1
|
Fang J, Yang Z, Xie J, Li Z, Hu C, Yang M, Zhou X. Identification and validation of autophagy-related prognostic signature for head and neck squamous cell carcinoma. Transl Oncol 2021; 14:101094. [PMID: 33878525 PMCID: PMC8080081 DOI: 10.1016/j.tranon.2021.101094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 01/07/2023] Open
Abstract
Identify novel autophagy-related signature for OS and DSS in HNSCC patients. The role of autophagy in tumor immune microenvironment. Provide promising targets that can enhance the efficacy of cancer immunotherapy.
Background Many studies have demonstrated that autophagy plays a significant role in regulating tumor growth and progression. However, the effect of autophagy-related genes (ARGs) on the prognosis have rarely been analyzed in head and neck squamous cell carcinoma (HNSCC). Methods We obtained differentially expressed ARGs from HNSCC mRNA data in The Cancer Genome Atlas (TCGA) database. And then we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to explore the autophagy-related biological functions. The overall survival (OS)-related and disease specific survival (DSS)-related ARGs were identified by univariate Cox regression analyses. With these genes, we established OS-related and DSS-related risk signature by LASSO regression method, respectively. We validated the reliability of the risk signature with receiver operating characteristic (ROC) analysis, Kaplan-Meier survival curves, clinical correlation analysis, and nomogram. Then we analyzed relationships between risk signature and immune cell infiltration. Results We established the prognostic signatures based on 14 ARGs for OS and 12 ARGs for DSS. The ROC curves, survival analysis, and nomogram validated the predictive accuracy of the models. Clinic correlation analysis showed that the risk group was closely related to Stage, pathological T stage, pathological N stage and human papilloma virus (HPV) subtype. Cox regression demonstrated that the risk score was an independent predictor for the prognosis of HNSCC patients. Furthermore, patients in low-risk score group exhibited higher immunescore and distinct immune cell infiltration than high-risk score group. And we further analysis revealed that the copy number alterations (CNAs) of ARGs-based signature affected the abundance of tumor-infiltrating immune cells. Conclusion In this study, we identified novel autophagy-related signature for the prediction of OS and DSS in patients with HNSCC. Meanwhile, our study provides a novel sight to understand the role of autophagy and elucidate the important role of autophagy in tumor immune microenvironment (TIME) of HNSCC.
Collapse
Affiliation(s)
- Jiayu Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Zhiqiang Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Ziang Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minlan Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430000, China.
| | - Xuhong Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
2
|
Luo MS, Huang GJ, Liu HB. An autophagy-related model of 4 key genes for predicting prognosis of patients with laryngeal cancer. Medicine (Baltimore) 2020; 99:e21163. [PMID: 32791689 PMCID: PMC7386963 DOI: 10.1097/md.0000000000021163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy, a major cause of cancer-related death, is correlated with the pathogenesis of various diseases including cancers. Our study aimed to develop an autophagy-related model for predicting prognosis of patients with laryngeal cancer.We analyzed the correlation between expression profiles of autophagy-related genes (ARGs) and clinical outcomes in 111 laryngeal cancer patients from The Cancer Genome Atlas (TCGA). Afterward, gene functional enrichment analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to find the major biological attributes. Univariate Cox regression analyses and multivariate Cox regression analyses were performed to screen ARGs whose expression profiles were significantly associated with laryngeal cancer patients overall survival (OS). Furthermore, to provide the doctors and patients with a quantitative method to perform an individualized survival prediction, we constructed a prognostic nomogram.Thirty eight differentially expressed ARGs were screened out in laryngeal cancer patients through the TCGA database. Related functional enrichments may act as tumor-suppressive roles in the tumorigenesis of laryngeal cancer. Subsequently, 4 key prognostic ARGs (IKBKB, ST13, TSC2, and MAP2K7) were identified from all ARGs by the Cox regression model, which significantly correlated with OS in laryngeal cancer. Furthermore, the risk score was constructed, which significantly divided laryngeal cancer patients into high- and low-risk groups. Integrated with clinical characteristics, gender, N and the risk score are very likely associated with patients OS. A prognostic nomogram of ARGs was constructed using the Cox regression model.Our study could provide a valuable prognostic model for predicting the prognosis of laryngeal cancer patients and a new understanding of autophagy in laryngeal cancer.
