1
|
Takata K, Miyata-Takata T, Sato Y. Frequent CDKN2B/P15 and DAPK1 methylation in duodenal follicular lymphoma is related to duodenal reactive lymphoid hyperplasia. J Clin Exp Hematop 2024; 64:129-137. [PMID: 38925973 PMCID: PMC11303960 DOI: 10.3960/jslrt.24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Duodenal type follicular lymphoma (DFL), a rare entity of follicular lymphoma (FL), is clinically indolent and is characterized by a low histological grade compared with nodal follicular lymphoma (NFL). Our previous reports revealed that DFL shares characteristics of both NFL and mucosa-associated lymphoid tissue (MALT) lymphoma in terms of clinical and biological aspects, suggesting its pathogenesis may involve antigenic stimulation. In contrast to NFL, the genomic methylation status of DFL is still challenging. Here, we determined the methylation profiles of DNAs from patients with DFL (n = 12), NFL (n = 10), duodenal reactive lymphoid hyperplasia (D-RLH) (n = 7), nodal reactive lymphoid hyperplasia (N-RLH) (n = 5), and duodenal samples from normal subjects (NDU) (n = 5) using methylation specific PCR of targets previously identified in MALT lymphoma (CDKN2B/P15, CDKN2A/P16, CDKN2C/P18, MGMT, hMLH-1, TP73, DAPK, HCAD). DAPK1 was frequently methylated in DFL (9/12; 75%), NFL (9/10; 90%), and D-RLH (5/7; 71%). CDKN2B/P15 sequences were methylated in six DFL samples and in only one NFL sample. Immunohistochemical analysis showed that p15 expression inversely correlated with methylation status. Genes encoding other cyclin-dependent kinase inhibitors (CDKN2A/P16, CDKN2C/P18) were not methylated in DFL samples. Methylation of the genes of interest was not detected in DNAs from D-RLH, except for DAPK1, and the difference in the extent of methylation between NDU and D-RLH was statistically significant (P = 0.013). Our results suggest that D-RLH serves as a reservoir for the development of DFL and that methylation of CDKN2B/P15 plays an important role in this process.
Collapse
|
2
|
Gao Q, Ma C, Meng S, Wang G, Xing Q, Xu Y, He X, Wang T, Cao Y. Exploration of molecular features of PCOS with different androgen levels and immune-related prognostic biomarkers associated with implantation failure. Front Endocrinol (Lausanne) 2022; 13:946504. [PMID: 36060967 PMCID: PMC9439868 DOI: 10.3389/fendo.2022.946504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common heterogeneous reproductive disease afflicting women of childbearing age, has been recognized as a chronic inflammatory disease recently. Most PCOS patients have hyperandrogenism, indicating a poor prognosis and poor pregnancy outcomes. The molecular mechanism underlying PCOS development is still unknown. In the present study, we investigated the gene expression profiling characteristics of PCOS with hyperandrogenism (HA) or without hyperandrogenism (NHA) and identified immune-related factors that correlated with embryo implantation failure. METHODS PCOS and recurrent implantation failure (RIF) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. ClueGO software was used to perform enrichment analysis of differentially expressed genes (DEGs) in PCOS with varying androgen levels. The Weighted Co-Expression Network Analysis (WGCNA) was used to identify co-expressed modules and shared gene signatures between HA PCOS and RIF. Moreover, the upregulated DEGs of HA PCOS and RIF were intersected with shared gene signatures screening by WGCNA to excavate further key prognostic biomarkers related to implantation failure of HA PCOS. The selected biomarker was verified by qRT-PCR. RESULTS A total of 271 DEGs were found in HA PCOS granulosa cell samples, and 720 DEGs were found in NHA PCOS. According to CuleGO enrichment analysis, DEGs in HA PCOS are enriched in immune activation and inflammatory response. In contrast, DEGs in NHA PCOS are enriched in mesenchymal cell development and extracellular space. Using WGCNA analysis, we discovered 26 shared gene signatures between HA PCOS and RIF, which were involved in corticosteroid metabolism, bone maturation and immune regulation. DAPK2 was furtherly screened out and verified to be closely related with the development of HA PCOS, acting as an independent predictor biomarker of the embryo implantation failure. DAPK2 expression was negatively correlated to the embryo implantation rate (r=-0.474, P=0.003). The immune infiltration results suggested that upregulated DAPK2 expression was closely related with NK cell infiltration and macrophage M2, playing an essential role in the pathogenesis of implantation failure in HA PCOS. CONCLUSION Our research revealed the expression profiling of PCOS with different androgen levels and identified DAPK2 as a critical prognostic biomarker for implantation failure in PCOS.
