1
|
Basaran KE, Korkmaz S, Satır-Basaran G, Salkın H. Short and long-term blockades of adenosine 2A, 5-HT2A, and 5-HT7 receptors induce apoptosis, reduce proliferation, and show differential effects on miR-27b-3p expression in neuroblastoma cell lines. Neuroscience 2024; 563:212-221. [PMID: 39547336 DOI: 10.1016/j.neuroscience.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The first of our aims in this study was to investigate the effects of 5-HT2AR, 5-HT7R, and A2AR blockades on miR-27b-3p expression in the short and long-term in neuroblastoma cells. Our second aim was to reduce the expression of pERK and suppress proliferation by blocking the 5-HT2AR with ketanserin. Our third aim was to reduce the expression of pAKT and induce apoptosis by blocking the A2AR and 5-HT7R with MSX3 and SB269970. Thus, we aimed to investigate the therapeutic efficacy of ketanserin, MSX3 and SB269970, individually or in combination, on neuroblastoma cells. We found that short and long-term blockades of A2A, 5-HT2A, and 5-HT7 receptors had different effects on miR-27b-3p expression. Blockade of A2AR and 5-HT7R with MSX3 and SB269970 decreased miR-27b-3p expression in the short term while increasing it in the long term. Ketanserin increased miR-27b-3p expression in both the short and long term. When 5-HT2AR was blocked with ketanserin, no significant difference was observed in pERK expression and proliferation in the short term. In contrast, a substantial decrease in pERK expression and proliferation was detected in the long term. Our findings show that the MSX3 + SB269970 dual combination and ketanserin + MSX3 + SB269970 triple combination are especially critical in suppressing pAKT expression in the long term. These findings showed that pAKT protein expression induced apoptosis due to decreased in neuroblastoma cells. Our study provides the first evidence for the relationships between ketanserin/miR-27b-3p/pERK, MSX3/miR-27b-3p/pAKT, and SB269970/miR-27b-3p/pAKT in neuroblastoma cells. Ketanserin, MSX3, and SB269970 drug combinations may be promising therapeutic agents in neuroblastoma cells.
Collapse
Affiliation(s)
- Kemal Erdem Basaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey
| | - Seyda Korkmaz
- Stembio - Cord Blood, Cell and Tissue Center, TUBITAK Marmara Teknokent R&D and Innovation Center, Gebze/Kocaeli, Turkey
| | - Güzide Satır-Basaran
- Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hasan Salkın
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Beykent University, Istanbul, Turkey.
| |
Collapse
|
2
|
Salkin H, Satir-Basaran G, Korkmaz S, Burcin Gonen Z, Erdem Basaran K. Mesenchymal stem cell-derived conditioned medium and Methysergide give rise to crosstalk inhibition of 5-HT2A and 5-HT7 receptors in neuroblastoma cells. Brain Res 2023; 1808:148354. [PMID: 36997105 DOI: 10.1016/j.brainres.2023.148354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/04/2022] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE (s): We aimed to investigate the effects of mesenchymal stem cell secretome and methysergide combination on 5-hydroxytryptamine 2A, (5-HT2AR), 5-hydroxytryptamine 7 (5-HT7R), adenosine 2A (A2AR) receptors and CD73 on neuroblastoma cell line and how they affect biological characteristics. Methysergide was used as a serotonin antagonist on the neuroblastoma cells. MATERIALS AND METHODS Human dental pulp-derived stem cells (hDPSCs) used to obtain conditioned medium (CM). Methysergide drug was prepared in CM and applied to neuroblastoma cells. Analysis of 5-HT7R, 5-HT2AR, A2AR and CD73 expressions was performed by western blot and immunofluorescence staining. Total apoptosis, mitochondrial membrane depolarization, Ki-67 proliferation test, viability analysis, DNA damage and cell cycle analysis were performed in accordance with the product procedure by using biological activity test kits. RESULTS Our results showed that neuroblastoma cancer cells are normally on the Gs signaling axis via the serotonin 7 receptor and the adenosine 2A receptor. CM and Methysergide inhibited the 5-HT7 and A2A receptor levels in neuroblastoma cells. We found that CM and methysergide formed crosstalk inhibition between 5-HT2AR, 5-HT7R, A2AR and CD73. CM and Methysergide increased the total apoptosis in neuroblastoma cells and induced the mitochondrial membrane depolarization. CM and Methysergide induced the DNA damage and arrested in G0/G1 phase of cell cycle of the neuroblastoma cells. CONCLUSION These findings suggest that the combination of CM and methysergite may exert a therapeutic effect on neuroblastoma cancer cells, and future in vivo studies may be important in area of neuroblastoma research to support the findings.
