1
|
Abe K, Yamamoto K, Myoda T, Fujii T, Niwa K. Protective effects of volatile components of aged garlic extract against ultraviolet B-induced apoptosis in human skin fibroblasts. J Food Biochem 2022; 46:e14482. [PMID: 36219767 DOI: 10.1111/jfbc.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 01/14/2023]
Abstract
Aged garlic extract (AGE) has been shown to protect the skin against UV-induced damage, but effects of its volatile components remain unknown. We investigated the effects of the volatile fraction of AGE on the responses of cultured skin fibroblasts subjected to UV-B irradiation. UV-B irradiation (20 mJ/cm2 ) reduced the cell viability to 55% of control. The nonvolatile and volatile fractions of AGE inhibited the UV-B-induced reduction of cell viability; the cell viabilities were 100% and 73%, respectively. The volatile fraction inhibited the UV-B-induced increase in apoptotic cell death by 28%. The volatile fraction also inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) induced by UV-B irradiation. GC-MS analysis revealed that a large number of volatile compounds were generated during aging of garlic. These results suggest that the volatile fraction of AGE has protective effects against the UV-B-induced death of skin fibroblasts, and that this effect may partly be due to an inhibition of apoptosis via the downregulation of MAPK signaling. The volatile compounds of AGE may have beneficial applications for skin health. PRACTICAL APPLICATIONS: In this study, we investigated the effects of AGE against cell damage of UV-B-irradiated human skin fibroblasts. The aging process of garlic produced characteristic volatile compounds that have significant protective effects against UV-induced cell damage. Our results demonstrated that the aging process is a suitable method to develop added value in garlic extracts to improve skin health.
Collapse
Affiliation(s)
- Kazuki Abe
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri City, Japan.,Healthcare Research and Development Division, Wakunaga Pharmaceutical Co. Ltd., Akitakata, Hiroshima, Japan
| | - Kumiko Yamamoto
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri City, Japan
| | - Takao Myoda
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri City, Japan
| | - Takuto Fujii
- Healthcare Research and Development Division, Wakunaga Pharmaceutical Co. Ltd., Akitakata, Hiroshima, Japan
| | - Koichi Niwa
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri City, Japan
| |
Collapse
|
2
|
Ler AAL, Carty MP. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target. Front Oncol 2022; 11:822500. [PMID: 35198436 PMCID: PMC8859465 DOI: 10.3389/fonc.2021.822500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
DNA lesions arising from both exogenous and endogenous sources occur frequently in DNA. During DNA replication, the presence of unrepaired DNA damage in the template can arrest replication fork progression, leading to fork collapse, double-strand break formation, and to genome instability. To facilitate completion of replication and prevent the generation of strand breaks, DNA damage tolerance (DDT) pathways play a key role in allowing replication to proceed in the presence of lesions in the template. The two main DDT pathways are translesion synthesis (TLS), which involves the recruitment of specialized TLS polymerases to the site of replication arrest to bypass lesions, and homology-directed damage tolerance, which includes the template switching and fork reversal pathways. With some exceptions, lesion bypass by TLS polymerases is a source of mutagenesis, potentially contributing to the development of cancer. The capacity of TLS polymerases to bypass replication-blocking lesions induced by anti-cancer drugs such as cisplatin can also contribute to tumor chemoresistance. On the other hand, during homology-directed DDT the nascent sister strand is transiently utilised as a template for replication, allowing for error-free lesion bypass. Given the role of DNA damage tolerance pathways in replication, mutagenesis and chemoresistance, a more complete understanding of these pathways can provide avenues for therapeutic exploitation. A number of small molecule inhibitors of TLS polymerase activity have been identified that show synergy with conventional chemotherapeutic agents in killing cancer cells. In this review, we will summarize the major DDT pathways, explore the relationship between damage tolerance and carcinogenesis, and discuss the potential of targeting TLS polymerases as a therapeutic approach.