Collapse
Affiliation(s)
- Qinyu Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
| | - Cong Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Shuyu Meng
- Molecular Pharmacology and Therapeutics, University of Minnesota, Twin Cities, MN, United States
| | - Guanxiong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Qiong Xing
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| |
Collapse
|
3
|
Ketkar M, Dutt S. Epigenetic Regulation Towards Acquired Drug Resistance in Cancer. Subcell Biochem 2022; 100:473-502. [PMID: 36301503 DOI: 10.1007/978-3-031-07634-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapy resistance remains the most challenging obstacle in cancer treatment. Substantial efforts and evidences have accumulated over decades suggesting not only genetic but non-genomic mechanisms underlying this adaptation of tumor cells. Alterations in epigenome can have a fundamental effect on cellular functions and response to stresses like anticancer therapy. This chapter discusses the principal mechanisms by which epigenetic modifications in the genome and transcriptome aid tumor cells toward acquisition of resistance to chemotherapy.
Collapse
Affiliation(s)
- Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
4
|
Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, Vittadini G, Desiderio DM. EPMA position paper in cancer: current overview and future perspectives. EPMA J 2015; 6:9. [PMID: 25908947 PMCID: PMC4407842 DOI: 10.1186/s13167-015-0030-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Division of Translational and Clinical Research I, Research Institute, National Cancer Center, Gyeonggi, 410-769 Republic of Korea
| | - Rostyslav Bubnov
- Clinical Hospital 'Pheophania' of State Management of Affairs Department, Kyiv, Ukraine ; Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Suzanne Hagan
- Dept of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Dominic M Desiderio
- Department of Neurology, University of Tennessee Center for Health Science, Memphis, USA
| |
Collapse
|
5
|
Abstract
Death associated protein kinase 1 (DAPK) is an important serine/theoreine kinase involved in various cellular processes such as apoptosis, autophagy and inflammation. DAPK expression and activity are misregulated in multiple diseases including cancer, neuronal death, stoke, et al. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. In this review, we summarize the pathological status and functional roles of DAPK in disease and compare the published reagents that can manipulate the expression or activity of DAPK. The pleiotropic functions of DAPK make it an intriguing target and the barriers and opportunities for targeting DAPK for future clinical application are discussed.
Collapse
|
6
|
The diagnostic value of DNA methylation in leukemia: a systematic review and meta-analysis. PLoS One 2014; 9:e96822. [PMID: 24810788 PMCID: PMC4014555 DOI: 10.1371/journal.pone.0096822] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022] Open
Abstract
Background Accumulating evidence supports a role of DNA methylation in the pathogenesis of leukemia. The aim of our study was to evaluate the potential genes with aberrant DNA methylation in the prediction of leukemia risk by a comprehensive meta-analysis of the published data. Methods A series of meta-analyses were done among the eligible studies that were harvested after a careful filtration of the searching results from PubMed literature database. Mantel-Haenszel odds ratios and 95% confidence intervals were computed for each methylation event assuming the appropriate model. Results A total of 535 publications were initially retrieved from PubMed literature database. After a three-step filtration, we harvested 41 case-control articles that studied the role of gene methylation in the prediction of leukemia risk. Among the involving 30 genes, 20 genes were shown to be aberrantly methylated in the leukemia patients. A further subgroup meta-analysis by subtype of leukemia showed that CDKN2A, CDKN2B, ID4 genes were significantly hypermethylated in acute myeloid leukemia. Conclusions Our meta-analyses identified strong associations between a number of genes with aberrant DNA methylation and leukemia. Further studies should be required to confirm the results in the future.
Collapse
|
7
|
Taylor KH, Briley A, Wang Z, Cheng J, Shi H, Caldwell CW. Aberrant Epigenetic Gene Regulation in Lymphoid Malignancies. Semin Hematol 2013; 50:38-47. [DOI: 10.1053/j.seminhematol.2013.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Abstract
INTRODUCTION: Non-Hodgkin Lymphoma (NHL) is a heterogeneous group of malignancies with over thirty different subtypes. Follicular lymphoma (FL) is the most common form of indolent NHL and the second most common form of NHL overall. It has morphologic, immunophenotypic and clinical features significantly different from other subtypes. Considerable effort has been devoted to the identification of risk factors for etiology and prognosis of FL. These risk factors may advance our understanding of the biology of FL and have an impact on clinical practice. AREAS COVERED: The epidemiology of NHL and FL is briefly reviewed. For FL etiology and prognosis separately, we review clinical, environmental and molecular (including genetic, genomic, epigenetic and others) risk factors suggested in the literature. EXPERT OPINION: A large number of potential risk factors have been suggested in recent studies. However, there is a lack of consensus, and many of the suggested risk factors have not been rigorously validated in independent studies. There is a need for large-scale, prospective studies to consolidate existing findings and discover new risk factors. Some of the identified risk factors are successful at the population level. More effective individual-level risk factors and models remain to be identified.
