1
|
Virus against virus: strategies for using adenovirus vectors in the treatment of HPV-induced cervical cancer. Acta Pharmacol Sin 2021; 42:1981-1990. [PMID: 33633364 PMCID: PMC8633276 DOI: 10.1038/s41401-021-00616-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/17/2021] [Indexed: 01/31/2023] Open
Abstract
Although most human papillomavirus (HPV) infections are harmless, persistent infection with high-risk types of HPV is known to be the leading cause of cervical cancer. Following the infection of the epithelium and integration into the host genome, the oncogenic proteins E6 and E7 disrupt cell cycle control by inducing p53 and retinoblastoma (Rb) degradation. Despite the FDA approval of prophylactic vaccines, there are still issues with cervical cancer treatment; thus, many therapeutic approaches have been developed to date. Due to strong immunogenicity, a high capacity for packaging foreign DNA, safety, and the ability to infect a myriad of cells, adenoviruses have drawn attention of researchers. Adenovirus vectors have been used for different purposes, including as oncolytic agents to kill cancer cells, carrier for RNA interference to block oncoproteins expression, vaccines for eliciting immune responses, especially in cytotoxic T lymphocytes (CTLs), and gene therapy vehicles for restoring p53 and Rb function.
Collapse
|
2
|
Singh N, Bhakuni R, Chhabria D, Kirubakaran S. MDC1 depletion promotes cisplatin induced cell death in cervical cancer cells. BMC Res Notes 2020; 13:146. [PMID: 32160908 PMCID: PMC7066845 DOI: 10.1186/s13104-020-04996-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Cisplatin, the most common chemotherapeutic drug for the treatment of advanced stage cervical cancers has limitations in terms of drugs resistance observed in patients partly due to functional DNA damage repair (DDR) processes in the cell. Mediator of DNA damage checkpoint 1 (MDC1) is an important protein in the Ataxia telangiectasia mutated (ATM) mediated double stranded DNA break (DSB) repair pathway. In this regard, we investigated the effect of MDC1 change in expression on the cisplatin sensitivity in cervical cancer cells. RESULTS Through modulation of MDC1 expression in the cervical cancer cell lines; Hela, SiHa and Caski, we found that all the three cell lines silenced for MDC1 exhibited higher sensitivity to cisplatin treatment with inefficiency in accumulation of p γH2AX, Ser 139 foci and increased accumulation of pChk2 Thr 68 at the damaged chromatin followed by enhanced apoptosis. Further, we observed the increased p53 Ser 15 phosphorylation in the MDC1 depleted cells. Our studies suggest that MDC1 expression could be a key determinant in cervical cancer prognosis and its depletion in combination with cisplatin has the potential to be explored for the sensitisation of chemo-resistant cervical cancer cells.
Collapse
Affiliation(s)
- Neeru Singh
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Rashmi Bhakuni
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Dimple Chhabria
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Sivapriya Kirubakaran
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
3
|
Kuo CY, Schelz Z, Tóth B, Vasas A, Ocsovszki I, Chang FR, Hohmann J, Zupkó I, Wang HC. Investigation of natural phenanthrenes and the antiproliferative potential of juncusol in cervical cancer cell lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152770. [PMID: 31005716 DOI: 10.1016/j.phymed.2018.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Phenanthrenes isolated from Juncus species possess different biological activities, including antiproliferative and antimigratory effects. PURPOSE In this study, nine phenanthrenes isolated from the roots of Juncus inflexus were investigated for their antiproliferative activity on several gynecological cancer cell lines, using non-cancerous cells as controls. METHODS Antiproliferative activities of the compounds were determined by means of MTT assay. Flow cytometry was used for cell cycle analysis and determination of mitotic cells. Activities of caspase-3, -8, and -9 were detected by colorimetric kits. Tubulin polymerization was followed by kinetic absorbance determination. Action on tumor cell migration was described using wound healing assay. Western blot assays were used to determine apoptosis-related factors at protein level. RESULTS Among the compounds tested, juncusol exhibited the most substantial antiproliferative effect against cervical cancer HeLa cells. It was also revealed that juncusol has a distinct growth inhibitory effect in cervical cancer cell lines of various HPV status: it was highly active in HPV type 18-positive HeLa cells, while it was inactive in HPV type 16-positive SiHa and CaSki cells. Cell cycle analysis showed an increase in G2/M and subG1 cell populations after juncusol treatment. Caspase-3, -8, and -9 were detected to be activated by juncusol in HeLa cells, indicating that juncusol induces apoptotic cell death. Moreover, juncusol inhibited tubulin polymerization, as well as EGFR activation, suggesting two possible additional mechanisms that may account for juncusol's inducing a G2/M-phase cell cycle arrest and inhibiting cell migration. CONCLUSION These results suggest that juncusol is a potent antiproliferative agent against HPV-18 related cervical cancer and may be considered as a lead compound for the development of innovative anticancer agents.