Collapse
Affiliation(s)
- Ashlynn Ai Li Ler
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
| | - Michael P. Carty
- Biochemistry, School of Biological and Chemical Sciences, The National University of Ireland (NUI) Galway, Galway, Ireland
- DNA Damage Response Laboratory, Centre for Chromosome Biology, NUI Galway, Galway, Ireland
- *Correspondence: Michael P. Carty,
| |
Collapse
|
3
|
Huang R, Liao X, Li Q. Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2424-2452. [PMID: 35240791 DOI: 10.3934/mbe.2022112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study mainly used The Cancer Genome Atlas (TCGA) RNA sequencing dataset to screen prognostic snoRNAs of acute myeloid leukemia (AML), and used for the construction of prognostic snoRNAs signature for AML. A total of 130 AML patients with RNA sequencing dataset were used for prognostic snoRNAs screenning. SnoRNAs co-expressed genes and differentially expressed genes (DEGs) were used for functional annotation, as well as gene set enrichment analysis (GSEA). Connectivity Map (CMap) also used for potential targeted drugs screening. Through genome-wide screening, we identified 30 snoRNAs that were significantly associated with the prognosis of AML. Then we used the step function to screen a prognostic signature composed of 14 snoRNAs (SNORD72, SNORD38, U3, SNORA73B, SNORD79, SNORA73, SNORD12B, SNORA74, SNORD116-12, SNORA65, SNORA14, snoU13, SNORA75, SNORA31), which can significantly divide AML patients into high- and low-risk groups. Through GSEA, snoRNAs co-expressed genes and DEGs functional enrichment analysis, we screened a large number of potential functional mechanisms of this prognostic signature in AML, such as phosphatidylinositol 3-kinase-Akt, Wnt, epithelial to mesenchymal transition, T cell receptors, NF-kappa B, mTOR and other classic cancer-related signaling pathways. In the subsequent targeted drug screening using CMap, we also identified six drugs that can be used for AML targeted therapy, they were alimemazine, MG-262, fluoxetine, quipazine, naltrexone and oxybenzone. In conclusion, our current study was constructed an AML prognostic signature based on the 14 prognostic snoRNAs, which may serve as a novel prognostic biomarker for AML.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
Takezawa J, Shimazaki A, Takimoto H, Kajiwara K, Yamada K. A large intermediate domain of vertebrate REV3 protein is dispensable for ultraviolet-induced translesion replication. DNA Repair (Amst) 2020; 98:103031. [PMID: 33387704 DOI: 10.1016/j.dnarep.2020.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
DNA polymerase ζ (pol ζ) is involved in translesion replication (translesion synthesis, TLS) and plays an essential role in embryogenesis. In adults, pol ζ triggers mutation as a result of error-prone TLS and causes carcinogenesis. The catalytic subunit of pol ζ, REV3, is evolutionarily conserved from yeast and plants to higher eukaryotes. However, the structures are notably different: unlike that in yeast REV3, a large intermediate domain is inserted in REV3 of humans and mice. The domain is mostly occupied with noncommittal structures (random coil…etc.); therefore, its role and function are yet to be resolved. Previously, we reported deficient levels of ultraviolet (UV)-induced TLS in fibroblasts derived from the Rev3-knockout mouse embryo (Rev3KO-MEF). Here, we constructed a mouse Rev3-expressing plasmid with a deleted intermediate domain (532-1793 a.a,) and transfected it into Rev3KO-MEF. The isolated stable transformants showed comparable levels of UV-sensitivity and UV-TLS activity to those in wild-type MEF, detected using an alkaline sucrose density gradient sedimentation. These results indicate that the intermediate domain is nonessential for UV-induced translesion replication in cultured mouse cells.