Collapse
|
9
|
Hütter G, Kaiser M, Neumann M, Mossner M, Nowak D, Baldus CD, Gökbuget N, Hoelzer D, Thiel E, Hofmann WK. Epigenetic regulation of PAX5 expression in acute T-cell lymphoblastic leukemia. Leuk Res 2011; 35:614-9. [DOI: 10.1016/j.leukres.2010.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/11/2010] [Accepted: 11/22/2010] [Indexed: 01/09/2023]
|
10
|
Blum KA, Liu Z, Lucas DM, Chen P, Xie Z, Baiocchi R, Benson DM, Devine SM, Jones J, Andritsos L, Flynn J, Plass C, Marcucci G, Chan KK, Grever MR, Byrd JC. Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation. Br J Haematol 2010; 150:189-95. [PMID: 20456354 DOI: 10.1111/j.1365-2141.2010.08213.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeting aberrant DNA hypermethylation in chronic lymphocytic leukaemia (CLL) and non-Hodgkin lymphoma (NHL) with decitabine may reverse epigenetic silencing in B-cell malignancies. Twenty patients were enrolled in two phase I trials to determine the minimum effective pharmacological dose of decitabine in patients with relapsed/refractory CLL (n = 16) and NHL (n = 4). Patients received 1-3 cycles of decitabine. Dose-limiting toxicity (DLT) was observed in 2 of 4 CLL and 2 of 2 NHL patients receiving decitabine at 15 mg/m(2) per d days 1-10, consisting of grade 3-4 thrombocytopenia and hyperbilirubinaemia. Six patients with CLL received decitabine at 10 mg/m(2) per d days 1-10 without DLT; however, re-expression of methylated genes or changes in global DNA methylation were not observed. Therefore, a 5-day decitabine schedule was examined. With 15 mg/m(2) per d decitabine days 1-5, DLT occurred in 2 of 6 CLL and 2 of 2 NHL patients, consisting of grade 3-4 neutropenia, thrombocytopenia, and febrile neutropenia. Eight patients had stable disease. In 17 patients, there were no significant changes in genome-wide methylation or in target gene re-expression. In conclusion, dose-limiting myelosuppression and infectious complications prevented dose escalation of decitabine to levels associated with changes in global methylation or gene re-expression in CLL and NHL.
Collapse
Affiliation(s)
- Kristie A Blum
- Division of Hematology-Oncology, Department of Internal Medicine, The Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang Q, Su X, Ai L, Li M, Fan CY, Weiss LM. Promoter hypermethylation of multiple genes in primary gastric lymphoma. Leuk Lymphoma 2009; 48:1988-96. [PMID: 17852707 DOI: 10.1080/10428190701573224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aberrant hypermethylation of CpG islands in the promoter region of tumor suppressor and other important genes in neoplastic cells of lymphoma has been demonstrated to be one of the mechanisms for epigenetic loss of gene function. In this study, we analyzed promoter hypermethylation of the following genes in 49 cases of primary gastric lymphoma (PGL): ATM, p16INK4a(CDKN2A), hMLH1, MGMT, DAPK, and CDH1(ECAD). The PGL cases studied included 26 (53%) cases of diffuse large B-cell lymphoma (DLBCL), 12 (25%) cases of extranodal marginal zone lymphoma (MZL), 7 (14%) cases of MZL with large cell transformation (MZL/DLBCL), 1 (2%) case of follicular lymphoma (FL), one (2%) case of Burkitt-like lymphoma (BL), one case (2%) of lymphoplasmacytic lymphoma (LPL) and one case (2%) of peripheral T-cell lymphoma. Available pathologic data regarding to extragastric involvement at the time of resection of the PGLs were reviewed and correlated. Promoter hypermethylation was detected in 6 of 49 (12.2%) cases for ATM; 13 of 49 (26.5%) for p16INK4a, 19 of 49 (38.8%) for hMLH1; 22 of 49 (44.9%) for MGMT; 27 of 49 (55.1%) for DAPK and 16 of 49 (32.7%) for CDH1. A total of 85% of the PGLs had promoter hypermethylation in at least one of these genes. With different histologic subtypes, promoter hypermethylation of DAPK, hMLH1, and CDH1 genes occurred in 70%, 42%, and 42% respectively for DLBCL, which appeared to be higher than combined MZL and MZL/DLBCL subgroup. Approximately 81% PGLs demonstrated H. pylori infection by immunohistochemistry. H. pylori status did not appear to be statistically correlated with promoter hypermethylation of the genes. Of 37 PGL cases, 19 cases had extragastric involvement at the time of resection, indicating relatively higher stage disease. The frequencies of promoter methylation in those cases were 58% for DAPK, 42% for hMLH1, 37% for CDH1, 26% for p16INK4a and 11% for ATM respectively. The promoter methylation at MGMT gene was significantly higher in the PGLs without extragastric involvement (61%) as compared to those with extragastric involvement (26%).