Collapse
Affiliation(s)
- Hasan Salkin
- Beykent University, Vocational School, Department of Medical Services and Techniques, Program of Pathology Laboratory Techniques, Istanbul, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey.
| | - Guzide Satir-Basaran
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| | - Seyda Korkmaz
- Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey
| | - Zeynep Burcin Gonen
- Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Kayseri, Turkey
| | - Kemal Erdem Basaran
- Erciyes University, Faculty of Medicine, Department of Physiology, Kayseri, Turkey
| |
Collapse
|
3
|
Zheng HC, Xue H, Zhang CY. The oncogenic roles of JC polyomavirus in cancer. Front Oncol 2022; 12:976577. [PMID: 36212474 PMCID: PMC9537617 DOI: 10.3389/fonc.2022.976577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyomavirus (JCPyV) belongs to the human polyomavirus family. Based on alternative splicing, the early region encodes the large and small T antigens, while the late region encodes the capsid structural proteins (VP1, VP2, and VP3) and the agnoprotein. The regulatory transcription factors for JCPyV include Sp1, TCF-4, DDX1, YB-1, LCP-1, Purα, GF-1, and NF-1. JCPyV enters tonsillar tissue through the intake of raw sewage, inhalation of air droplets, or parent-to-child transmission. It persists quiescently in lymphoid and renal tissues during latency. Both TGF-β1 and TNF-α stimulates JCPyV multiplication, while interferon-γ suppresses the process. The distinct distribution of caspid receptors (α-2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and serotonin) determines the infection capabilities of JCPyV virions, and JCPyV entry is mediated by clathrin-mediated endocytosis. In permissive cells, JCPyV undergoes lytic proliferation and causes progressive multifocal leukoencephalopathy, while its DNA is inserted into genomic DNA and leads to carcinogenesis in non-permissive cells. T antigen targets p53, β-catenin, IRS, Rb, TGF-β1, PI3K/Akt and AMPK signal pathways in cancer cells. Intracranial injection of T antigen into animals results in neural tumors, and transgenic mice develop neural tumors, lens tumor, breast cancer, gastric, Vater’s, colorectal and pancreatic cancers, insulinoma, and hepatocellular carcinoma. Additionally, JCPyV DNA and its encoded products can be detected in the brain tissues of PML patients and brain, oral, esophageal, gastric, colorectal, breast, cervical, pancreatic, and hepatocellular cancer tissues. Therefore, JCPyV might represent an etiological risk factor for carcinogenesis and should be evaluated for early prevention, diagnosis, and treatment of cancers.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
Loganathan T, Ramachandran S, Shankaran P, Nagarajan D, Mohan S S. Host transcriptome-guided drug repurposing for COVID-19 treatment: a meta-analysis based approach. PeerJ 2020; 8:e9357. [PMID: 32566414 PMCID: PMC7293190 DOI: 10.7717/peerj.9357] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a pandemic by the World Health Organization, and the identification of effective therapeutic strategy is a need of the hour to combat SARS-CoV-2 infection. In this scenario, the drug repurposing approach is widely used for the rapid identification of potential drugs against SARS-CoV-2, considering viral and host factors. METHODS We adopted a host transcriptome-based drug repurposing strategy utilizing the publicly available high throughput gene expression data on SARS-CoV-2 and other respiratory infection viruses. Based on the consistency in expression status of host factors in different cell types and previous evidence reported in the literature, pro-viral factors of SARS-CoV-2 identified and subject to drug repurposing analysis based on DrugBank and Connectivity Map (CMap) using the web tool, CLUE. RESULTS The upregulated pro-viral factors such as TYMP, PTGS2, C1S, CFB, IFI44, XAF1, CXCL2, and CXCL3 were identified in early infection models of SARS-CoV-2. By further analysis of the drug-perturbed expression profiles in the connectivity map, 27 drugs that can reverse the expression of pro-viral factors were identified, and importantly, twelve of them reported to have anti-viral activity. The direct inhibition of the PTGS2 gene product can be considered as another therapeutic strategy for SARS-CoV-2 infection and could suggest six approved PTGS2 inhibitor drugs for the treatment of COVID-19. The computational study could propose candidate repurposable drugs against COVID-19, and further experimental studies are required for validation.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Srimathy Ramachandran
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prakash Shankaran
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Devipriya Nagarajan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Suma Mohan S
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
5
|
Nukuzuma S, Nukuzuma C, Kameoka M, Sugiura S, Nakamichi K, Tasaki T, Hidaka K, Takegami T. Establishment of COS-JC cells persistently producing archetype JC polyomavirus. Microbiol Immunol 2018; 62:524-530. [PMID: 29932215 DOI: 10.1111/1348-0421.12632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/30/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