Collapse
Affiliation(s)
- Meng-Si Luo
- Department of Anesthesiology, Zhongshan Hospital of Traditional Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong Province
| | - Guan-Jiang Huang
- Department of Otorhinolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province
| | - Hong-Bing Liu
- Department of Otolaryngology-head and neck Surgery, The Second Affiliated Hospital of Nanchang University. No 1, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
3
|
Zhang Y, Ye M, Huang F, Wang S, Wang H, Mou X, Wang Y. Oncolytic Adenovirus Expressing ST13 Increases Antitumor Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Against Pancreatic Ductal Adenocarcinoma. Hum Gene Ther 2020; 31:891-903. [PMID: 32475172 DOI: 10.1089/hum.2020.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncolytic adenoviruses (OAds) are promising agents for cancer therapy, representing a novel therapeutic strategy for pancreatic ductal adenocarcinoma (PDAC). However, there are challenges associated with the successful use of an OAd alone, involving the security of the viral vector and screening of an effective antitumor gene. In the present study, a novel OAd CD55-ST13-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was constructed in which the dual therapeutic genes ST13 and TRAIL were inserted, featuring the carcinoembryonic antigen (CEA) as a promoter to control E1A and deletion of the 55 kDa E1B gene. ST13, known as a colorectal cancer suppressor gene, exhibited lower expression in PDAC than in tumor-adjacent tissues and was associated with poor prognosis in PDAC patients. In vitro studies demonstrated that CD55-ST13-TRAIL was effective in promoting the expression of ST13 and TRAIL in CEA-positive pancreatic cancer cells. Moreover, CD55-ST13-TRAIL exhibited a synergistic effect toward tumor cell death compared with CD55-ST13 alone or CD55-TRAIL alone, and inhibited tumor cell proliferation and induced cell apoptosis dependent on caspase pathways in PDAC cells. Furthermore, xenograft experiments in a mouse model indicated that CD55-ST13-TRAIL significantly inhibited tumor growth and improved the survival of animals with xenografts. The findings demonstrate that oncolytic virotherapy under the control of the promoter CEA enables safe and efficient treatment of PDAC, and suggest that it represents a promising candidate for the treatment of metastatic diseases.
Collapse
Affiliation(s)
- Youni Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Miaojuan Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Huiju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P.R. China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
4
|
Lee CL, Veeramani S, Molouki A, Lim SHE, Thomas W, Chia SL, Yusoff K. Virotherapy: Current Trends and Future Prospects for Treatment of Colon and Rectal Malignancies. Cancer Invest 2019; 37:393-414. [PMID: 31502477 DOI: 10.1080/07357907.2019.1660887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies. In recent decades, early diagnosis and conventional therapies have resulted in a significant reduction in mortality. However, late stage metastatic disease still has very limited effective treatment options. There is a growing interest in using viruses to help target therapies to tumour sites. In recent years the evolution of immunotherapy has emphasised the importance of directing the immune system to eliminate tumour cells; we aim to give a state-of-the-art over-view of the diverse viruses that have been investigated as potential oncolytic agents for the treatment of CRC.
Collapse
Affiliation(s)
- Chin Liang Lee
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia
| | - Sanggeetha Veeramani
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostics, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO) , Karaj , Iran
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia.,Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology , Abu Dhabi , United Arab Emirates
| | - Warren Thomas
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universit Putra Malaysia , Serdang , Malaysia.,Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universit Putra Malaysia , Serdang , Malaysia.,Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| |
Collapse
|
5
|
Ijaz B, Ahmad W, Das T, Shabbiri K, Husnain T, Hassan S. HCV infection causes cirrhosis in human by step-wise regulation of host genes involved in cellular functioning and defense during fibrosis: Identification of bio-markers. Genes Dis 2019; 6:304-317. [PMID: 32042870 PMCID: PMC6997584 DOI: 10.1016/j.gendis.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic Hepatitis C Viral (HCV) infection is a leading health problem worldwide and resulted in fibrotic scar formation, and finally liver-cirrhosis. Although contemporary therapies can partially reverse this destructive process, the rehabilitation is too slow and unsuitable for all chronic infections. The current study elucidates the mechanism of disease progression from early (F1) to moderate (F2, F3), and to severe fibrosis (F4)/cirrhosis in HCV genotype 3a infected patients to find out new candidates as potential disease progression markers and antiviral therapeutic agents. A total of 550 genes were found differentially regulated in the four fibrosis stages and grouped in 22 classes according to their biological functions. Gene set enrichment (GSEA) and Ingenuity pathway analysis (IPA) were used to identify the regulation of crucial biological functions and pathways involved in HCV progression. HCV differentially regulated the expression of genes involved in apoptosis, cell structure, signal transduction, proliferation, metabolism, cytokine signaling, immune response, cell adhesion and maintenance, and post translational modifications by pathway analysis. There was an increasing trend of proliferative and cell growth related genes and shutting down of immune response as the disease progress mild to moderate to advanced stage cirrhosis. The myriad of changes in gene expression showed more chances of developing liver cancer in patients infected with HCV genotype 3a in a systematic manner. The identified gene set can act as disease markers for prediction, whether the fibrosis lead to cirrhosis and its association with end stage liver disease development.
