1
|
Lu Y, Li L, Li J, Wang M, Yang J, Zhang M, Jiang Q, Tang X. Prx1/PHB2 axis mediates mitophagy in oral leukoplakia cellular senescence. Pathol Res Pract 2024; 260:155411. [PMID: 38936092 DOI: 10.1016/j.prp.2024.155411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Oral leukoplakia (OLK) is the most common oral potentially malignant disorder (OPMD), which can be malignantly transformed into oral squamous cell carcinoma (OSCC). Peroxiredoxin1(Prx1) has been predicted to bind to Prohibitin2 (PHB2), which confers to affect OLK progression; however, the mechanism of Prx1/PHB2 mediated mitophagy involved in OLK remains unclear. METHODS This study aimed to explore the mechanism of the Prx1/PHB2 axis on senescence in OLK through mediating mitophagy. The positive rate of Ki67 and the expression of p21, p16, PHB2, and LC3 in human normal, OLK, and OSCC tissues were detected by immunohistochemical staining. The mitophagy and mitochondrial function changes were then analyzed in Prx1 knockdown and Prx1C52S mutations in dysplastic oral keratinocyte (DOK) cells treated with H2O2. In situ Proximity Ligation Assay combined with co-immunoprecipitation was used to detect the interaction between Prx1 and PHB2. RESULTS Clinically, the positive rate of Ki67 progressively increased from normal to OLK, OLK with dysplasia, and OSCC. Higher p21, p16, PHB2, and LC3 expression levels were observed in OLK with dysplasia than in normal and OSCC tissues. In vitro, PHB2 and LC3II expression gradually increased with the degree of DOK cell senescence. Prx1/PHB2 regulated mitophagy and affected senescence in H2O2-induced DOK cells. Furthermore, Prx1C52S mutation specifically reduced interaction between Prx1 and PHB2. Prx1Cys52 is associated with mitochondrial reactive oxygen species (ROS) accumulated and cell cycle arrest. CONCLUSION Prx1Cys52 functions as a redox sensor that binds to PHB2 and regulates mitophagy in the senescence of OLK, suggesting its potential as a clinical target.
Collapse
Affiliation(s)
- Yunping Lu
- Department of Prosthodontics, Beijing Stomatology Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Lingyu Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jing Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Min Wang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jing Yang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Min Zhang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatology Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China.
| | - Xiaofei Tang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Medvedev KE, Schaeffer RD, Chen KS, Grishin NV. Pan-cancer structurome reveals overrepresentation of beta sandwiches and underrepresentation of alpha helical domains. Sci Rep 2023; 13:11988. [PMID: 37491511 PMCID: PMC10368619 DOI: 10.1038/s41598-023-39273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023] Open
Abstract
The recent progress in the prediction of protein structures marked a historical milestone. AlphaFold predicted 200 million protein models with an accuracy comparable to experimental methods. Protein structures are widely used to understand evolution and to identify potential drug targets for the treatment of various diseases, including cancer. Thus, these recently predicted structures might convey previously unavailable information about cancer biology. Evolutionary classification of protein domains is challenging and different approaches exist. Recently our team presented a classification of domains from human protein models released by AlphaFold. Here we evaluated the pan-cancer structurome, domains from over and under expressed proteins in 21 cancer types, using the broadest levels of the ECOD classification: the architecture (A-groups) and possible homology (X-groups) levels. Our analysis reveals that AlphaFold has greatly increased the three-dimensional structural landscape for proteins that are differentially expressed in these 21 cancer types. We show that beta sandwich domains are significantly overrepresented and alpha helical domains are significantly underrepresented in the majority of cancer types. Our data suggest that the prevalence of the beta sandwiches is due to the high levels of immunoglobulins and immunoglobulin-like domains that arise during tumor development-related inflammation. On the other hand, proteins with exclusively alpha domains are important elements of homeostasis, apoptosis and transmembrane transport. Therefore cancer cells tend to reduce representation of these proteins to promote successful oncogeneses.