JC polyomavirus (JCPyV) is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease of the central nervous system in immunocompromised patients. Archetype JCPyV circulates in the human population. There have been several reports of archetype JCPyV replication in cultured cells, in which propagation was not enough to produce high titers of archetype JCPyV. In this study, we carried out cultivation of the transfected cells with archetype JCPyV DNA MY for more than 2 months to establish COS-7 cells (designated COS-JC cells) persistently producing archetype JCPyV. Moreover, JCPyV derived from COS-JC cells was characterized by analyzing the viral propagation, size of the viral genome, amount of viral DNA, production of viral protein, and structure of the non-coding control region (NCCR). Southern blotting using a digoxigenin-labeled JCPyV probe showed two different sizes of the JCPyV genome in COS-JC cells. For molecular cloning, four of five clones showed a decrease in the size of complete JCPyV genome. Especially, clone No. 10 was generated the large deletion within the Large T antigen. On the other hand, the archetype structure of the NCCR was maintained in COS-JC cells, although a few point mutations occurred. Quantitative PCR analysis of viral DNA in COS-JC cells indicated that a high copy number of archetype JCPyV DNA was replicated in COS-JC cells. These findings suggest that COS-JC cells could efficiently propagate archetype JCPyV MY and offer a useful tool to study persistent infection of archetype JCPyV in a kidney-derived system.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5, Minatojima, -Nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | | | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe 615-0124, Japan
| | - Shigeki Sugiura
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Takafumi Tasaki
- Divison of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Koushi Hidaka
- Faculty of Pharmaceutical Sciences, Kobe 650-8586, Japan.,Cooperative Research Center for Life Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Tsutomu Takegami
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
6
|
Loignon M, Toma E. Treatment options for progressive multifocal leukoencephalopathy in HIV-infected persons: current status and future directions. Expert Rev Anti Infect Ther 2016; 14:177-91. [PMID: 26655489 DOI: 10.1586/14787210.2016.1132162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Progressive multifocal encephalopathy (PML) caused by JC virus was frequently encountered in AIDS patients before combination antiretroviral therapy (cART). Incidence decreased and the outcome improved with cART. The immune reconstitution with cART is beneficial for HIV-infected patients and is an effective treatment for PML. However, when it is excessive an inflammatory response immune syndrome might occur with deterioration of PML. So far, no specific therapy has proven efficacious in small clinical trials in spite of some optimistic case reports. Combination of drugs targeted at different stages of JC virus life cycle seems to have a better effect. Passive and active immune therapies, immune competence "boosters" appear promising. New future approaches such as gene editing are not far away.
Collapse
Affiliation(s)
- Maude Loignon
- a Department of Microbiology, Immunology and Infectious Diseases , University of Montreal, Succursale Centre Ville , Montreal , Quebec , Canada
| | - Emil Toma
- a Department of Microbiology, Immunology and Infectious Diseases , University of Montreal, Succursale Centre Ville , Montreal , Quebec , Canada.,b Département de microbiologie et maladies infectieuses , Hôtel-Dieu Hospital du Centre Hospitalier de l'Université de Montréal (CHUM) , Montreal , Quebec , Canada
| |
Collapse
|
7
|
Hidaka K, Hojo K, Fujioka S, Nukuzuma S, Tsuda Y. Oligomerization of neutral peptides derived from the JC virus agnoprotein through a cysteine residue. Amino Acids 2015; 47:2205-13. [PMID: 25981823 DOI: 10.1007/s00726-015-2004-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
The JC virus is the causative agent of progressive multifocal leukoencephalopathy. The viral genome encodes a multifunctional protein known as agnoprotein which is essential for viral proliferation and reported to possess the oligomerization sequence. However, the structural relationship with the oligomerization is unclear. We synthesized 23 amino acid residue neutral peptides derived from the JC virus agnoprotein, Lys22 to Asp44. The secondary structures of these peptides were β-sheet in aqueous buffer that converted to a helical structure in a hydrophobic environment. These peptides interestingly formed dimers and oligomers under oxidizing conditions. The oligomerization was facilitated by addition of bismaleimides and the derivative without thiol group did not form such oligomers. These results suggest that Agno(22-44) could be transmembrane and one disulfide bond between Cys40 triggers the oligomerization.