Collapse
Affiliation(s)
- Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Waqar Ahmad
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,School of Biological Sciences, The University of Queensland, Australia.,College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Trina Das
- Division of Transplantation, Department of Surgery, School of Medicine, University of Washington, Seattle, WA, USA
| | - Khadija Shabbiri
- School of Biological Sciences, The University of Queensland, Australia
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sajida Hassan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Ying C, Xiao BD, Qin Y, Wang BR, Liu XY, Wang RW, Fang L, Yan H, Zhou XM, Wang YG. GOLPH2-regulated oncolytic adenovirus, GD55, exerts strong killing effect on human prostate cancer stem-like cells in vitro and in vivo. Acta Pharmacol Sin 2018; 39:405-414. [PMID: 28880012 DOI: 10.1038/aps.2017.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
GOLPH2 (also called GP73) is a Golgi glycoprotein, which has been identified as a novel tumor marker upregulated in various cancers, including prostate cancer (PCa). GD55 is a novel GOLPH2-regulated oncolytic adenovirus that exhibits a strong killing effect on hepatoma cells. Here, we investigate the antitumor effect of GD55 on prostate cancer stem cell (CSC)-like cells in vitro and in vivo. Prostate CSC-like sphere cells were acquired and enriched by culturing DU145, LNCap or P3 prostate cancer cells in suspension. The prostate CSC-like sphere cells were capable of self-renewal, differentiation and quiescence, displaying tumorigenic feature and chemo-resistance to 5-FU, doxorubicin and DDP. Treatment with GD55 (1, 5, 10 MOI) dose-dependently suppressed the viability of DU145 sphere cells, which was a more pronounced compared to its cytotoxic action on the parental DU145 cells. In a mouse xenograft prostate CSC-like model, intratumoral injection of GD55 markedly suppressed the growth rate of xenograft tumors and induced higher levels of cell death and necrosis within the tumor tissues. Our results demonstrate that GD55 infection exerts strong anticancer effects on prostate CSC-like cells in vitro and in vivo, and has a potential to be used in the clinical therapy of PCa.
Collapse
|
7
|
Talarico C, D'Antona L, Scumaci D, Barone A, Gigliotti F, Fiumara CV, Dattilo V, Gallo E, Visca P, Ortuso F, Abbruzzese C, Botta L, Schenone S, Cuda G, Alcaro S, Bianco C, Lavia P, Paggi MG, Perrotti N, Amato R. Preclinical model in HCC: the SGK1 kinase inhibitor SI113 blocks tumor progression in vitro and in vivo and synergizes with radiotherapy. Oncotarget 2016; 6:37511-25. [PMID: 26462020 PMCID: PMC4741945 DOI: 10.18632/oncotarget.5527] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
The SGK1 kinase is pivotal in signal transduction pathways operating in cell transformation and tumor progression. Here, we characterize in depth a novel potent and selective pyrazolo[3,4-d]pyrimidine-based SGK1 inhibitor. This compound, named SI113, active in vitro in the sub-micromolar range, inhibits SGK1-dependent signaling in cell lines in a dose- and time-dependent manner. We recently showed that SI113 slows down tumor growth and induces cell death in colon carcinoma cells, when used in monotherapy or in combination with paclitaxel. We now demonstrate for the first time that SI113 inhibits tumour growth in hepatocarcinoma models in vitro and in vivo. SI113-dependent tumor inhibition is dose- and time-dependent. In vitro and in vivo SI113-dependent SGK1 inhibition determined a dramatic increase in apoptosis/necrosis, inhibited cell proliferation and altered the cell cycle profile of treated cells. Proteome-wide biochemical studies confirmed that SI113 down-regulates the abundance of proteins downstream of SGK1 with established roles in neoplastic transformation, e.g. MDM2, NDRG1 and RAN network members. Consistent with knock-down and over-expressing cellular models for SGK1, SI113 potentiated and synergized with radiotherapy in tumor killing. No short-term toxicity was observed in treated animals during in vivo SI113 administration. These data show that direct SGK1 inhibition can be effective in hepatic cancer therapy, either alone or in combination with radiotherapy.