Collapse
Affiliation(s)
- Jun Takezawa
- Department of Genetic Biochemistry, The National Institutes of Biomedical Innovation, Health and Nutrition, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Anna Shimazaki
- Department of Genetic Biochemistry, The National Institutes of Biomedical Innovation, Health and Nutrition, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Hidemi Takimoto
- Department of Nutritional Epidemiology and Shoku-iku, The National Institutes of Biomedical Innovation, Health and Nutrition, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8636, Japan
| | | | - Kouichi Yamada
- Department of Genetic Biochemistry, The National Institutes of Biomedical Innovation, Health and Nutrition, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8636, Japan.
| |
Collapse
|
5
|
Nilforoushan A, Furrer A, Wyss LA, van Loon B, Sturla SJ. Nucleotides with altered hydrogen bonding capacities impede human DNA polymerase η by reducing synthesis in the presence of the major cisplatin DNA adduct. J Am Chem Soc 2015; 137:4728-34. [PMID: 25786104 DOI: 10.1021/ja512547g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human DNA polymerase η (hPol η) contributes to anticancer drug resistance by catalyzing the replicative bypass of DNA adducts formed by the widely used chemotherapeutic agent cis-diamminedichloroplatinum (cisplatin). A chemical basis for overcoming bypass-associated resistance requires greater knowledge of how small molecules influence the hPol η-catalyzed bypass of DNA adducts. In this study, we demonstrated how synthetic nucleoside triphosphates act as hPol η substrates and characterized their influence on hPol η-mediated DNA synthesis over unmodified and platinated DNA. The single nucleotide incorporation efficiency of the altered nucleotides varied by more than 10-fold and the higher incorporation rates appeared to be attributable to the presence of an additional hydrogen bond between incoming dNTP and templating base. Finally, full-length DNA synthesis in the presence of increasing concentrations of synthetic nucleotides reduced the amount of DNA product independent of the template, representing the first example of hPol η inhibition in the presence of a platinated DNA template.
Collapse
Affiliation(s)
- Arman Nilforoushan
- §Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Antonia Furrer
- ‡Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Wintherthurerstrasse 190, 8057 Zürich, Switzerland
| | - Laura A Wyss
- §Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Barbara van Loon
- ‡Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Wintherthurerstrasse 190, 8057 Zürich, Switzerland
| | - Shana J Sturla
- §Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
The proteasome inhibitor, MG132, attenuates diabetic nephropathy by inhibiting SnoN degradation in vivo and in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:684765. [PMID: 25003128 PMCID: PMC4070544 DOI: 10.1155/2014/684765] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 01/13/2023]
Abstract
Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF-β/Smad signaling in DN is still unclear. In this study, diabetic rats were randomly divided into a diabetic control group (DC group) and a proteasome inhibitor (MG132) diabetes therapy group (DT group). Kidney damage parameters and the expression of SnoN, Smurf2, and TGF-β were observed. Simultaneously, we cultured rat glomerular mesangial cells (GMCs) stimulated with high glucose, and SnoN and Arkadia expression were measured. Results demonstrated that 24-hour urine protein, ACR, BUN, and the expression of Smurf2 and TGF-β were significantly increased (P < 0.05), whereas SnoN was significantly decreased in the DC group (P < 0.05). However, these changes diminished after treatment with MG132. SnoN expression in GMCs decreased significantly (P < 0.05), but Arkadia expression gradually increased due to high glucose stimulation (P < 0.05), which could be almost completely reversed by MG132 (P < 0.05). The present results support the hypothesis that MG132 may alleviate kidney damage by inhibiting SnoN degradation and TGF-β activation, suggesting that the ubiquitin-proteasome pathway may become a new therapeutic target for DN.