Collapse
Affiliation(s)
- Koushi Hidaka
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan. .,Cooperative Research Center for Life Sciences, Kobe Gakuin University, Kobe, 650-8586, Japan.
| | - Keiko Hojo
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.,Cooperative Research Center for Life Sciences, Kobe Gakuin University, Kobe, 650-8586, Japan
| | - Shio Fujioka
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, 650-0046, Japan
| | - Yuko Tsuda
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.,Cooperative Research Center for Life Sciences, Kobe Gakuin University, Kobe, 650-8586, Japan
| |
Collapse
|
8
|
Kalisch A, Wilhelm M, Erbguth F, Birkmann J. Progressive multifocal leukoencephalopathy in patients with a hematological malignancy: review of therapeutic options. Chemotherapy 2014; 60:47-53. [PMID: 25376181 DOI: 10.1159/000368072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022]
Abstract
In the context of 2 patients with hematological malignancy who developed progressive multifocal leukoencephalopathy (PML), we review the current therapeutic options for this serious complication. Both patients had lymphoma and had been pretreated with the antibody rituximab. Diagnosis of PML was obtained upon the detection of the JC virus. The outcome was fatal in both cases. So far, no standard therapeutic approach for JC virus infection has been established in HIV-negative patients with hematological malignancies and the outcome is usually fatal. Serotonin receptor antagonists might have a beneficial effect by blocking the virus from entering the cells. Although hopes for the efficacy of mefloquine were disappointed by the results of 1 study, several case reports describe improvements in neurological impairment when this drug is administered. Taking the desperate situation of this patient group into consideration, the combination of mirtazapine and mefloquine might be worthy of an attempt.
Collapse
Affiliation(s)
- Alexander Kalisch
- Department/Institute of Oncology, Paracelsus Medical University, Nuremberg, Germany
| | | | | | | |
Collapse
|
9
|
Nukuzuma S, Nakamichi K, Kameoka M, Sugiura S, Nukuzuma C, Tasaki T, Takegami T. TNF-α stimulates efficient JC virus replication in neuroblastoma cells. J Med Virol 2014; 86:2026-32. [PMID: 24415534 DOI: 10.1002/jmv.23886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 11/09/2022]
Abstract
JC polyomavirus (JCV) causes progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system (CNS) in immunocompromised patients, and particularly in the severe immunosuppression associated with acquired immunodeficiency syndrome (AIDS). HIV-1 can lead to the production of tumor necrosis factor-alpha (TNF-α) in the CNS. Our aim was to examine the effects of TNF-α on JCV gene expression and replication using a human neuroblastoma cell line, IMR-32, transfected with JCV DNA, M1-IMRb. Quantitative RT-PCR analysis of JCV large T antigen and VP1 mRNA, the viral DNA replication assay, and the DNase protection assay were carried out. TNF-α treatment of IMR-32 cells transfected with JCV DNA induced large T antigen mRNA and JCV DNA replication, while other effects on VP1 mRNA expression and virus production were marginal. In addition, ELISA analysis of the nuclear p65 subunit of nuclear factor κB (NF-κB), which is a hallmark of NF-κB pathway activation, of IMR-32 cells upon TNF-α treatment showed that TNF-α treatment activated the NF-κB pathway in IMR-32 cells. Taken together, our results suggest that TNF-α stimulation could induce JCV replication associated with the induction of JCV large T antigen mRNA through the NF-κB pathway in IMR-32 cells transfected with JCV DNA. Our findings may contribute to further understanding of the pathogenesis of AIDS-related PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Joseph R Berger
- Department of Neurology and Department of Medicine, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
11
|
Thoden J, Potthoff A, Bogner JR, Brockmeyer NH, Esser S, Grabmeier-Pfistershammer K, Haas B, Hahn K, Härter G, Hartmann M, Herzmann C, Hutterer J, Jordan AR, Lange C, Mauss S, Meyer-Olson D, Mosthaf F, Oette M, Reuter S, Rieger A, Rosenkranz T, Ruhnke M, Schaaf B, Schwarze S, Stellbrink HJ, Stocker H, Stoehr A, Stoll M, Träder C, Vogel M, Wagner D, Wyen C, Hoffmann C. Therapy and prophylaxis of opportunistic infections in HIV-infected patients: a guideline by the German and Austrian AIDS societies (DAIG/ÖAG) (AWMF 055/066). Infection 2013; 41 Suppl 2:S91-115. [PMID: 24037688 PMCID: PMC3776256 DOI: 10.1007/s15010-013-0504-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/28/2013] [Indexed: 11/24/2022]