Collapse
Affiliation(s)
- Qin Huang
- Division of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Röhrs S, Romani J, Zaborski M, Drexler HG, Quentmeier H. Hypermethylation of Death-Associated Protein Kinase 1 differentiates natural killer cell lines from cell lines derived from T-acute lymphoblastic leukemia. Leukemia 2009; 23:1174-6. [PMID: 19212339 DOI: 10.1038/leu.2009.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Abstract
Nucleoside analogs are structurally similar antimetabolites that have a broad range of action and are clinically active in both solid tumors and hematological malignancies. Many of these agents are incorporated into DNA by polymerases during normal DNA synthesis, an action that blocks further extension of the nascent strand and causes stalling of replication forks. The molecular mechanisms that sense stalled replication forks activate cell cycle checkpoints and DNA repair processes, which may contribute to drug resistance. When replication forks are not stabilized by these molecules or when subsequent DNA repair processes are overwhelmed, apoptosis is initiated either by these same DNA damage sensors or by alternative mechanisms. Recently, strategies aimed at targeting DNA damage checkpoints or DNA repair processes have demonstrated effectiveness in sensitizing cells to nucleoside analogs, thus offering a means to elude drug resistance. In addition to their DNA synthesis-directed actions many nucleoside analogs trigger apoptosis by unique mechanisms, such as causing epigenetic modifications or by direct activation of the apoptosome. A review of the cellular and molecular responses to clinically relevant agents provides an understanding of the mechanisms that cause apoptosis and may provide rationale for the development of novel therapeutic strategies.
Collapse
|
14
|
NIELÄNDER INGA, BUG STEFANIE, RICHTER JULIA, GIEFING MACIEJ, IGNACIO MARTÍN-SUBERO JOSÉ, SIEBERT REINER. Combining array-based approaches for the identification of candidate tumor suppressor loci in mature lymphoid neoplasms. APMIS 2007; 115:1107-34. [DOI: 10.1111/j.1600-0463.2007.apm_883.xml.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Roman-Gomez J, Jimenez-Velasco A, Barrios M, Prosper F, Heiniger A, Torres A, Agirre X. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma 2007; 48:1269-82. [PMID: 17613754 DOI: 10.1080/10428190701344899] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The hallmark of acute lymphoblastic leukemia (ALL) is a progressive appearance of malignant cell behavior that is triggered by the evolution of altered gene function. ALL has traditionally been viewed as a genetic disease; however, epigenetic defects also play an important role. DNA promoter methylation has gained increasing recognition as an important mechanism for transcriptional silencing of tumor-suppressor genes. Hypermethylation may contribute to the pathogenesis of leukemias providing an alternative route to gene mutation. We have reported that gene methylation in ALL cells is the most important way to inactivate cancer-related genes in this disease. In fact, this epigenetic event can help to inactivate tumor-suppressive apoptotic or growth-arresting responses and has prognostic impact in B- and T-ALL. The presence in individual tumors of multiple genes simultaneously methylated is an independent factor of poor prognosis in both childhood and adult ALL in terms of disease-free survival and overall survival. Moreover, methylation status is able to redefine the prognosis of selected ALL groups with well-established prognostic features.
