proteome Res 2012; 11:5663-77. [PMID: 23106611 DOI: 10.1021/pr300471y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccination is an effective strategy to reduce the loss of chickens in the poultry industry caused by Marek's Disease (MD), an avian lymphoproliferative disease. The vaccines currently used are from attenuated serotype 1 Marek's disease virus (MDV) or naturally nononcogenic MDV strains. To prepare for future immunity breaks, functional genomic and proteomic studies have been used to better understand the underlying mechanisms of MDV pathogenicity and the effects induced by the vaccine viruses. In this study, a combined approach of quantitative GeLC-MSE and qualitative ERLIC/IMAC/LC-MS/MS analysis were used to identify abundance changes of proteins and the variations of phosphorylation status resulting from the perturbations due to infection with an attenuated oncogenic virus strain (Md11/75C) and several nononcogenic virus strains (CVI988, FC126 and 301B) in vitro. Using this combined approach, several signal transduction pathways mapped by the identified proteins were found to be altered at both the level of protein abundance and phosphorylation. On the basis of this study, a kinase-dependent pathway to regulate phosphorylation of 4E-BP1 to modulate assembly of the protein translation initiation complex was revealed. The differences of 4E-BP1 phosphorylation patterns as well as the measured abundance changes among several other proteins that regulate host transcriptional and translational activities across the virus strains used in this study provide new insight for future functional and biochemical characterization of specific proteins involved in MDV pathogenesis.
Collapse
Affiliation(s)
- Ko-yi Chien
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh North Carolina 27695, United States
| | | | | | | |
Collapse
|
18
|
Gimeno IM, Cortes AL, Witter RL, Pandiri AR. Optimization of the Protocols for Double Vaccination Against Marek's Disease by Using Commercially Available Vaccines: Evaluation of Protection, Vaccine Replication, and Activation of T Cells. Avian Dis 2012; 56:295-305. [DOI: 10.1637/9930-091311-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
He H, Genovese KJ, Swaggerty CL, MacKinnon KM, Kogut MH. Co-stimulation with TLR3 and TLR21 ligands synergistically up-regulates Th1-cytokine IFN-γ and regulatory cytokine IL-10 expression in chicken monocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:756-760. [PMID: 22120532 DOI: 10.1016/j.dci.2011.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 05/31/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors of the innate immune system for various conserved pathogen-associated molecular motifs. Chicken TLR3 and TLR21 (avian equivalent to mammalian TLR9) recognize poly I:C (double-stranded RNA) and CpG-ODN (a CpG-motif containing oligodeoxydinucleotide), respectively. Interaction between TLR3 and TLR21 agonists poly I:C and CpG-ODN has been reported to synergize in expression of proinflammatory cytokines and chemokines and the production of nitric oxide in chicken monocytes. However, the interaction between poly I:C and CpG-ODN on the expression of interferons (IFNs) and Th1/Th2 cytokines remains unknown. The objective of the present study was to investigate the effect of the interaction between poly I:C and CpG-ODN on the mRNA expression levels of IFN-α and IFN-β, Th1 cytokines IFN-γ and IL-12, Th2 cytokine IL-4, and regulatory IL-10 in chicken monocytes. When stimulated with either agonist alone, CpG-ODN significantly up-regulated the expression of INF-γ, IL-10, and IL-12p40, but not IFN-α and IFN-β; whereas poly I:C induced the expression of INF-γ, IFN-α, IFN-β, and IL-10; but not IL-12p40. However, stimulation with a combinatory CpG-ODN and poly I:C further synergistically increased the expression of IFN-γ and IL-10 mRNA. Our results provide strong evidence supporting the critical role of TLR3 and TLR21 in avian innate immunity against both viral and bacterial infections; and the synergistic interaction between the TLR3 and TLR21 pathways produces a stronger Th1-biased immune response in chicken monocytes. Our result also suggest a potential use of poly I:C and CpG-ODN together as a more efficient adjuvant for poultry vaccine development.