Abstract
INTRODUCTION There was a growing need for practical guidelines for the most common OIs in Germany and Austria under consideration of the local epidemiological conditions. MATERIALS AND METHODS The German and Austrian AIDS societies developed these guidelines between March 2010 and November 2011. A structured Medline research was performed for 12 diseases, namely Immune reconstitution inflammatory syndrome, Pneumocystis jiroveci pneumonia, cerebral toxoplasmosis, cytomegalovirus manifestations, candidiasis, herpes simplex virus infections, varizella zoster virus infections, progressive multifocal leucencephalopathy, cryptosporidiosis, cryptococcosis, nontuberculosis mycobacteria infections and tuberculosis. Due to the lack of evidence by randomized controlled trials, part of the guidelines reflects expert opinions. The German version was accepted by the German and Austrian AIDS Societies and was previously published by the Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF; German Association of the Scientific Medical Societies). CONCLUSION The review presented here is a translation of a short version of the German-Austrian Guidelines of opportunistic infections in HIV patients. These guidelines are well-accepted in a clinical setting in both Germany and Austria. They lead to a similar treatment of a heterogeneous group of patients in these countries.
Collapse
Affiliation(s)
- J Thoden
- Private Practice Dr. C. Scholz and Dr. J. Thoden, Bertoldstrasse 8, 79098, Freiburg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Human polyomavirus reactivation: disease pathogenesis and treatment approaches. Clin Dev Immunol 2013; 2013:373579. [PMID: 23737811 PMCID: PMC3659475 DOI: 10.1155/2013/373579] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
JC and BK polyomaviruses were discovered over 40 years ago and have become increasingly prevalent causes of morbidity and mortality in a variety of distinct, immunocompromised patient cohorts. The recent discoveries of eight new members of the Polyomaviridae family that are capable of infecting humans suggest that there are more to be discovered and raise the possibility that they may play a more significant role in human disease than previously understood. In spite of this, there remains a dearth of specific therapeutic options for human polyomavirus infections and an incomplete understanding of the relationship between the virus and the host immune system. This review summarises the human polyomaviruses with particular emphasis on pathogenesis in those directly implicated in disease aetiology and the therapeutic options available for treatment in the immunocompromised host.
Collapse
|
13
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
14
|
Nukuzuma S, Kameoka M, Sugiura S, Nakamichi K, Nukuzuma C, Takegami T. Suppressive effect of PARP-1 inhibitor on JC virus replication in vitro. J Med Virol 2012; 85:132-7. [PMID: 23074024 DOI: 10.1002/jmv.23443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 02/02/2023]
Abstract
The incidence of progressive multifocal leukoencephalopathy (PML) has increased due to the AIDS pandemic, hematological malignancies, and immunosuppressive therapies. Recently, the number of cases of monoclonal antibody-associated PML has increased in patients treated with immunomodulatory drugs such as natalizumab. However, no common consensus regarding PML therapy has been reached in clinical studies. In order to examine the suppression of JC virus (JCV) replication by 3-aminobenzamide (3-AB), a representative PARP-1 inhibitor, a DNA replication assay was carried out using the neuroblastoma cell line IMR-32 and IMR-adapted JCV. The suppression of JCV propagation by 3-AB was also examined using JCI cells, which are a carrier culture producing continuously high JCV titers. The results indicated that PARP-1 inhibitors, such as 3-aminobenzamide (3-AB), suppress JCV replication and propagation significantly in vitro, as judged by DNA replication assay, hemagglutination, and real-time PCR analysis. It has been also shown that 3-AB reduced PARP-1 activity in IMR-32 cells. According to the results of the MTT assay, the enzyme activity of 3-AB-treated cells was slightly lower than that of DMSO-treated cells. However, the significant suppression of JCV propagation is not related to the slight decrease in cell growth. To our knowledge, this is the first report that PARP-1 inhibitor suppresses the replication of JCV significantly in neuroblastoma cell lines via the reduction of PARP-1 activity. Thus, PARP-1 inhibitors also may be a novel therapeutic drug for PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Microbiology, Kobe Institute of Health, Chuo-ku, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Corredor CA, Castillo CS. [Other Possible Clinical Applications of Drugs with 5HT2A effect in Liaison Psychiatry: Cases Report]. REVISTA COLOMBIANA DE PSIQUIATRIA 2012; 41:217-229. [PMID: 26573480 DOI: 10.1016/s0034-7450(14)60079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 02/10/2012] [Indexed: 06/05/2023]