Collapse
|
16
|
Rizzi M, Tschan MP, Britschgi C, Britschgi A, Hügli B, Grob TJ, Leupin N, Mueller BU, Simon HU, Ziemiecki A, Torbett BE, Fey MF, Tobler A. The death-associated protein kinase 2 is up-regulated during normal myeloid differentiation and enhances neutrophil maturation in myeloid leukemic cells. J Leukoc Biol 2007; 81:1599-608. [PMID: 17347302 DOI: 10.1189/jlb.0606400] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The death-associated protein kinase 2 (DAPK2) belongs to a family of Ca(2+)/calmodulin-regulated serine/threonine kinases involved in apoptosis. During investigation of candidate genes operative in granulopoiesis, we identified DAPK2 as highly expressed. Subsequent investigations demonstrated particularly high DAPK2 expression in normal granulocytes compared with monocytes/macrophages and CD34(+) progenitor cells. Moreover, significantly increased DAPK2 mRNA levels were seen when cord blood CD34(+) cells were induced to differentiate toward neutrophils in tissue culture. In addition, all-trans retinoic acid (ATRA)-induced neutrophil differentiation of two leukemic cell lines, NB4 and U937, revealed significantly higher DAPK2 mRNA expression paralleled by protein induction. In contrast, during differentiation of CD34(+) and U937 cells toward monocytes/macrophages, DAPK2 mRNA levels remained low. In primary leukemia, low expression of DAPK2 was seen in acute myeloid leukemia samples, whereas chronic myeloid leukemia samples in chronic phase showed intermediate expression levels. Lentiviral vector-mediated expression of DAPK2 in NB4 cells enhanced, whereas small interfering RNA-mediated DAPK2 knockdown reduced ATRA-induced granulocytic differentiation, as evidenced by morphology and neutrophil stage-specific maturation genes, such as CD11b, G-CSF receptor, C/EBPepsilon, and lactoferrin. In summary, our findings implicate a role for DAPK2 in granulocyte maturation.
Collapse
Affiliation(s)
- Mattia Rizzi
- Experimental Oncology/Hematology, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hayslip J, Montero A. Tumor suppressor gene methylation in follicular lymphoma: a comprehensive review. Mol Cancer 2006; 5:44. [PMID: 17026765 PMCID: PMC1629025 DOI: 10.1186/1476-4598-5-44] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 10/06/2006] [Indexed: 12/19/2022] Open
Abstract
Transcriptional silencing of tumor suppressor genes, associated with DNA methylation, is a common epigenetic event in hematologic malignancies. Although DNA hypermethylation of CpG islands is well described in acute leukemias and myelodysplastic syndromes, much less is known of the specific methylation changes that commonly occur in follicular B cell lymphomas. Earlier methylation studies of follicular lymphoma involved only cell lines; however there is a growing literature of methylation changes in primary human FL samples. Published studies of primary follicular lymphoma specimens have demonstrated that: androgen receptor, SHP1, and death-associated protein kinase genes are commonly methylated. By contrast, the cyclin dependent kinase inhibitors p15, p16, and p57 are uncommon epigenetic events in follicular lymphoma. Methylation of cyclin dependent kinase inhibitors is more common in high grade lymphomas, and may be an important step in the progression and transformation of follicular lymphoma. Further methylation studies in follicular lymphoma should investigate the prognostic and therapeutic significance of these epigenetic changes and investigate methylation of other genes. Finally, reactivation of methylated tumor suppressor genes through the use of hypomethylating agents is a promising and novel approach to the treatment of indolent and transformed follicular lymphomas.
Collapse
Affiliation(s)
- John Hayslip
- Hollings Cancer Center, Medical University of South Carolina, Clinical Sciences Building Room 903, PO Box 250635, Charleston, SC 29425, USA
| | - Alberto Montero
- Hollings Cancer Center, Medical University of South Carolina, Clinical Sciences Building Room 903, PO Box 250635, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Agirre X, Román-Gómez J, Vázquez I, Jiménez-Velasco A, Garate L, Montiel-Duarte C, Artieda P, Cordeu L, Lahortiga I, Calasanz MJ, Heiniger A, Torres A, Minna JD, Prósper F. Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. Int J Cancer 2006; 118:1945-53. [PMID: 16287063 DOI: 10.1002/ijc.21584] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The PARK2 gene, previously identified as a mutated target in patients with autosomal recessive juvenile parkinsonism (ARJP), has recently been found to be a candidate tumor suppressor gene in ovarian, breast, lung and hepatocellular carcinoma that maps to the third common fragile site (CFS) FRA6E. PARK2 is linked to a novel described PACRG gene by a bidirectional promoter containing a defined CpG island in its common promoter region. We have studied the role of promoter hypermethylation in the regulation of PARK2 and PACRG expression in different tumor cell lines and primary patient samples. Abnormal methylation of the common promoter of PARK2 and PACRG was observed in 26% of patients with acute lymphoblastic leukemia and 20% of patients with chronic myelogenous leukemia (CML) in lymphoid blast crisis, but not in ovarian, breast, lung, neuroblastoma, astrocytoma or colon cancer cells. Abnormal methylation resulted in downregulation of PARK2 and PACRG gene expression, while demethylation of ALL cells resulted in demethylation of the promoter and upregulation of PARK2 and PACRG expression. By FISH, we demonstrated that a lack of PARK2 and PACRG expression was due to biallelic hypermethylation and not to deletion of either PARK2 or PACRG in ALL. In conclusion, our results demonstrate for the first time that the candidate tumor suppressor genes PARK2 and PACRG are epigenetically regulated in human leukemia, suggesting that abnormal methylation and regulation of PARK2 and PACRG may play a role in the pathogenesis and development of this hematological neoplasm.