Collapse
Affiliation(s)
- Haiqi He
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA.
| | | | | | | | | |
Collapse
|
20
|
Totani M, Yoshii K, Kariwa H, Takashima I. Glycosylation of the Envelope Protein of West Nile Virus Affects Its Replication in Chicks. Avian Dis 2011; 55:561-8. [DOI: 10.1637/9743-032811-reg.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Haq K, Elawadli I, Parvizi P, Mallick AI, Behboudi S, Sharif S. Interferon-γ influences immunity elicited by vaccines against very virulent Marek’s disease virus. Antiviral Res 2011; 90:218-26. [DOI: 10.1016/j.antiviral.2011.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/28/2011] [Accepted: 04/04/2011] [Indexed: 12/16/2022]
|
22
|
Abstract
It is more than a century since Marek's disease (MD) was first reported in chickens and since then there have been concerted efforts to better understand this disease, its causative agent and various approaches for control of this disease. Recently, there have been several outbreaks of the disease in various regions, due to the evolving nature of MD virus (MDV), which necessitates the implementation of improved prophylactic approaches. It is therefore essential to better understand the interactions between chickens and the virus. The chicken immune system is directly involved in controlling the entry and the spread of the virus. It employs two distinct but interrelated mechanisms to tackle viral invasion. Innate defense mechanisms comprise secretion of soluble factors as well as cells such as macrophages and natural killer cells as the first line of defense. These innate responses provide the adaptive arm of the immune system including antibody- and cell-mediated immune responses to be tailored more specifically against MDV. In addition to the immune system, genetic and epigenetic mechanisms contribute to the outcome of MDV infection in chickens. This review discusses our current understanding of immune responses elicited against MDV and genetic factors that contribute to the nature of the response.
Collapse
|
23
|
Gimeno IM, Cortes AL. Chronological study of cytokine transcription in the spleen and lung of chickens after vaccination with serotype 1 Marek's disease vaccines. Vaccine 2011; 29:1583-94. [DOI: 10.1016/j.vaccine.2010.12.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 11/25/2022]
|
24
|
He H, Genovese KJ, Kogut MH. Modulation of chicken macrophage effector function by T(H)1/T(H)2 cytokines. Cytokine 2011; 53:363-9. [PMID: 21208811 DOI: 10.1016/j.cyto.2010.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/18/2010] [Accepted: 12/06/2010] [Indexed: 12/20/2022]
Abstract
Regulation of macrophage activity by T(H)1/2 cytokines is important to maintain the balance of immunity to provide adequate protective immunity while avoiding excessive inflammation. IFN-γ and IL-4 are the hallmark T(H)1 and T(H)2 cytokines, respectively. In avian species, information concerning regulation of macrophage activity by T(H)1/2 cytokines is limited. Here, we investigated the regulatory function of chicken T(H)1 cytokines IFN-γ, IL-18 and T(H)2 cytokines IL-4, IL-10 on the HD11 macrophage cell line. Chicken IFN-γ stimulated nitric oxide (NO) synthesis in HD11 cells and primed the cells to produce significantly greater amounts of NO when exposed to microbial agonists, lipopolysaccharide, lipoteichoic acid, peptidoglycan, CpG-ODN, and poly I:C. In contrast, chicken IL-4 exhibited bi-directional immune regulatory activity: it activated macrophage NO synthesis in the absence of inflammatory agonists, but inhibited NO production by macrophages in response to microbial agonists. Both IFN-γ and IL-4, however, enhanced oxidative burst activity of the HD11 cells when exposed to Salmonella enteritidis. IL-18 and IL-10 did not affect NO production nor oxidative burst in HD11 cells. Phagocytosis and bacterial killing by the HD11 cells were not affected by the treatments of these cytokines. Infection of HD11 cells with S.enteritidis was shown to completely abolish NO production regardless of IFN-γ treatment. This study has demonstrated that IFN-γ and IL-4 are important T(H)1 and T(H)2 cytokines that regulate macrophage function in chickens.
Collapse
Affiliation(s)
- Haiqi He
- Southern Plain Agricultural Research Center, USDA-ARS, 2881 F&B Road, College Station, TX 77845, United States.
| | | | | |
Collapse
|
25
|
Haq K, Brisbin JT, Thanthrige-Don N, Heidari M, Sharif S. Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens. Vet Immunol Immunopathol 2010; 138:292-302. [PMID: 21067815 DOI: 10.1016/j.vetimm.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|