Collapse
Affiliation(s)
- Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
3
|
Li L, Duns GJ, Dessie W, Cao Z, Ji X, Luo X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front Pharmacol 2023; 14:1052301. [PMID: 36794282 PMCID: PMC9922721 DOI: 10.3389/fphar.2023.1052301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related fatalities in female worldwide. Effective therapies with low side effects for breast cancer treatment and prevention are, accordingly, urgently required. Targeting anticancer materials, breast cancer vaccines and anticancer drugs have been studied for many years to decrease side effects, prevent breast cancer and suppress tumors, respectively. There are abundant evidences to demonstrate that peptide-based therapeutic strategies, coupling of good safety and adaptive functionalities are promising for breast cancer therapy. In recent years, peptide-based vectors have been paid attention in targeting breast cancer due to their specific binding to corresponding receptors overexpressed in cell. To overcome the low internalization, cell penetrating peptides (CPPs) could be selected to increase the penetration due to the electrostatic and hydrophobic interactions between CPPs and cell membranes. Peptide-based vaccines are at the forefront of medical development and presently, 13 types of main peptide vaccines for breast cancer are being studied on phase III, phase II, phase I/II and phase I clinical trials. In addition, peptide-based vaccines including delivery vectors and adjuvants have been implemented. Many peptides have recently been used in clinical treatments for breast cancer. These peptides show different anticancer mechanisms and some novel peptides could reverse the resistance of breast cancer to susceptibility. In this review, we will focus on current studies of peptide-based targeting vectors, CPPs, peptide-based vaccines and anticancer peptides for breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Ling Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhenmin Cao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
4
|
Ren L, Meng L, Gao J, Lu M, Guo C, Li Y, Rong Z, Ye Y. PHB2 promotes colorectal cancer cell proliferation and tumorigenesis through NDUFS1-mediated oxidative phosphorylation. Cell Death Dis 2023; 14:44. [PMID: 36658121 PMCID: PMC9852476 DOI: 10.1038/s41419-023-05575-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
The alteration of cellular energy metabolism is a hallmark of colorectal cancer (CRC). Accumulating evidence has suggested oxidative phosphorylation (OXPHOS) is upregulated to meet the demand for energy in tumor initiation and development. However, the role of OXPHOS and its regulatory mechanism in CRC tumorigenesis and progression remain unclear. Here, we reveal that Prohibitin 2 (PHB2) expression is elevated in precancerous adenomas and CRC, which promotes cell proliferation and tumorigenesis of CRC. Additionally, knockdown of PHB2 significantly reduces mitochondrial OXPHOS levels in CRC cells. Meanwhile, NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1), as a PHB2 binding partner, is screened and identified by co-immunoprecipitation and mass spectrometry. Furthermore, PHB2 directly interacts with NDUFS1 and they co-localize in mitochondria, which facilitates NDUFS1 binding to NADH:ubiquinone oxidoreductase core subunit V1 (NDUFV1), regulating the activity of complex I. Consistently, partial inhibition of complex I activity also abrogates the increased cell proliferation induced by overexpression of PHB2 in normal human intestinal epithelial cells and CRC cells. Collectively, these results indicate that increased PHB2 directly interacts with NDUFS1 to stabilize mitochondrial complex I and enhance its activity, leading to upregulated OXPHOS levels, thereby promoting cell proliferation and tumorigenesis of CRC. Our findings provide a new perspective for understanding CRC energy metabolism, as well as novel intervention strategies for CRC therapeutics.