Collapse
Affiliation(s)
- Cristina Talarico
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Lucia D'Antona
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Domenica Scumaci
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Agnese Barone
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Francesco Gigliotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Claudia Vincenza Fiumara
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Enzo Gallo
- Section of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Paolo Visca
- Section of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Francesco Ortuso
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Claudia Abbruzzese
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Lorenzo Botta
- Department of Biotecnologie, Chimica e Farmacia, University of Siena, Siena, Italy
| | | | - Giovanni Cuda
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Stefano Alcaro
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Cataldo Bianco
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), c/o University "La Sapienza", Rome, Italy
| | - Marco G Paggi
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| |
Collapse
|
8
|
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:326-337. [PMID: 26755879 PMCID: PMC4698495 DOI: 10.3748/wjg.v22.i1.326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors.
Collapse
|
9
|
Wang Y, Liu T, Huang P, Zhao H, Zhang R, Ma B, Chen K, Huang F, Zhou X, Cui C, Liu X. A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. Oncotarget 2015; 6:13564-78. [PMID: 25980438 PMCID: PMC4537034 DOI: 10.18632/oncotarget.3769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
Golgi apparatus is the organelle mainly functioning as protein processing and secretion. GOLPH2 is a resident Golgi glycoprotein, usually called GP73. Recent data displayed that GOLPH2 is a superb hepatocellular carcinoma (HCC) marker candidate, and even its specificity is better than liver cancer marker AFP. Oncolytic adenoviruses are broadly used for targeting cancer therapy due to their selective tumor-killing effect. However, it was reported that traditionally oncolytic adenovirus lack the HCC specificity. In this study, a novel dual-regulated oncolytic adenovirus GD55 targeting HCC was first constructed based on our cancer targeted gene-viral therapeutic strategy. To verify the targeting and effectiveness of GOLPH2-regulated oncolytic adenovirus GD55 in HCC, the anticancer capacity was investigated in HCC cell lines and animal model. The results proved that the novel GOLPH2-regulated GD55 conferred higher adenovirus replication and infectivity for liver cancer cells than oncolytic adenovirus ZD55. The GOLPH2-regulated GD55 exerted a significant grow-suppressing effect on HCC cells in vitro but little damage to normal liver cells. In animal experiment, antitumor effect of GD55 was more effective in HCC xenograft of nude mice than that of ZD55. Thus GOLPH2-regulated GD55 may be a promising oncolytic virus agent for future liver cancer treatment.
Collapse
Affiliation(s)
- Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tao Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Panpan Huang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hongfang Zhao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rong Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Buyun Ma
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Kan Chen
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fang Huang
- School of Public Health, Zhejiang University, Hangzhou 310058, PR China
| | - Xiumei Zhou
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Caixia Cui
- Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, PR China
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| |
Collapse
|
10
|
Chen RF, Li YY, Li LT, Cheng Q, Jiang G, Zheng JN. Novel oncolytic adenovirus sensitizes renal cell carcinoma cells to radiotherapy via mitochondrial apoptotic cell death. Mol Med Rep 2014; 11:2141-6. [PMID: 25411768 DOI: 10.3892/mmr.2014.2987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma is the most frequent kidney malignancy and patients with metastatic disease have a poor prognosis. Suppressed apoptosis and marked invasiveness are distinctive features of renal cell carcinoma. In the present study, a dual‑regulated oncolytic adenovirus expressing the interluekin (IL)‑24 gene (Ki67‑ZD55‑IL‑24) was constructed utilizing the Ki67 promoter to replace the native viral promoter of the E1A gene. Whether the combination of Ki67‑ZD55‑IL‑24‑mediated gene virotherapy and radiotherapy produced increased cytotoxicity in renal cell carcinoma cells via mitochondrial apoptotic cell death was investigated. The data indicated that this novel strategy has the potential to be further developed into an effective approach to treat renal cell carcinoma. The results showed that the combination of Ki67‑ZD55‑IL‑24 and radiotherapy significantly enhanced anti‑tumour activity via increasing the induction of apoptosis in melanoma cells compared with the other agents.