Collapse
Affiliation(s)
- Xabier Agirre
- Foundation for Applied Medical Research, Division of Cancer, Area of Cell Therapy and Hematology Service, Clínica Universitaria, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen RH, Wang WJ, Kuo JC. The tumor suppressor DAP-kinase links cell adhesion and cytoskeleton reorganization to cell death regulation. J Biomed Sci 2006; 13:193-9. [PMID: 16456710 DOI: 10.1007/s11373-005-9063-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Accepted: 12/19/2005] [Indexed: 01/01/2023] Open
Abstract
Death-associated protein (DAP)-kinase, an actin-cytoskeleton localized serine/threonine kinase, functions as a novel tumor suppressor and participates in a wide variety of cell death systems. Recent studies indicate that DAP-kinase elicits a potent cytoskeletal reorganization effect and is capable of modulating integrin inside-out signaling. Using this understanding of DAP-kinase protein function as a framework, we discuss the functional mechanisms of this kinase in regulating death-associated morphological and signaling events. Furthermore, a potential role of DAP-kinase to be a drug target is also discussed.
Collapse
Affiliation(s)
- Ruey-Hwa Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan,
| | | | | |
Collapse
|
20
|
Aozasa K, Takakuwa T, Nakatsuka SI. Pyothorax-associated lymphoma: a lymphoma developing in chronic inflammation. Adv Anat Pathol 2005; 12:324-31. [PMID: 16330929 DOI: 10.1097/01.pap.0000194627.50878.02] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pyothorax-associated lymphoma (PAL) is a non-Hodgkin lymphoma of exclusively B-cell phenotype developing in the pleural cavity of patients after more than 20-year history of pyothorax resulting from an artificial pneumothorax for the treatment of pulmonary tuberculosis or tuberculous pleuritis. The most common symptoms on admission are chest pain and fever. Serum neuron-specific enolase level suggesting a diagnosis of small cell lung cancer is occasionally elevated. Histologically PAL usually shows a diffuse proliferation of large cells of B-cell type (diffuse large B-cell lymphoma [DLBL]). In PAL cells, representative B-cell markers other than CD20 are frequently negative with aberrant expression of T-cell markers such as CD2. A gene expression profile of PAL is distinct from nodal DLBL in its higher expression level of interferon-inducible genes. PAL is strongly associated with Epstein-Barr virus (EBV) infection with expression of EBV latent genes such as EBNA-2, LMP-1, together with EBNA-1. Taken together, PAL is a distinct entity both in its clinicopathologic presentation as well as its gene expression profile. Use of an artificial pneumothorax, EBV infection, and cytokines and reactive oxygen species produced in longstanding pyothorax might be important factors for PAL development.
Collapse
Affiliation(s)
- Katsuyuki Aozasa
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | |
Collapse
|
21
|
Jeon YK, Kim H, Park SO, Choi HY, Kim YA, Park SS, Kim JE, Kim YN, Kim CW. Resistance to Fas-mediated apoptosis is restored by cycloheximide through the downregulation of cellular FLIPL in NK/T-cell lymphoma. J Transl Med 2005; 85:874-84. [PMID: 15924153 DOI: 10.1038/labinvest.3700291] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Extranodal NK/T-cell lymphoma (NKTL), nasal type, is a highly aggressive neoplasm and is strongly associated with Epstein-Barr virus (EBV). In this study, we demonstrate that EBV-positive NKTL cell lines, namely, Hank-1, NK-YS, and NK-L, are resistant to Fas-mediated apoptosis induced by anti-Fas antibodies despite high levels of Fas surface expression and no mutation in the Fas gene. Fas stimulation of Hank-1 and NK-YS cells showed little processing of caspase 8, caspase 3, or bid, although the proximal signaling molecules of the death-inducing signaling complex, namely, Fas, Fas-associated protein with a death domain, caspase 8, and bid were present in these cells. Consistent with previous reports on the hypermethylation of death associated protein (DAP) kinase in NKTLs, the promoter of DAP kinase was methylated and its mRNA not detected in Hank-1 cells. However, the restoration of DAP kinase expression by 5-aza-2'-deoxycytidine did not sensitize Hank-1 to Fas-mediated apoptosis, indicating that DAP kinase deficiency does not contribute to resistance to Fas-mediated apoptosis. Since etoposide-induced apoptosis involved caspase 3 activation in Hank-1 and NK-YS cells, the caspase 3-dependent apoptotic machinery appears to be intact. Interestingly, cotreatment of Hank-1 with cycloheximide, a protein synthesis inhibitor, markedly sensitized cells to Fas-mediated apoptosis along with caspase 8 activation and c-FLIP(L) (cellular FLICE inhibitory protein long form) downregulation. Moreover, immunohistochemistry on paraffin-embedded tissue revealed c-FLIP expression in 39% (14 of 36) of NKTL patients. Taken together, these findings indicate that c-FLIP(L)-mediated resistance to Fas contributes to the development and progression of NKTLs. This study also suggests that agents capable of downregulating c-FLIP(L) could be used to treat NKTL.