Collapse
Affiliation(s)
- Lin Ren
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Blood Transfusion, Anhui Public Health Clinical Center, Hefei, China
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing Gao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingdian Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengyu Guo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yunyun Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Jia Y, Mao C, Ma Z, Huang J, Li W, Ma X, Zhang S, Li M, Yu F, Sun Y, Chen J, Feng J, Zhou Y, Xu Q, Zhao L, Fu Y, Kong W. PHB2 Maintains the Contractile Phenotype of VSMCs by Counteracting PKM2 Splicing. Circ Res 2022; 131:807-824. [PMID: 36200440 DOI: 10.1161/circresaha.122.321005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Phenotypic transition of vascular smooth muscle cells (VSMCs) accounts for the pathogenesis of a variety of vascular diseases during the early stage. Recent studies indicate the metabolic reprogramming may be involved in VSMC phenotypic transition. However, the definite molecules that link energy metabolism to distinct VSMC phenotype remain elusive. METHODS A carotid artery injury model was used to study postinjury neointima formation as well as VSMC phenotypic transition in vivo. RNA-seq analysis, cell migration assay, collagen gel contraction assay, wire myography assay, immunoblotting, protein interactome analysis, co-immunoprecipitation, and mammalian 2-hybrid assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS We collected cell energy-regulating genes by using Gene Ontology annotation and applied RNA-Seq analysis of transforming growth factor-β or platelet-derived growth factor BB stimulated VSMCs. Six candidate genes were overlapped from energy metabolism-related genes and genes reciprocally upregulated by transforming growth factor-β and downregulated by platelet-derived growth factor BB. Among them, prohibitin 2 has been reported to regulate mitochondrial oxidative phosphorylation. Indeed, prohibitin 2-deficient VSMCs lost the contractile phenotype as evidenced by reduced contractile proteins. Consistently, Phb2SMCKO mice were more susceptible to postinjury VSMC proliferation and neointima formation compared with Phb2flox/flox mice. Further protein interactome analysis, co-immunoprecipitation, and mammalian 2-hybrid assay revealed that prohibitin 2, through its C-terminus, directly interacts with hnRNPA1, a key modulator of pyruvate kinase M1/2 (PKM) mRNA splicing that promotes PKM2 expression and glycolysis. Prohibitin 2 deficiency facilitated PKM1/2 mRNA splicing and reversion from PKM1 to PKM2, and enhanced glycolysis in VSMCs. Blocking prohibitin 2-hnRNPA1 interaction resulted in increased PKM2 expression, enhanced glycolysis, repressed contractile marker genes expression in VSMCs, as well as aggravated postinjury neointima formation in vivo. CONCLUSIONS Prohibitin 2 maintains VSMC contractile phenotype by interacting with hnRNPA1 to counteract hnRNPA1-mediated PKM alternative splicing and glucose metabolic reprogramming.
Collapse
Affiliation(s)
- Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.).,Beijing Institute of Biotechnology, Beijing, P. R. China (C.M.)
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Wenqiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Siting Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Meihong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China (Y.S., J.C.)
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China (Y.S., J.C.)
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Yuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Qingbo Xu
- Cardiovascular Division, Kings College London BHF Centre, London SE5 9NU, UK (Q.X.).,Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China (Q.X.)
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, P. R. China (L.Z.)
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.J., C.M., Z.M., J.H., W.L., X.M., S.Z., M.L., F.Y., J.F., Y.Z., Y.F., W.K.)
| |
Collapse
|
6
|
Mechanical detection of interactions between proteins related to intermediate filament and transcriptional regulation in living cells. Biosens Bioelectron 2022; 216:114603. [DOI: 10.1016/j.bios.2022.114603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
|
7
|
Vesaghhamedani S, Ebrahimzadeh F, Najafi E, Shabgah OG, Askari E, Shabgah AG, Mohammadi H, Jadidi-Niaragh F, Navashenaq JG. Xanthohumol: An underestimated, while potent and promising chemotherapeutic agent in cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:3-14. [PMID: 35405185 DOI: 10.1016/j.pbiomolbio.2022.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 12/29/2022]
Abstract
Today, there is a growing interest nowadays in the use of herbal substances as cancer therapeutic agents. Over recent years, Xanthohumol (XTL) has been brought out as a prenylated chalcone that is found in hops (Humulus lupulus) and beer. XTL is being investigated for its potential properties, and it has been found to have various biological effects, including anti-microbial, anti-viral, and immunomodulatory. Other than these biological effects, it has also been found that XTL exerts anti-tumor effects. In the beginning, XTL, by modulating cell signaling pathways, including ERK, AKT, NF-κB, AMPK, Wnt/β-catenin, and Notch signaling in cancer cells, inhibits tumor cell functions. Moreover, XTL, by inducing apoptotic pathways, either intrinsic or extrinsic, promotes cancer cell death and arrests the cell cycle. Furthermore, XTL inhibits metastasis, angiogenesis, cancer stemness, drug resistance, cell respiration, etc., which results in tumor aggressiveness inhibition. XTL has low solubility in water, and it has been hypothesized that some modifications, including biotinylation, can improve its pharmacogenetic characteristics. Additionally, XTL derivates such as dihydroXTL and tetrahydroXTL can be helpful for more anti-tumor activities. Using XTL with other anti-tumor agents is another approach to overcome tumor cell resistance. XTL or its derivatives, it is believed, might provide novel chemotherapeutic methods in future cancer therapy.