Abstract
INTRODUCTION In liaison psychiatry it is possible to get an integral view of patient's treatment and needs, paying special attention to pharmacological interactions and contraindications. Some particular cases motivated the description, report and review about other possible applications of 5HT2A and 5HT3 antagonist, particularly Mirtazapine and Olanzapine, in hyperalgesia syndrome, tinnitus and Progressive Multifocal Leukoencephalopathy by JC virus. METHOD Cases report. RESULTS We describe 3 cases of patients in which Mirtazapine and Olanzapine were necessary not only to control psychiatric symptoms (affective / behavioral symptoms and insomnia) but to act as adjuvant therapy in axis III diseases. The use of any drug in psychiatry must take in to account the context of the patient, the presence of comorbidity, contraindications and pharmacological interactions so as to grant a positive outcome also promoting the multidisciplinary work between specialists.
Collapse
|
16
|
Nukuzuma S, Kameoka M, Sugiura S, Nakamichi K, Nukuzuma C, Miyoshi I, Takegami T. Exogenous human immunodeficiency virus-1 protein, tat, enhances replication of JC virus efficiently in neuroblastoma cell lines. J Med Virol 2012; 84:555-61. [DOI: 10.1002/jmv.23239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Tavazzi E, White MK, Khalili K. Progressive multifocal leukoencephalopathy: clinical and molecular aspects. Rev Med Virol 2011; 22:18-32. [PMID: 21936015 DOI: 10.1002/rmv.710] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/29/2011] [Accepted: 08/03/2011] [Indexed: 12/12/2022]
Abstract
The fatal CNS demyelinating disease, progressive multifocal leukoencephalopathy (PML), is rare and appears to occur almost always as a consequence of immune dysfunction. Thus, it is associated with HIV/AIDS and also as a side effect of certain immunomodulatory monoclonal antibody therapies. In contrast to the rarity of PML, the etiological agent of the disease, the polyomavirus JC (JCV), is widespread in populations worldwide. In the 40 years since JCV was first isolated, much has been learned about the virus and the disease from laboratory and clinical observations. However, there are many aspects of the viral life cycle and of the pathogenesis of the disease that remain unclear, and our understanding is constantly evolving. In this review, we will discuss our current understanding of the clinical features of PML and molecular characteristics of JCV and of how they relate to each other. Clinical observations can inform molecular studies of the virus, and likewise, molecular findings concerning the life cycle of the virus can guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
18
|
|
19
|
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disease of the brain due to a polyoma virus, JC virus. Despite the ubiquity of this virus, PML is rare and almost always seen in association with an underlying immunosuppressive condition. In the last 30 years, AIDS has been the most common predisposing factor. The observation of PML attending the use of certain monoclonal antibody therapies and other pharmacological agents has raised concerns about the safety profile of these agents, but has also provided a window into the pathogenesis of PML. Certain agents, such as the monoclonal antibodies natalizumab, an α4β1 and α4β7 integrin inhibitor, and efalizumab, an antibody directed against CD11a, appear to uniquely predispose to PML. Prior to their introduction for multiple sclerosis and Crohn's disease with respect to natalizumab, and psoriasis with respect to efalizumab, PML had never been observed with these disorders. PML occurring with other agents that currently carry US FDA-mandated 'black-box' warnings, such as rituximab, an antibody directed to CD20, or mycophenolate mofetil, a drug that inhibits T- and B-cell proliferation, typically occur in the background of underlying disorders that have already been identified as risks for PML. This review will focus on the available data regarding the risk for PML with monoclonal antibodies and other drugs. A biologically plausible explanation for the increased risk of PML will be proposed, as well as potential strategies for mitigating disease risk.