Collapse
Affiliation(s)
- Ching-Ying Kuo
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan; Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Zsuzsanna Schelz
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Barbara Tóth
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Andrea Vasas
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Judit Hohmann
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary.
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; PhD Program in Translational Medicine, College of Medicine and PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan; Department of Medical Research Center and Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.
| |
Collapse
|
4
|
Sommerova L, Anton M, Bouchalova P, Jasickova H, Rak V, Jandakova E, Selingerova I, Bartosik M, Vojtesek B, Hrstka R. The role of miR-409-3p in regulation of HPV16/18-E6 mRNA in human cervical high-grade squamous intraepithelial lesions. Antiviral Res 2019; 163:185-192. [DOI: 10.1016/j.antiviral.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/14/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
|
5
|
KIM YONGWAN, CHATURVEDI PANKAJKUMAR, CHUN SUNGNAM, LEE YANGGU, AHN WOONGSHICK. Honeybee venom possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer cell line. Oncol Rep 2015; 33:1675-82. [DOI: 10.3892/or.2015.3760] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/14/2014] [Indexed: 11/06/2022] Open
|
6
|
Sagawa T, Yamada Y, Takahashi M, Sato Y, Kobune M, Takimoto R, Fukaura J, Iyama S, Sato T, Miyanishi K, Matsunaga T, Takayama T, Kato J, Sasaki K, Hamada H, Niitsu Y. Treatment of hepatocellular carcinoma by AdAFPep/rep, AdAFPep/p53, and 5-fluorouracil in mice. Hepatology 2008; 48:828-40. [PMID: 18756484 DOI: 10.1002/hep.22420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Although conditionally replicable adenovirus (CRAd) has been used in the clinical treatment of hepatocellular carcinoma (HCC), it suffers from the inherent drawback of having relatively low antitumor activity. Here, we have sought to overcome this drawback. First, we combined CRAd (AdAFPep/Rep) driven by alpha-fetoprotein enhancer/promoter (AFPep) with a replication-incompetent adenovirus carrying a p53 transgene that is also driven by AFPep. The synergism of this combination produced a significantly improved tumoricidal effect on the human HCC cell line Hep3B, which has a relatively short doubling time in comparison with other human HCC cell lines, through the transactivation of p53 by early region 1A transcribed by AdAFPep/Rep. This synergistic interaction was augmented by the addition of a subtumoricidal dose (0.5 microg/mL) of 5-fluorouracil (5-FU), which enhanced p53 expression and facilitated the release of virions from tumor cells. When relatively large (10-mm-diameter) Hep3B tumors grown in nude mice were injected with the two viruses in combination, they showed significantly impaired growth in comparison with those treated with each virus separately. The growth suppression effect of the virus combination was enhanced by a low dose (600 microg) of 5-FU. Survival of the tumor-bearing mice treated with these three agents was significantly longer than that of control mice. Moreover, the tumor completely disappeared with the repeated injection of these agents. CONCLUSION This combination strategy holds promise for the treatment of relatively large and rapidly growing HCCs that may be encountered clinically.