Collapse
|
7
|
Wang H, Zhang S, Zhong J, Zhang J, Luo Y, Pengfei G. The proteasome inhibitor lactacystin exerts its therapeutic effects on glioma via apoptosis: an in vitro and in vivo study. J Int Med Res 2013; 41:72-81. [PMID: 23569132 DOI: 10.1177/0300060513476992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To examine the effect and underlying mechanism of action of the proteasome inhibitor lactacystin on glioma, in vitro and in vivo. METHODS Rat C6 glioma cells were cultured with or without lactacystin. Cell proliferation, apoptosis and mitochondrial membrane potential were determined. A glioma xenograft model was established in mice and animals were treated with 0, 1 or 5 µg/20 g body weight lactacystin for 7 days. Animals were sacrificed on day 17 after completion of treatment. Apoptosis in tumour tissue was examined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Levels of B cell lymphoma 2 (Bcl-2), and Bcl2-associated X protein (Bax) protein and mRNA, were determined in C6 cells and tumour tissues. RESULTS Lactacystin significantly inhibited the proliferation of C6 cells, increased apoptosis and reduced mitochondrial membrane potential in vitro, and suppressed tumour growth in vivo. Lactacystin increased the ratio of Bax to Bcl-2 at the mRNA and protein levels, both in vitro and in vivo. CONCLUSIONS The effects of lactacystin are associated with apoptosis induction. Proteasome inhibition may represent an effective treatment option for glioma.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
8
|
Cui W, Li B, Bai Y, Miao X, Chen Q, Sun W, Tan Y, Luo P, Zhang C, Zheng S, Epstein PN, Miao L, Cai L. Potential role for Nrf2 activation in the therapeutic effect of MG132 on diabetic nephropathy in OVE26 diabetic mice. Am J Physiol Endocrinol Metab 2013; 304:E87-99. [PMID: 23132297 DOI: 10.1152/ajpendo.00430.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress is a major cause of diabetic nephropathy. Upregulation of the key antioxidative transcription factor, nuclear factor-erythroid 2-related factor 2 (Nrf2), was found to prevent the development of diabetic nephropathy. The present study was designed to explore the therapeutic effect of Nrf2 induced by proteasomal inhibitor MG132 at a low dose (10 μg/kg) on diabetic nephropathy. Transgenic type 1 diabetic (OVE26) mice displayed renal dysfunction with albuminuria by 3 mo of age, at which time MG132 treatment was started. After 3-mo treatment with MG132, renal function, morphology, and biochemical changes were examined with real-time PCR, Western blotting, and immunohistochemical examination. Compared with age-matched, nontreated diabetic mice, MG132-treated diabetic mice showed significant improvements in terms of renal structural and functional alterations. These therapeutic effects were associated with increased Nrf2 expression and transcriptional upregulation of Nrf2-regulated antioxidants. Mechanistic study using human renal tubular HK11 cells confirmed the role of Nrf2, as silencing the Nrf2 gene with its specific siRNA abolished MG132 prevention of high-glucose-induced profibrotic response. Furthermore, diabetes was found to significantly increase proteasomal activity in the kidney, an effect that was significantly attenuated by 3 mo of treatment with MG132. These results suggest that MG132 upregulates Nrf2 function via inhibition of diabetes-increased proteasomal activity, which can provide the basis for the therapeutic effect of MG132 on the kidney against diabetes-induced oxidative damage, inflammation, fibrosis, and eventual dysfunction.
Collapse
Affiliation(s)
- Wenpeng Cui
- Second Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Takezawa J, Aiba N, Kajiwara K, Yamada K. Caffeine abolishes the ultraviolet-induced REV3 translesion replication pathway in mouse cells. Int J Mol Sci 2011; 12:8513-29. [PMID: 22272088 PMCID: PMC3257085 DOI: 10.3390/ijms12128513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/08/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022] Open
Abstract
When a replicative DNA polymerase stalls upon encountering a photoproduct on the template strand, it is relieved by other low-processivity polymerase(s), which insert nucleotide(s) opposite the lesion. Using an alkaline sucrose density gradient sedimentation technique, we previously classified this process termed UV-induced translesion replication (UV-TLS) into two types. In human cancer cells or xeroderma pigmentosum variant (XP-V) cells, UV-TLS was inhibited by caffeine or proteasome inhibitors. However, in normal human cells, the process was insensitive to these reagents. Reportedly, in yeast or mammalian cells, REV3 protein (a catalytic subunit of DNA polymerase ζ) is predominantly involved in the former type of TLS. Here, we studied UV-TLS in fibroblasts derived from the Rev3-knockout mouse embryo (Rev3KO-MEF). In the wild-type MEF, UV-TLS was slow (similar to that of human cancer cells or XP-V cells), and was abolished by caffeine or MG-262. In 2 cell lines of Rev3KO-MEF (Rev3−/−p53−/−), UV-TLS was not observed. In p53KO-MEF, which is a strict control for Rev3KO-MEF, the UV-TLS response was similar to that of the wild-type. Introduction of the Rev3 expression plasmid into Rev3KO-MEF restored the UV-TLS response in selected stable transformants. In some transformants, viability to UV was the same as that in the wild-type, and the death rate was increased by caffeine. Our findings indicate that REV3 is predominantly involved in UV-TLS in mouse cells, and that the REV3 translesion pathway is suppressed by caffeine or proteasome inhibitors.