Collapse
Affiliation(s)
- Joseph R Berger
- Department of Neurology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0284, USA.
| |
Collapse
|
20
|
Nukuzuma S, Nakamichi K, Kameoka M, Sugiura S, Nukuzuma C, Miyoshi I, Takegami T. Efficient propagation of progressive multifocal leukoencephalopathy-type JC virus in COS-7-derived cell lines stably expressing Tat protein of human immunodeficiency virus type 1. Microbiol Immunol 2010; 54:758-62. [PMID: 21223365 DOI: 10.1111/j.1348-0421.2010.00278.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The high incidence of progressive multifocal leukoencephalopathy (PML) in AIDS patients compared with many other immunosuppressive diseases suggests that HIV-1 infection is strictly related to the activation of JC virus (JCV) propagation. In this report, propagation of PML-type JCV in COS-7-derived cell lines stably expressing HIV-1 Tat (COS-tat cells) has been examined. In COS-tat cells, production of viral particles and replication of genomic DNA were markedly increased compared to COS-7 cells, as judged by HA and real-time PCR analyses. These results demonstrate that COS-tat cells provide a useful model system for studying HIV-1 Tat-mediated propagation of PML-type JCV.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Microbiology, Kobe Institute of Health, Minatojima-Nakamachi, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Focosi D, Marco T, Kast RE, Maggi F, Ceccherini-Nelli L, Petrini M. Progressive multifocal leukoencephalopathy: what's new? Neuroscientist 2010; 16:308-23. [PMID: 20479473 DOI: 10.1177/1073858409356594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease that is caused by human JC polyomavirus, was first described as a complication of immune suppression 50 years ago and emerged as a major complication of HIV infection in the 1980s. The prognosis has remained dismal since then, with discouraging results from clinical trials of various therapeutic approaches, including immunomodulation and/or inhibition of viral replication. PML is caused by reactivation of latent JC virus, and serotonergic 5-HT(2a) receptors have been identified as being critical for viral infection of glial cells. In recent years, immunosuppressive therapeutic antibodies have been associated with an increased incidence rate of PML. Here, the authors review findings on the pathogenesis of PML and the encouraging case reports of novel treatments.
Collapse
Affiliation(s)
- Daniele Focosi
- Department of Oncology, Transplants and Advances in Medicine, Division of Hematology, University of Pisa, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Nukuzuma S, Kameoka M, Sugiura S, Nakamichi K, Nukuzuma C, Miyoshi I, Takegami T. Archetype JC virus efficiently propagates in kidney-derived cells stably expressing HIV-1 Tat. Microbiol Immunol 2009; 53:621-8. [PMID: 19903262 DOI: 10.1111/j.1348-0421.2009.00166.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenic JCV with rearranged regulatory regions (PML-type) causes PML, a demyelinating disease, in the brains of immunocompromised patients. On the other hand, archetype JCV persistently infecting the kidney is thought to be converted to PML-type virus during JCV replication in the infected host under immunosuppressed conditions. In addition, Tat protein, encoded by HIV-1, markedly enhances the expression of a reporter gene under control of the JCV late promoter. In order to examine the influence of Tat on JCV propagation, we used kidney-derived COS-7 cells, which only permit archetype JCV, and established COS-tat cells, which express HIV-1 Tat stably. We found that the extent of archetype JCV propagation in COS-tat cells is significantly greater than in COS-7 cells. On the other hand, COS-7 cells express SV40 T antigen, which is a strong stimulator of archetype JCV replication. The expression of SV40 T antigen was enhanced by HIV-1 Tat slightly according to real-time RT-PCR, this was not closely related to JCV replication in COS-tat cells. The efficiency of JCV propagation depended on the extent of expression of functional Tat. To our knowledge, this is the first report of increased production of archetype JCV in a culture system using cell lines stably expressing HIV-1 Tat. We propose here that COS-tat cells are a useful tool for studying the role of Tat in archetype JCV replication in the development of PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Microbiology, Kobe Institute of Health, 4-6, Minatojima-Nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan.
| | | | | | | | | | | | | |
Collapse
|