Collapse
Affiliation(s)
- Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM. An inducible caspase 9 safety switch for T-cell therapy. Blood 2005; 105:4247-54. [PMID: 15728125 PMCID: PMC1895037 DOI: 10.1182/blood-2004-11-4564] [Citation(s) in RCA: 528] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The efficacy of adoptive T-cell therapy as treatment for malignancies may be enhanced by genetic modification of infused cells. However, oncogenic events due to vector/transgene integration, and toxicities due to the infused cells themselves, have tempered enthusiasm. A safe and efficient means of removing aberrant cells in vivo would ameliorate these concerns. We describe a "safety switch" that can be stably and efficiently expressed in human T cells without impairing phenotype, function, or antigen specificity. This reagent is based on a modified human caspase 9 fused to a human FK506 binding protein (FKBP) to allow conditional dimerization using a small molecule pharmaceutical. A single 10-nM dose of synthetic dimerizer drug induces apoptosis in 99% of transduced cells selected for high transgene expression in vitro and in vivo. This system has several advantages over currently available suicide genes. First, it consists of human gene products with low potential immunogenicity. Second, administration of dimerizer drug has no effects other than the selective elimination of transduced T cells. Third, inducible caspase 9 maintains function in T cells overexpressing antiapoptotic molecules. These characteristics favor incorporation of inducible caspase 9 as a safety feature in human T-cell therapies.
Collapse
Affiliation(s)
- Karin C Straathof
- Center for Cell and Gene Therapy, Baylor College of Meidcine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang X, Wu W, Sun SY, Wistuba II, Hong WK, Mao L. Hypermethylation of the Death-Associated Protein Kinase Promoter Attenuates the Sensitivity to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Human Non–Small Cell Lung Cancer Cells. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.685.2.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Death-associated protein (DAP) kinase plays an important role in IFN-γ, tumor necrosis factor (TNF)-α, or Fas–ligand induced apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF ligand family and can induce caspase-dependent apoptosis in cancer cells while sparing most of the normal cells. However, some of the cancer cell lines are insensitive to TRAIL, and such resistance cannot be explained by the dysfunction of TRAIL receptors or their known downstream targets. We reported previously that DAP kinase promoter is frequently methylated in non-small cell lung cancer (NSCLC), and such methylation is associated with a poor clinical outcome. To determine whether DAP kinase promoter methylation contributes to TRAIL resistance in NSCLC cells, we measured DAP kinase promoter methylation and its gene expression status in 11 NSCLC cell lines and correlated the methylation/expression status with the sensitivity of cells to TRAIL. Of the 11 cell lines, 1 had a completely methylated DAP kinase promoter and no detectable DAP kinase expression, 4 exhibited partial promoter methylation and substantially decreased gene expression, and the other 6 cell lines showed no methylation in the promoter and normal DAP kinase expression. Therefore, the amount of DAP kinase expression amount was negatively correlated to its promoter methylation (r = −0.77; P = 0.003). Interestingly, the cell lines without the DAP kinase promoter methylation underwent substantial apoptosis even in the low doses of TRAIL, whereas those with DAP kinase promoter methylation were resistant to the treatment. The resistance to TRAIL was reciprocally correlated to DAP kinase expression in 10 of the 11 cell lines at 10 ng/mL concentration (r = 0.91; P = 0.001). We treated cells resistant to TRAIL with 5-aza-2′-deoxycytidine, a demethylating reagent, and found that these cells expressed DAP kinase and became sensitive to TRAIL. These results suggest that DAP kinase is involved in TRAIL-mediated cell apoptosis and that a demethylating agent may have a role in enhancing TRAIL-mediated apoptosis in some NSCLC cells by reactivation of DAP kinase.