Collapse
Affiliation(s)
- Shadi Vesaghhamedani
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Najafi
- Division of Anatomy and Embryology, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Omid Gohari Shabgah
- Parasitology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Elham Askari
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Bai Y, Ludescher M, Poschmann G, Stühler K, Wyrich M, Oles J, Franken A, Rivandi M, Abramova A, Reinhardt F, Ruckhäberle E, Niederacher D, Fehm T, Cahill MA, Stamm N, Neubauer H. PGRMC1 Promotes Progestin-Dependent Proliferation of Breast Cancer Cells by Binding Prohibitins Resulting in Activation of ERα Signaling. Cancers (Basel) 2021; 13:cancers13225635. [PMID: 34830790 PMCID: PMC8615993 DOI: 10.3390/cancers13225635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Combined menopausal hormone therapy is associated with increased breast cancer risk in postmenopausal women. In our previous studies, progesterone receptor membrane component 1 (PGRMC1) was shown to play a role in progestins’ elicitation of enhanced proliferation of breast cancer cells. Here we describe a potential mechanism by which PGRMC1 contributes to breast cancer progression via interaction with prohibitins, inhibiting their function as transcriptional repressors. This facilitates estrogen receptor alpha (ERα) transcriptional activity and enhances oncogenic signaling upon treatment with certain progestins, including norethisterone and dydrogesterone. Our data underline the contribution of PGRMC1 to especially hormone receptor positive breast cancer pathogenesis and demonstrate the need for further studies to understand its role in cancer. Abstract In previous studies, we reported that progesterone receptor membrane component 1 (PGRMC1) is implicated in progestin signaling and possibly associated with increased breast cancer risk upon combined hormone replacement therapy. To gain mechanistic insight, we searched for potential PGRMC1 interaction partners upon progestin treatment by co-immunoprecipitation and mass spectrometry. The interactions with the identified partners were further characterized with respect to PGRMC1 phosphorylation status and with emphasis on the crosstalk between PGRMC1 and estrogen receptor α (ERα). We report that PGRMC1 overexpression resulted in increased proliferation of hormone receptor positive breast cancer cell lines upon treatment with a subgroup of progestins including norethisterone and dydrogesterone that promote PGRMC1-phosphorylation on S181. The ERα modulators prohibitin-1 (PHB1) and prohibitin-2 (PHB2) interact with PGRMC1 in dependency on S181-phosphorylation upon treatment with the same progestins. Moreover, increased interaction between PGRMC1 and PHBs correlated with decreased binding of PHBs to ERα and subsequent ERα activation. Inhibition of either PGRMC1 or ERα abolished this effect. In summary, we provide strong evidence that activated PGRMC1 associates with PHBs, competitively removing them from ERα, which then can develop its transcriptional activities on target genes. This study emphasizes the role of PGRMC1 in a key breast cancer signaling pathway which may provide a new avenue to target hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yingxue Bai
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Marina Ludescher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Gereon Poschmann
- Institute for Molecular Medicine, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (G.P.); (K.S.)
| | - Kai Stühler
- Institute for Molecular Medicine, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (G.P.); (K.S.)
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Martine Wyrich
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Julia Oles
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Anna Abramova
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Florian Reinhardt
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Michael A. Cahill
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia
| | - Nadia Stamm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
- Correspondence: (N.S.); (H.N.); Tel.: +49-211-81-06026 (H.N.)
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
- Correspondence: (N.S.); (H.N.); Tel.: +49-211-81-06026 (H.N.)
| |
Collapse
|
9
|
Belser M, Walker DW. Role of Prohibitins in Aging and Therapeutic Potential Against Age-Related Diseases. Front Genet 2021; 12:714228. [PMID: 34868199 PMCID: PMC8636131 DOI: 10.3389/fgene.2021.714228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
A decline in mitochondrial function has long been associated with age-related health decline. Several lines of evidence suggest that interventions that stimulate mitochondrial autophagy (mitophagy) can slow aging and prolong healthy lifespan. Prohibitins (PHB1 and PHB2) assemble at the mitochondrial inner membrane and are critical for mitochondrial homeostasis. In addition, prohibitins (PHBs) have diverse roles in cell and organismal biology. Here, we will discuss the role of PHBs in mitophagy, oxidative phosphorylation, cellular senescence, and apoptosis. We will also discuss the role of PHBs in modulating lifespan. In addition, we will review the links between PHBs and diseases of aging. Finally, we will discuss the emerging concept that PHBs may represent an attractive therapeutic target to counteract aging and age-onset disease.