Collapse
Affiliation(s)
- Ren-Fu Chen
- Department of Urology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Yue-Yan Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Lian-Tao Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qian Cheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Guan Jiang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
11
|
Li G, Li X, Wu H, Yang X, Zhang Y, Chen L, Wu X, Cui L, Wu L, Luo J, Liu XY. CD123 targeting oncolytic adenoviruses suppress acute myeloid leukemia cell proliferation in vitro and in vivo. Blood Cancer J 2014; 4:e194. [PMID: 24658372 PMCID: PMC3972701 DOI: 10.1038/bcj.2014.15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/21/2022] Open
Abstract
We report here a novel strategy to redirect oncolytic adenoviruses to CD123 by carry a soluble coxsackie-adenovirus receptor (sCAR)-IL3 expression cassette in the viral genome to form Ad.IL3, which sustainably infected acute myeloid leukemia (AML) cells through CD123. Ad.IL3 was further engineered to harbor gene encoding manganese superoxide dismutase (MnSOD) or mannose-binding plant lectin Pinellia pedatisecta agglutinin (PPA), forming Ad.IL3-MnSOD and Ad.IL3-PPA. As compared with Ad.IL3 or Ad.sp-E1A control, Ad.IL3-MnSOD and Ad.IL3-PPA significantly suppressed in vitro proliferation of HL60 and KG-1 cells. Elevated apoptosis was detected in HL60 and KG-1 cells treated with either Ad.IL3-MnSOD or Ad.IL3-PPA. The caspase-9–caspase-7 pathway was determined to be activated by Ad.IL3-MnSOD as well as by Ad.IL3-PPA in HL60 cells. In an HL60/Luc xenograft nonobese diabetic/severe-combined immunodeficiency mice model, Ad.IL3-MnSOD and Ad.IL3-PPA suppressed cancer cell growth as compared with Ad.IL3. A significant difference of cancer cell burden was detected between Ad.IL3 and Ad.IL3-PPA groups at day 9 after treatment. Furthermore, Ad.IL3-MnSOD significantly prolonged mouse survival as compared with Ad.sp-E1A. These findings demonstrated that Ad.IL3-gene could serve as a novel agent for AML therapy. Harboring sCAR-ligand expression cassette in the viral genome may provide a universal method to redirect oncolytic adenoviruses to various membrane receptors on cancer cells resisting serotype 5 adenovirus infection.
Collapse
Affiliation(s)
- G Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - X Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - H Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - X Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Y Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - L Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - X Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - L Cui
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - L Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - J Luo
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - X Y Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Bai R, Shi Z, Zhang JW, Li D, Zhu YL, Zheng S. ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines. J Zhejiang Univ Sci B 2013; 13:884-93. [PMID: 23125081 DOI: 10.1631/jzus.b1200037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVE ST13, is the gene encoding the HSP70 interacting protein (HIP). Previous research has shown that ST13 mRNA and protein levels are down-regulated in colorectal cancer (CRC) tissues compared with adjacent normal tissues. This study aims at the role of ST13 in the proliferation and migration of CRC cells. METHODS The transcript level of ST13 in different CRC cell lines was evaluated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). ST13-overexpressed and ST13-knockdown CRC cells were constructed respectively by lentiviral transduction, followed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, plate colony formation, cell-cycle analysis, and migration assays to evaluate the influence of ST13 on proliferation and migration in vitro. Moreover, a mouse xenograft study was performed to test in vivo tumorigenicity of ST13-knockdown CRC cells. RESULTS Lentivirus-mediated overexpression of ST13 in CRC cells inhibited cell proliferation, colony formation, and cell migration in vitro. In contrast, down-regulation of ST13 by lentiviral-based short hairpin RNA (shRNA) interference in CRC cells significantly increased cell proliferation and cloning efficiency in vitro. In addition, down-regulation of ST13 expression significantly increased the tumorigenicity of CRC cells in vivo. CONCLUSIONS ST13 gene is a proliferation regulator that inhibits tumor growth in CRC and may affect cell migration.