Collapse
Affiliation(s)
- Ximing Tang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Weiguo Wu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Shi-yong Sun
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ignacio I. Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Li Mao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Pompeia C, Hodge DR, Plass C, Wu YZ, Marquez VE, Kelley JA, Farrar WL. Microarray analysis of epigenetic silencing of gene expression in the KAS-6/1 multiple myeloma cell line. Cancer Res 2004; 64:3465-73. [PMID: 15150099 DOI: 10.1158/0008-5472.can-03-3970] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epigenetic control of gene transcription in cancer has been the theme of many recent studies and therapeutic approaches. Carcinogenesis is frequently associated with hypermethylation and consequent down-regulation of genes that prevent cancer, e.g., those that control cell proliferation and apoptosis. We used the demethylating drug zebularine to induce changes in DNA methylation, then examined patterns of gene expression using cDNA array analysis and Restriction Landmark Genomic Scanning followed by RNase protection assay and reverse transcription-PCR to confirm the results. Microarray studies revealed that many genes were epigenetically regulated by methylation. We concluded that methylation decreased the expression of, or silenced, several genes, contributing to the growth and survival of multiple myeloma cells. For example, a number of genes (BAD, BAK, BIK, and BAX) involved in apoptosis were found to be suppressed by methylation. Sequenced methylation-regulated DNA fragments identified by Restriction Landmark Genomic Scanning were found to contain CpG islands, and some corresponded to promoters of genes that were regulated by methylation. We also observed that after the removal of the demethylating drug, the addition of interleukin 6 restored CpG methylation and re-established previously silenced gene patterns, thus implicating a novel role of interleukin 6 in processes regulating epigenetic gene repression and carcinogenesis.
Collapse
Affiliation(s)
- Celine Pompeia
- Laboratory of Molecular Immunoregulation, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kinoshita T. Epigenetic Inactivation of Tumor Suppressor Genes in Hematologic Malignancies. Int J Hematol 2004; 80:108-19. [PMID: 15481438 DOI: 10.1532/ijh97.04056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of genetic alterations are involved in the development of hematologic malignancies. These alterations include the activation of oncogenes by chromosomal translocation or gene amplification and the inactivation of tumor suppressor genes by gene deletion or mutations. Recently, epigenetic change has been proven to be another important means of inactivating tumor suppressor genes in tumor cells, and hypermethylation of promoter DNA is one of the most important mechanisms. In hematologic malignancies, many kinds of tumor suppressor genes and candidate suppressor genes are epigenetically inactivated. Inactivation of tumor suppressor genes usually occurs in a disease-specific manner and plays important roles in the development and progression of the disease. Some of these alterations have clinical effects on treatment results or the prognoses of the patients.
Collapse
Affiliation(s)
- Tomohiro Kinoshita
- Department of Hematology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
26
|
Voso MT, Scardocci A, Guidi F, Zini G, Di Mario A, Pagano L, Hohaus S, Leone G. Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes. Blood 2003; 103:698-700. [PMID: 14504087 DOI: 10.1182/blood-2003-07-2249] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Death-associated protein kinase (DAP-kinase), a proapoptotic serine/threonine kinase, is a candidate tumor suppressor gene. We studied the methylation status of DAP-kinase of 194 bone marrow samples from 160 patients with acute myeloid leukemia (AML) and 34 with a myelodysplastic syndrome (MDS) at the time of initial diagnosis by polymerase chain reaction (PCR). Hypermethylation of DAP-kinase was present in 27.5% (44 of 160) of AML and in 47% (16 of 34) of MDS specimens and significantly correlated to loss of DAP-kinase expression (P =.008). It was significantly more frequent in AML secondary to therapy for other malignancies (s-AML; 14 of 29, 48.3%), as compared to de novo AML (30 of 131, 22.9%, P =.01). DAP-kinase hypermethylation in AML was associated with myelodysplastic changes in the bone marrow at the time of the initial diagnosis (P =.002) and with the presence of cytogenetic abnormalities (P =.02). Alteration in the apoptotic response due to the loss of DAP-kinase function may be an early event in the transformation pathway to secondary leukemia via myelodysplasia.
Collapse
Affiliation(s)
- Maria Teresa Voso
- Istituto di Ematologia, Università Cattolica S. Cuore, L.go A. Gemelli, 1, 00168 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|