Collapse
Affiliation(s)
- Tamotsu Sagawa
- Fourth Department of Internal Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Balcer-Kubiczek EK, Attarpour M, Jiang J, Kennedy AS, Suntharalingam M. Cytotoxicity of Docetaxel (Taxotere ®) Used as a Single Agent and in Combination with Radiation in Human Gastric, Cervical and Pancreatic Cancer Cells. Chemotherapy 2006; 52:231-40. [PMID: 16899972 DOI: 10.1159/000094869] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 09/06/2005] [Indexed: 01/05/2023]
Abstract
BACKGROUND Docetaxel (Taxotere) has gained increasing attention in clinical applications. We investigated the cytotoxic and radiosensitizing potential of docetaxel at nanomolar concentrations in six cell lines derived from tumors that rarely respond to radiation or chemotherapy, with special consideration of mechanisms of resistance, including the p53 mutational status. METHODS Cells derived from carcinomas of the human stomach (p53 mutant Hs746T, p53 wild type AGS), cervix (p53 wild type CaSki, p53 mutant HeLa) or pancreas (p53 mutant BxPC3 and Capan-1) were treated for 24 h with docetaxel at various concentrations (0.1-5 nM) to obtain drug doses for inhibiting clonogenicity by approximately 50% (IC(50)). Cells were X-irradiated without docetaxel or after 24 h of docetaxel treatment at IC(50). Radiation doses ranged from 0 up to 10 Gy. Mitotic index, multinucleation, apoptosis and necrosis after 24 h of drug exposure at 1 nM were quantified in representative gastric and cervical cell lines by fluorescence microscopy. RESULTS Docetaxel treatment for 24 h resulted in a dose-dependent loss of clonogenicity, with 1.0 or 0.3 nM producing approximately 50% survival of gastric or cervix and pancreatic cells, respectively. After correction for the drug toxicity, the combination of isoeffective concentrations of docetaxel with graded X-ray doses resulted either in a moderate synergy or additivity. The dose reduction factors at the 50 and 20% survival levels were statistically greater than those for Hs746T or AGS cells. For CaSki, HeLa, BxPC3 or Capan-1 cells, the dose reduction factors were statistically not different from unity. CONCLUSION Docetaxel was active against tumor cells of different origins. Combined effects of docetaxel and radiation were at least additive and depended on the intrinsic sensitivity to drug alone. There was no significant evidence of drug-induced mitotic arrest. Compared to drug-resistant gastric cells, exposure to the drug alone of drug-sensitive cervical cells resulted in more severe multinucleation. The p53 status did not contribute directly to the effect of drug alone or in combination with radiation.
Collapse
Affiliation(s)
- Elizabeth K Balcer-Kubiczek
- Department of Radiation Oncology, University of Maryland School of Medicine and Greenebaum Cancer Center, Baltimore, 21201, USA.
| | | | | | | | | |
Collapse
|
8
|
Lee YS, Bae SM, Kwak SY, Park DC, Kim YW, Hur SY, Park EK, Han BD, Lee YJ, Kim CK, Kim DK, Ahn WS. Cell cycle regulatory protein expression profiles by adenovirus p53 infection in human papilloma virus-associated cervical cancer cells. Cancer Res Treat 2006; 38:168-77. [PMID: 19771278 DOI: 10.4143/crt.2006.38.3.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 05/23/2006] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The tumor suppressor gene, p53, has been established as an essential component for the suppression of tumor cell growth. In this study, we investigated the time-course anticancer effects of adenoviral p53 (Adp53) infection on human ovarian cancer cells to provide insight into the molecular-level understanding of the growth suppression mechanisms involved in Adp53-mediated apoptosis and cell cycle arrest. MATERIALS AND METHODS Three human cervical cancer cell lines (SiHa, CaSki, HeLa and HT3) were used. The effect of Adp53 infection was studied via cell count assay, cell cycle analysis, FACS, Western blot and macroarray assay. RESULTS Adp53 exerts a significant role in suppressing cervical cancer cell growth. Adp53 also showed growth inhibitory effects in each cell line, and it induced apoptosis and cell cycle arrest. Adp53 differentially regulated the expression of genes and proteins, and the gene expression profiles in the SiHa cells revealed that the p21, p53 and mdm2 expressions were significantly up-regulated at 24 and 48 hr. Western blot shows that the p21 and p53 expression-levels were significantly increased after Adp53 infection. In addition, in all cell lines, both the CDK4 and PCNA protein expression levels were decreased 48 h after Adp53 infection. Cell cycle arrest at the G1 phase was induced only in the SiHa and HeLa cells, suggesting that exogenous infection of Adp53 in cancer cells was significantly different from the other HPV-associated cervical cancer cells. CONCLUSION Adp53 can inhibit cervical cancer cell growth through induction of apoptosis and cell cycle arrest, as well as through the regulation of the cell cycle-related proteins. The Adp53-mediated apoptosis can be employed as an advanced strategy for developing preferential tumor cell-specific delivery.