Collapse
Affiliation(s)
- Jun Takezawa
- Division of Genetic Biochemistry, The National Institute of Health and Nutrition, Shinjuku-ku, Tokyo 162-8636, Japan; E-Mail: (J.T.)
| | - Naomi Aiba
- Division of Genetic Biochemistry, The National Institute of Health and Nutrition, Shinjuku-ku, Tokyo 162-8636, Japan; E-Mail: (J.T.)
| | - Kagemasa Kajiwara
- School of Medicine, Tokai University, Isehara-shi, Kanagawa-ken 259-1193, Japan
| | - Kouichi Yamada
- Division of Genetic Biochemistry, The National Institute of Health and Nutrition, Shinjuku-ku, Tokyo 162-8636, Japan; E-Mail: (J.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-3203-5723; Fax: +81-3-3203-0335
| |
Collapse
|
10
|
Takezawa J, Ishimi Y, Aiba N, Yamada K. Rev1, Rev3, or Rev7 siRNA Abolishes Ultraviolet Light-Induced Translesion Replication in HeLa Cells: A Comprehensive Study Using Alkaline Sucrose Density Gradient Sedimentation. J Nucleic Acids 2010; 2010:750296. [PMID: 21151666 PMCID: PMC2997509 DOI: 10.4061/2010/750296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/13/2010] [Accepted: 09/17/2010] [Indexed: 01/04/2023] Open
Abstract
When a replicative DNA polymerase stalls upon encountering a lesion on the template strand, it is relieved by other low-processivity polymerase(s), which insert nucleotide(s) opposite the lesion, extend by a few nucleotides, and dissociate from the 3'-OH. The replicative polymerase then resumes DNA synthesis. This process, termed translesion replication (TLS) or replicative bypass, may involve at least five different polymerases in mammals, although the participating polymerases and their roles have not been entirely characterized. Using siRNAs originally designed and an alkaline sucrose density gradient sedimentation technique, we verified the involvement of several polymerases in ultraviolet (UV) light-induced TLS in HeLa cells. First, siRNAs to Rev3 or Rev7 largely abolished UV-TLS, suggesting that these 2 gene products, which comprise Polζ, play a main role in mutagenic TLS. Second, Rev1-targeted siRNA also abrogated UV-TLS, indicating that Rev1 is also indispensable to mutagenic TLS. Third, Polη-targeted siRNA also prevented TLS to a greater extent than our expectations. Forth, although siRNA to Polι had no detectable effect, that to Polκ delayed UV-TLS. To our knowledge, this is the first study reporting apparent evidence for the participation of Polκ in UV-TLS.