Collapse
Affiliation(s)
- Rui Bai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | | | |
Collapse
|
13
|
Lei W, Liu HB, Wang SB, Zhou XM, Zheng SD, Guo KN, Ma BY, Xia YL, Tan WS, Liu XY, Wang YG. Tumor suppressor in lung cancer-1 (TSLC1) mediated by dual-regulated oncolytic adenovirus exerts specific antitumor actions in a mouse model. Acta Pharmacol Sin 2013; 34:531-40. [PMID: 23503473 DOI: 10.1038/aps.2012.196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM The tumor suppressor in lung cancer-1 (TSLC1) is a candidate tumor suppressor of lung cancer, and frequently inactivated in primary non-small cell lung cancer (NSCLC). In this study, we investigated the effects of TSLC1 mediated by a dual-regulated oncolytic adenovirus on lung cancer, and the mechanisms underlying the antitumor actions. METHODS The recombinant virus Ad·sp-E1A(Δ24)-TSLC1 was constructed by inserting the TSLC1 gene into the dual-regulated Ad·sp-E1A(Δ24) vector, which contained the survivin promoter and a 24 bp deletion within E1A. The antitumor effects of Ad·sp-E1A(Δ24)-TSLC1 were evaluated in NCI-H460, A549, and H1299 lung cancer cell lines and the normal fibroblast cell line MRC-5, as well as in A549 xenograft model in nude mice. Cell viability was assessed using MTT assay. The expression of TSLC1 and activation of the caspase signaling pathway were detected by Western blot analyses. The tumor tissues from the xenograft models were examined using H&E staining, IHC, TUNEL, and TEM analyses. RESULTS Infection of A549 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced high level expression of TSLC1. Furthermore, the Ad·sp-E1A(Δ24)-TSLC1 virus dose-dependently suppressed the viability of NCI-H460, A549, and H1299 lung cancer cells, and did not affect MRC-5 normal fibroblast cells. Infection of NCI-H460, A549, and H1299 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced apoptosis, and increased activation of caspase-8, caspase-3 and PARP. In A549 xenograft model in nude mice, intratumoral injection of Ad·sp-E1A(Δ24)-TSLC1 significantly suppressed the tumor volume, and increased the survival rate (from less than 15% to 87.5% at d 60). Histological studies showed that injection of Ad·sp-E1A(Δ24)-TSLC1 caused tumor cell apoptosis and virus particle propagation in tumor tissues. CONCLUSION The oncolytic adenovirus Ad·sp-E1A(Δ24)-TSLC1 exhibits specific antitumor effects, and is a promising agent for the treatment of lung cancer.
Collapse
|
14
|
Xu B, Zheng WY, Feng JF, Huang XY, Ge HY. One potential oncolytic adenovirus expressing Lipocalin-2 for colorectal cancer therapy. Cancer Biother Radiopharm 2013; 28:415-22. [PMID: 23464854 DOI: 10.1089/cbr.2012.1352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer is an aggressive malignancy with a high mortality rate; however, effective therapies are currently lacking. Cancer-targeting gene-virotherapy (CTGVT) has been proposed to be a promising strategy for cancer therapy. The purpose of this study was to investigate the antitumor activity of the oncolytic adenovirus harboring Lipocalin-2 (ZD55-Lipocalin-2, an example of CTGVT) in colorectal cancer. ZD55-Lipocalin-2 was generated by deleting E1B55-KD and inserting the Lipocalin-2 gene. Its cytopathic effects and cell growth inhibition were detected in vitro, and antitumor effects were examined in a nude mouse model of human colorectal cancer xenografts. Results showed that ZD55-Lipocalin-2 significantly inhibited the colorectal cancer growth by selective cytolysis, inducing apoptosis and decreasing the microvessel density in tumors. The anticancer potential of ZD55-Lipocalin-2 showed stronger than that of the isolated Lipocalin-2 gene therapy or isolated ZD55 oncolytic adenovirus therapy. ZD55-Lipocalin-2 may serve as a potential anticancer agent for colorectal cancer treatment.