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Majhen D, Ambriović-Ristov A. Adenoviral vectors--how to use them in cancer gene therapy? Virus Res 2006; 119:121-33. [PMID: 16533542 DOI: 10.1016/j.virusres.2006.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 01/02/2023]
Abstract
Gene therapy is most often described as a technique for introducing the foreign genetic material into cells with a correction of a dysfunctional gene as its final goal. Today, it is well known that cancer is one of the leading causes of mortality in the world. Besides classical methods for cancer treatment new strategies against cancer are needed. Although originally being designed as a treatment for monogenetic illness, soon after, gene therapy appeared as a potential new strategy in cancer therapy. One of the widely used vectors for cancer gene therapy is adenovirus. In this review we have described molecular biology of adenoviruses and basis for construction of adenoviral vectors. We have also described concepts for cancer gene therapy including their in vitro and in vivo application. Special attention is drawn toward retargeting of adenovirus as a new approach in vector design for cancer gene therapy, in order to restrict transgene expression in tumor tissue. This approach uses biophysical as well as genetic characteristics of tumor itself and its supporting tissue, allowing new "bypass" in cancer gene therapy.
Collapse
Affiliation(s)
- Dragomira Majhen
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | |
Collapse
|
10
|
Jin HS, Bae SM, Kim YW, Lee JM, Namkoong SE, Han BD, Lee YJ, Kim CK, Chun HJ, Ahn WS. Distinctive cell cycle regulatory protein profiles by adenovirus delivery of p53 in human papillomavirus-associated cancer cells. Int J Gynecol Cancer 2006; 16:698-707. [PMID: 16681750 DOI: 10.1111/j.1525-1438.2006.00393.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this study, microarray analyses were performed to determine the time course of gene expression profiles in SiHa cells after infection with an adenovirus-expressing p53 (Adp53). We then investigated the consequences of Adp53 gene transfer on the expression level of six genes associated with cell cycle control and on apoptosis and cell cycle arrest in SiHa cells and compared these results with those from CaSki and HeLa cells. Gene expression profiling of the p53-targeted genes in SiHa cells revealed that p21, p53, and mdm2 protein expression was significantly upregulated at 24 and 48 h. Western blot results revealed that p21 and p53 expression levels had significantly increased after Adp53 infection. Cyclin-dependent kinase 4 levels were decreased 48 h after treatment in SiHa and CaSki cells. Proliferating cell nuclear antigen levels were unchanged after Adp53 infection. Only SiHa cells exhibited significant cell death. Cell cycle arrest at the G1 phase was induced in the SiHa and HeLa cells but was not induced at the G2/M and S phases in the CaSki cells. These data support the notion that the understanding of p53-dependent apoptosis and cell growth arrest could be applicable to advanced strategies in the development of preferential tumor cell-specific delivery.
Collapse
Affiliation(s)
- H-S Jin
- Catholic Research Institutes of Medical Science and Department of Obstetrics and Gynecology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The human papillomaviruses (HPVs) are a diverse group of infectious agents, some of which are a causative agent of human cancers. Cervical cancer and oral cancer are closely associated with specific types of HPV, and the tumors grow only if there is continual expression of the viral E6 and E7 genes. Evidence from in vitro studies shows that when expression of these genes is inhibited by gene therapy approaches such as antisense RNA, ribozymes, or siRNA, the transformed phenotype of the cells is lost. Although it seems possible that clinical applications of this approach could help in the management of cervical and oral cancers there have been no clinical trials of gene therapy for HPV-associated cancers. Since the basic information is now available, a shift to translational research would be greatly welcomed.