Collapse
Affiliation(s)
- Misa Belser
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Toki S, Yoshimaru T, Matsushita Y, Aihara H, Ono M, Tsuneyama K, Sairyo K, Katagiri T. The survival and proliferation of osteosarcoma cells are dependent on the mitochondrial BIG3-PHB2 complex formation. Cancer Sci 2021; 112:4208-4219. [PMID: 34363714 PMCID: PMC8486206 DOI: 10.1111/cas.15099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Previous studies reported the critical role of the brefeldin A-inhibited guanine nucleotide exchange protein 3-prohibitin 2 (BIG3-PHB2) complex in modulating estrogen signaling activation in breast cancer cells, yet its pathophysiological roles in osteosarcoma (OS) cells remain elusive. Here, we report a novel function of BIG3-PHB2 in OS malignancy. BIG3-PHB2 complexes were localized mainly in mitochondria in OS cells, unlike in estrogen-dependent breast cancer cells. Depletion of endogenous BIG3 expression by small interfering RNA (siRNA) treatment led to significant inhibition of OS cell growth. Disruption of BIG3-PHB2 complex formation by treatment with specific peptide inhibitor also resulted in significant dose-dependent suppression of OS cell growth, migration, and invasion resulting from G2/M-phase arrest and in PARP cleavage, ultimately leading to PARP-1/apoptosis-inducing factor (AIF) pathway activation-dependent apoptosis in OS cells. Subsequent proteomic and bioinformatic pathway analyses revealed that disruption of the BIG3-PHB2 complex might lead to downregulation of inner mitochondrial membrane protein complex activity. Our findings indicate that the mitochondrial BIG3-PHB2 complex might regulate PARP-1/AIF pathway-dependent apoptosis during OS cell proliferation and progression and that disruption of this complex may be a promising therapeutic strategy for OS.
Collapse
Affiliation(s)
- Shunichi Toki
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan.,Department of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hitoshi Aihara
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masaya Ono
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Sairyo
- Department of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
11
|
Functional genomics for breast cancer drug target discovery. J Hum Genet 2021; 66:927-935. [PMID: 34285339 PMCID: PMC8384626 DOI: 10.1038/s10038-021-00962-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023]
Abstract
Breast cancer is a heterogeneous disease that develops through a multistep process via the accumulation of genetic/epigenetic alterations in various cancer-related genes. Current treatment options for breast cancer patients include surgery, radiotherapy, and chemotherapy including conventional cytotoxic and molecular-targeted anticancer drugs for each intrinsic subtype, such as endocrine therapy and antihuman epidermal growth factor receptor 2 (HER2) therapy. However, these therapies often fail to prevent recurrence and metastasis due to resistance. Overall, understanding the molecular mechanisms of breast carcinogenesis and progression will help to establish therapeutic modalities to improve treatment. The recent development of comprehensive omics technologies has led to the discovery of driver genes, including oncogenes and tumor-suppressor genes, contributing to the development of molecular-targeted anticancer drugs. Here, we review the development of anticancer drugs targeting cancer-specific functional therapeutic targets, namely, MELK (maternal embryonic leucine zipper kinase), TOPK (T-lymphokine-activated killer cell-originated protein kinase), and BIG3 (brefeldin A-inhibited guanine nucleotide-exchange protein 3), as identified through comprehensive breast cancer transcriptomics.