Collapse
Affiliation(s)
- Bin Xu
- Department of Hepato-Biliary-Pancreatic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | | | | | | |
Collapse
|
15
|
Qu W, Zhu Z, Zhao L, He A, Zheng X. Conditionally replicating adenovirus SG500-expressed mutant Dm-dNK gene for breast cancer therapy. Int J Oncol 2012; 41:2175-83. [PMID: 23064407 DOI: 10.3892/ijo.2012.1657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/03/2012] [Indexed: 11/06/2022] Open
Abstract
The purpose of this analysis was to investigate the enzyme activity and specificity of using adenovirus-mediated Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) mutants in combination with gemcitabine. Compared with herpes simplex type 1 thymidine kinase (HSV-TK) and other known dNKs, this Dm-dNK enzyme has a broader substrate specificity and a higher catalytic rate. We created the Dm-dNK mutants (dNKmu) by site-directed mutagenesis at the sites of 244E, 245S, 251S and 252R, with the last 10 amino acids in the amino acid sequence randomly mutated. We evaluated the enzyme activity and substrate specificity. The engineered enzymes showed a relative increase in phosphorylation in the nucleoside analogs of BVDU ((E)-5‑(2-Bromovinyl)-2'-deoxyuridine) or gemcitabine (DFDC, 2',2'-difluoro-deoxycytidine) compared with the wild-type enzyme. The dNKmu enzymes were expressed in the breast cancer cell lines MDA-MB-231 (ER-) and MCF7 (ER+). In studying the sensitivity of the cell lines to DFDC, conditionally replicative adenovirus (CRAd) SG500-dNKmu showed higher expression and enzymatic activity than the replication-defective adenovirus SG500 in cancer cells, but with less cytotoxicity to cancer cells than that of SG500. Our data suggest that the triple phosphorylated DFDC catalyzed by dNKmu inhibited the replication of adenovirus with a simultaneous positive therapeutic effect to cancer cells. Therefore, concomitant use of the SG500‑dNKmu and DFDC could be a novel targeted strategy in suicide gene therapy with safe control of excessive virus replication.
Collapse
Affiliation(s)
- Wenzhi Qu
- Department of Breast Surgery, Fourth Affiliated Hospital, China Medical University, Shenyang, PR China
| | | | | | | | | |
Collapse
|
16
|
Zhou X, Xie G, Wang S, Wang Y, Zhang K, Zheng S, Chu L, Xiao L, Yu Y, Zhang Y, Liu X. Potent and specific antitumor effect for colorectal cancer by CEA and Rb double regulated oncolytic adenovirus harboring ST13 gene. PLoS One 2012; 7:e47566. [PMID: 23077639 PMCID: PMC3471845 DOI: 10.1371/journal.pone.0047566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/18/2012] [Indexed: 01/19/2023] Open
Abstract
Cancer Targeting Gene-Viro-Therapy (CTGVT) is constructed by inserting an antitumor gene into an oncolytic virus (OV). It is actually an OV-gene therapy, which has much better antitumor effect than either gene therapy alone or virotherapy alone in our previously published papers. This study is a modification of CTGVT by inserting a colorectal cancer (CRC) specific suppressor gene, ST13, into a CRC specific oncolytic virus, the Ad·CEA·E1A(Δ24), to construct the Ad·(ST13)·CEA·E1A(Δ24) for increasing the targeting tropism to colorectal cancer and it was briefly named as CTGVT-CRC. Although many studies on CEA promoter and ST13 gene were reported but no construct has been performed to combine both of them as a new strategy for colorectal cancer (CRC) specific therapy. In addition to the CRC specificity, the antitumor effect of Ad·(ST13)·CEA·E1A(Δ24) was also excellent and got nearly complete inhibition (not eradication) of CRC xenograft since ST13 was an effective antitumor gene with less toxicity, and a Chinese patent (No. 201110319434.4) was available for this study. Ad·(ST13)·CEA·E1A(Δ24) caused cell apoptosis through P38 MAPK (i.e. P38) which upregulated CHOP and ATF2 expression. The mitochondrial medicated apoptosis pathway was activated by the increase of caspase 9 and caspase 3 expression.