Collapse
Affiliation(s)
- E J Shillitoe
- Department of Microbiology & Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210, USA.
| |
Collapse
|
12
|
Ikuta A, Saito J, Mizokami T, Nakamoto T, Yasuhara M, Nagata F, Nakajima M, Matsuo I, Yasuda K, Kanzaki H. Correlation p53 expression and human papilloma virus deoxyribonucleic acid with clinical outcome in early uterine cervical carcinoma. ACTA ACUST UNITED AC 2005; 29:528-36. [PMID: 16289387 DOI: 10.1016/j.cdp.2005.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2005] [Indexed: 01/10/2023]
Abstract
BACKGROUND In the present study we assessed whether expression of p53 protein or HPV DNA correlates with recurrence as well as several known prognostic factors in uterine cervical carcinoma. METHODS Forty-nine patients with FIGO stage IA-IIB who underwent hysterectomy between 1998 and 2002 were retrospectively studied. All 49 cancer tissue samples were used for immunohistochemical study. Twenty-five of 49 cases were also examined by PCR-RFLP for detection and typing of HPV DNA. RESULTS Twenty of 49 (40.8%) specimens demonstrated nuclear staining for p53. A significant association between p53 overexpression and age, hormonal status, FIGO stage, or recurrence was observed (p=0.02, 0.01, 0.03, 0.01). However, no significant association was found between p53 overexpression and lymph node metastases, parametrium involvement, or risk of death (p=0.18, 0.06, 0.14). Nineteen of 25 (76%) were HPV DNA-positive and 6 (24%) were negative. DISCUSSION There was no relation between HPV DNA positivity and age, FIGO stage, lymph node metastases, parametrium involvement, recurrence, or risk of death. CONCLUSION p53 overexpression is associated with age, hormonal status, FIGO stage, and recurrence in uterine cervical carcinoma.
Collapse
Affiliation(s)
- Akiko Ikuta
- Department of Obstetrics and Gynecology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi Osaka 570-8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ahn WS, Bae SM, Lee JM, Namkoong SE, Yoo JY, Seo YS, Nam SL, Cho YL, Nam KH, Kim CK, Kim YW. Anti-cancer effect of adenovirus p53 on human cervical cancer cell growth in vitro and in vivo. Int J Gynecol Cancer 2004; 14:322-32. [PMID: 15086733 DOI: 10.1111/j.1048-891x.2004.014217.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To evaluate anti-tumor effects of recombinant adenovirus p53, time-course p53, E6 expression, and cell growth inhibition were investigated in vitro and in vivo using cervical cancer cell lines such as CaSki, SiHa, HeLa, HeLaS3, C33A, and HT3. The cell growth inhibition was studied via cell count assay, MTT assay and neutral red assay. After transfecting AdCMVp53 into SiHa cells-xenografted nude mice, the transduction efficiency and anti-tumor effect were investigated for a month. The results showed that adenoviral p53 expression induced significant growth suppression on the cancer cells, in which E6 transcript was strongly repressed, and that the expression of p53 and E6 were remarkably dependent on each cell type. The transduction efficiency was highly maintained in vivo as well as in vitro, and the size of tumor was remarkably decreased in comparison with AdCMVLacZ control. The results suggest that the adenovirus-mediated p53 gene transfection was done very effectively in vitro and in vivo experiment, and the cell growth was suppressed via p53-dependent apoptotic cell death, and that the anti-tumor effect could be related to E6 and p53 expression pattern.