Collapse
Affiliation(s)
- Jun Takezawa
- Division of Genetic Biochemistry, The National Institute of Health and Nutrition, Shinjuku-ku, Tokyo 162-8636, Japan
| | | | | | | |
Collapse
|
11
|
Jain D, Patel N, Shelton M, Basu A, Roque R, Siede W. Enhancement of cisplatin sensitivity by NSC109268 in budding yeast and human cancer cells is associated with inhibition of S-phase progression. Cancer Chemother Pharmacol 2010; 66:945-52. [PMID: 20101404 DOI: 10.1007/s00280-010-1246-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/09/2010] [Indexed: 01/26/2023]
|
12
|
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
13
|
Guo C, Kosarek-Stancel JN, Tang TS, Friedberg EC. Y-family DNA polymerases in mammalian cells. Cell Mol Life Sci 2009; 66:2363-81. [PMID: 19367366 PMCID: PMC11115694 DOI: 10.1007/s00018-009-0024-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/05/2009] [Accepted: 03/23/2009] [Indexed: 11/26/2022]
Abstract
Eukaryotic genomes are replicated with high fidelity to assure the faithful transmission of genetic information from one generation to the next. The accuracy of replication relies heavily on the ability of replicative DNA polymerases to efficiently select correct nucleotides for the polymerization reaction and, using their intrinsic exonuclease activities, to excise mistakenly incorporated nucleotides. Cells also possess a variety of specialized DNA polymerases that, by a process called translesion DNA synthesis (TLS), help overcome replication blocks when unrepaired DNA lesions stall the replication machinery. This review considers the properties of the Y-family (a subset of specialized DNA polymerases) and their roles in modulating spontaneous and genotoxic-induced mutations in mammals. We also review recent insights into the molecular mechanisms that regulate PCNA monoubiquitination and DNA polymerase switching during TLS and discuss the potential of using Y-family DNA polymerases as novel targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Caixia Guo
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA.
| | | | | | | |
Collapse
|
14
|
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 1: post-translational regulation. J Cell Mol Med 2009; 13:3006-18. [PMID: 19522845 PMCID: PMC4516461 DOI: 10.1111/j.1582-4934.2009.00824.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA repair is a fundamental cellular function, indispensable for cell survival, especially in conditions of exposure to environmental or pharmacological effectors of DNA damage. The regulation of this function requires a flexible machinery to orchestrate the reversal of harmful DNA lesions by making use of existing proteins as well as inducible gene products. The accumulation of evidence for the involvement of ubiquitin-proteasome system (UPS) in DNA repair pathways, that is reviewed here, has expanded its role from a cellular waste disposal basket to a multi-dimensional regulatory system. This review is the first of two that attempt to illustrate the nature and interactions of all different DNA repair pathways where UPS is demonstrated to be involved, with special focus on cancer- and chemotherapy-related DNA-damage repair. In this first review, we will be presenting the proteolytic and non-proteolytic roles of UPS in the post-translational regulation of DNA repair proteins, while the second review will focus on the UPS-dependent transcriptional response of DNA repair after DNA damage and stress.
Collapse
|
15
|
Motegi A, Murakawa Y, Takeda S. The vital link between the ubiquitin-proteasome pathway and DNA repair: impact on cancer therapy. Cancer Lett 2009; 283:1-9. [PMID: 19201084 DOI: 10.1016/j.canlet.2008.12.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/23/2008] [Accepted: 12/27/2008] [Indexed: 01/05/2023]
Abstract
Proteasome-dependent protein degradation is involved in a variety of biological processes, including cell-cycle regulation, apoptosis, and stress-responses. Growing evidence from translational research and clinical trials proved the effectiveness of proteasome inhibitors (PIs) in treating several types of hematological malignancies. Although various key molecules in ubiquitin-dependent cellular processes have been proposed as relevant targets of therapeutic proteasome inhibition, our current understanding is far from complete. Recent rapid progress in DNA repair research has unveiled a crucial role of the ubiquitin-proteasome pathway (UPP) in regulating DNA repair. These findings thus bring up the idea that DNA repair pathways could be effective targets of PIs in mediating their cytotoxicity and enhancing the effect of radiotherapy and some DNA-damaging chemotherapeutic agents, such as cisplatin and camptothecin. In this review, we present the current perspective on the UPP-dependent regulatory mechanisms of DNA repair and discuss their therapeutic potential in the application of PIs to a broad spectrum of human cancers.
Collapse
Affiliation(s)
- Akira Motegi
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|