Collapse
Affiliation(s)
- Xiumei Zhou
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guoliang Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shibing Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kangjian Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu Zheng
- Cancer Institute, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lianli Xiao
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuemei Yu
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yue Zhang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Jiang G, Zhang L, Xin Y, Pei DS, Wei ZP, Liu YQ, Zheng JN. Conditionally replicating adenoviruses carrying mda-7/IL-24 for cancer therapy. Acta Oncol 2012; 51:285-92. [PMID: 21995527 DOI: 10.3109/0284186x.2011.621447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) suppresses growth and induces apoptosis in a broad range of human cancers without significant cytotoxicity to normal cells. Conditionally replicating adenoviruses (CRAds) not only have the ability to destroy cancer cells but may also be potential vectors for the expression of therapeutic genes. METHODS This review provides an overview of specifications for a novel anti-tumor approach CRAds carrying IL-24, and discusses recent progress in this field. RESULTS Studies in multiple laboratories report that CRAds carrying IL-24 selectively induced apoptosis in some cancer cells, and enhanced selective toxicity to cancer cells when combined with chemotherapeutic agents. CONCLUSION CRAds carrying IL-24 may prove a novel and effective approach for the treatment of cancers.
Collapse
Affiliation(s)
- Guan Jiang
- Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang KJ, Qian J, Wang SB, Yang Y. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma. J Biomed Sci 2012; 19:20. [PMID: 22321574 PMCID: PMC3311074 DOI: 10.1186/1423-0127-19-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/09/2012] [Indexed: 12/18/2022] Open
Abstract
Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro) than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system.
Collapse
Affiliation(s)
- Kang-Jian Zhang
- State key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
19
|
Targeting different types of human meningioma and glioma cells using a novel adenoviral vector expressing GFP-TRAIL fusion protein from hTERT promoter. Cancer Cell Int 2011; 11:35. [PMID: 22035360 PMCID: PMC3283457 DOI: 10.1186/1475-2867-11-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/28/2011] [Indexed: 01/23/2023] Open
Abstract
Objective The objective of this study was to evaluate the anti-tumor effects of Ad/gTRAIL (an adenoviral vector in which expression of GFP and TRAIL is driven by a human telomerase reverse transcriptase promoter, hTERT) on malignant meningiomas and gliomas. Background Gliomas and meningiomas are the two most common types of human brain tumors. Currently there is no effective cure for recurrent malignant meningiomas or for gliomas. Ad/gTRAIL has been shown to be effective in killing selected lung, colon and breast cancer cells, but there have been no studies reporting its antitumor effects on malignant meningiomas. Therefore, we tested the antitumor effect of Ad/gTRAIL for the first time in human malignant meningioma and glioma cell lines, and in intracranial M6 and U87 xenografts. Methods Materials and Methods: Human malignant meningioma and glioma cells were infected with adenoviruses, Ad/gTRAIL and Ad/CMV-GFP. Cell viability was determined by proliferation assay. FACS analysis and quantification of TRAIL were used to measure apoptosis in these cells. We injected Ad/gTRAIL viruses in intracranial M6 and U87 xenografts, and measured the brain tumor volume, quantified apoptosis by TUNEL assay in the brain tumor tissue. Results Our studies demonstrate that in vitro/in vivo treatment with Ad/gTRAIL virus resulted in significant increase of TRAIL activity, and elicited a greater tumor cell apoptosis in malignant brain tumor cells as compared to treatment with the control, Ad/CMV-GFP virus without TRAIL activity. Conclusions We showed for the first time that adenovirus Ad/gTRAIL had significant antitumor effects against high grade malignant meningiomas as well as gliomas. Although more work needs to be done, our data suggests that Ad/gTRAIL has the potential to be useful as a tool against malignant brain tumors.
Collapse
|
20
|
Yang M, Yu M, Guan D, Gu J, Cao X, Wang W, Zheng S, Xu Y, Shen Z, Liu X. ASK1-JNK signaling cascade mediates Ad-ST13-induced apoptosis in colorectal HCT116 cells. J Cell Biochem 2010; 110:581-8. [DOI: 10.1002/jcb.22551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|