Collapse
Affiliation(s)
- W S Ahn
- Department of Obstetrics and Gynecology, Catholic Research Institutes of Medical Science, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ahn WS, Bae SM, Lee KH, Lee JM, Namkoong SE, Chun HJ, Kim CK, Kim YW. Recombinant adenovirus-p53 gene transfer and cell-specific growth suppression of human cervical cancer cells in vitro and in vivo. Gynecol Oncol 2004; 92:611-21. [PMID: 14766255 DOI: 10.1016/j.ygyno.2003.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Indexed: 11/17/2022]
Abstract
PURPOSE We investigated the time-course expression patterns of p53 and E6 on cervical cancer cells to obtain a molecular level understanding of cell-dependent tumor growth suppression effects of recombinant adenovirus expressing p53 in vitro and in vivo. METHODS Four human papillomavirus (HPV)-infected human cervical cancer cell lines (HPV 16-positive cells, CaSki and SiHa cells; and HPV 18-positive cells, HeLa and HeLaS3 cells) were used. Also, HPV negative C33A and HT3 cell line that has a mutation on p53 gene were used. After infection with AdCMVp53, the cell growth inhibition was studied via cell count assay, MTT assay, and Neutral red assay. After transfecting AdCMVp53 and AdCMVLacZ into the cancer cells-xenografted nude mice, antitumor effects were investigated for 1 month, respectively. RESULTS For each cervical cancer cell, IC50 was as follows; CaSki (68.5 multiplicity of infection, or MOI), SiHa (43.5 MOI), HeLa (31 MOI), HeLaS3 (42 MOI), C33A (21 MOI), and HT3 (62 MOI). In particular, complete inhibition of cell growth was observed at 125 MOI in both CaSki and SiHa cells. However, the complete inhibition was detected at 62.5 MOI in HeLa and HeLaS3. In contrast, at these MOI, no suppression of cell growth was observed when cells were infected with recombinant adenovirus expressing beta-gal as a negative control. The levels of p53 protein were notably expressed in CaSki and HeLa more than in SiHa and HeLaS3 on days 2 and 4. However, the p53 was only detected in HeLaS3 on day 6. In contrast, p53 expression was continually maintained in C33A and HT3 during the same periods. After transfection AdCMVp53 into CaSki- and SiHa-xenografted nude mice, the size of tumor was remarkably decreased in SiHa cells as compared to AdCMVLacZ transfection. CONCLUSION The adenovirus-mediated p53 gene transfection was done effectively in vitro and in vivo. Also, the antitumor effects were accomplished via differential role of p53-specific apoptotic cell death, which is dependent upon the cervical cancer cell line.
Collapse
Affiliation(s)
- Woong Shick Ahn
- Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ahn WS, Bae SM, Kim TY, Kim TG, Lee JM, Namkoong SE, Kim CK, Sin JI. A Therapy Modality Using Recombinant IL-12 Adenovirus plus E7 Protein in a Human Papillomavirus 16 E6/E7-Associated Cervical Cancer Animal Model. Hum Gene Ther 2003; 14:1389-99. [PMID: 14577920 DOI: 10.1089/104303403769211619] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin (IL)-12 has been reported to induce cellular immune responses for protection against tumor formation. Here we investigate the utility of adenoviral delivery of IL-12 as an adjuvant for a human papillomavirus E7 subunit vaccine in a mouse tumor challenge model. Direct intratumoral injection of AdIL-12 resulted in a significant suppression of tumor growth compared to the control group. Injection of E7 protein into either a tumor site or the distance site along with AdIL-12 further enhanced antitumor effects significantly higher than either AdIL-12 or E7 injection alone. This combined injection resulted in complete regression of 9-mm-sized tumor in 40% of animals as well as lasting antitumor immunity against tumor recurrence. We also evaluated immune responses induced by these injections. AdIL-12 plus E7 enhanced E7-specific antibody responses significantly higher than AdIL-12 or E7 injection. In particular, the production level of interferon (IFN)-gamma from E7-specific CD4(+) T cells was similar between AdIL-12 group and AdIL-12 + E7 group. However, IFN-gamma production from E7-specific CD8(+) T cells was the most significant when injected with AdIL-12 + E7. This was consistent with intracellular IFN-gamma staining levels of CD8(+) T cells, suggesting that AdIL-12 + E7 injection enhances antitumor immunity in the human papillomavirus (HPV) 16 tumor model through increased expansion of the cytotoxic T-lymphocyte (CTL) subset. This enhanced protection appeared to be mediated by CD8(+) T cells, as determined by in vivo T-cell subset deletion. Thus, these studies demonstrate that E7 vaccines can induce CTL responses responsible for antitumor effects in the presence of IL-12 delivered via adenovirus vectors. This likely provides one additional approach for immune therapy against cervical cancers.
Collapse
Affiliation(s)
- Woong-Shick Ahn
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, 137-040, Korea
| | | | | | | | | | | | | | | |
Collapse
|