Collapse
|
12
|
Park Y, Lee K, Kim SW, Lee MW, Kim B, Lee SG. Effects of Induced Exosomes from Endometrial Cancer Cells on Tumor Activity in the Presence of Aurea helianthus Extract. Molecules 2021; 26:molecules26082207. [PMID: 33921245 PMCID: PMC8068874 DOI: 10.3390/molecules26082207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer (EC) cells metastasize to various regions, including the ovaries, fallopian tubes, cervix, blood, liver, bone, and brain. Various carcinogens are known to cause EC. Exosomes are released from several types of cells and contain various cellular components. In this study, flow cytometry and quantitative PCR were used to evaluate marker levels, cell migration, cell invasion, and mitochondrial membrane potential, and cellular senescence tests were used to estimate cancer activity. The microRNAs were profiled using next-generation sequencing. Although tocopherol-α and rutin content in Aurea helianthus is high, A. helianthus extract was more useful in modulating tumor activity compared to the two aforementioned substances. Notably, we established that the extract induced bioactive exosomes in EC cells, and profiling of miRNAs in the extract-inducing exosomes (EIE) indicated their potency to be developed as a biological drug. The extract and EIE contributed to the following five biological process categories for EC cells: (1) cell migration and invasion suppression, (2) cellular senescence activation by attenuating mitochondrial membrane potential and enhancing autophagy, (3) reproductive cancer activity attenuation, (4) drug susceptibility activation, and (5) EIE containing miRNAs associated with decreasing inflammation.
Collapse
Affiliation(s)
- Yoonjin Park
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Seoul 02841, Korea; (Y.P.); (S.W.K.); (M.W.L.)
- Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Korea
- Life Together, 13 Gongdan-ro, Chuncheon-si 24232, Gangwon, Korea
| | - Kyunghwa Lee
- Mitosbio, 13 Gongdan-ro, Chuncheon-si 24232, Gangwon, Korea;
| | - Suhng Wook Kim
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Seoul 02841, Korea; (Y.P.); (S.W.K.); (M.W.L.)
| | - Min Woo Lee
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Seoul 02841, Korea; (Y.P.); (S.W.K.); (M.W.L.)
| | - Boyong Kim
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Seoul 02841, Korea; (Y.P.); (S.W.K.); (M.W.L.)
- Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Korea
- Life Together, 13 Gongdan-ro, Chuncheon-si 24232, Gangwon, Korea
- Mitosbio, 13 Gongdan-ro, Chuncheon-si 24232, Gangwon, Korea;
- Correspondence: (B.K.); (S.G.L.); Tel.: +82-10-9105-1435 (B.K. & S.G.L.)
| | - Seung Gwan Lee
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Seoul 02841, Korea; (Y.P.); (S.W.K.); (M.W.L.)
- Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Korea
- Correspondence: (B.K.); (S.G.L.); Tel.: +82-10-9105-1435 (B.K. & S.G.L.)
| |
Collapse
|
13
|
Wu B, Chang N, Xi H, Xiong J, Zhou Y, Wu Y, Wu S, Wang N, Yi H, Song Y, Chen L, Zhang J. PHB2 promotes tumorigenesis via RACK1 in non-small cell lung cancer. Am J Cancer Res 2021; 11:3150-3166. [PMID: 33537079 PMCID: PMC7847695 DOI: 10.7150/thno.52848] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Lung cancer has the highest mortality rate among cancers worldwide, with non-small cell lung cancer (NSCLC) the most common type. Increasing evidence shows that PHB2 is highly expressed in other cancer types; however, the effects of PHB2 in NSCLC are currently poorly understood. Method: PHB2 expression and its clinical relevance in NSCLC tumor tissues were analyzed using a tissue microarray. The biological role of PHB2 in NSCLC was investigated in vitro and in vivo using immunohistochemistry and immunofluorescence staining, gene expression knockdown and overexpression, cell proliferation assay, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, wound healing assay, Transwell assay, western blot analysis, qRT-PCR, coimmunoprecipitation, and mass spectrometry analysis. Results: Our major finding is that PHB2 facilitates tumorigenesis in NSCLC by interacting with and stabilizing RACK1, which further induces activation of downstream tumor-promoting effectors. PHB2 was found to be overexpressed in NSCLC tumor tissues, and its expression was correlated with clinicopathological features. Furthermore, PHB2 overexpression promoted proliferation, migration, and invasion, whereas PHB2 knockdown enhanced apoptosis in NSCLC cells. The stimulating effect of PHB2 on tumorigenesis was also verified in vivo. In addition, PHB2 interacted with RACK1 and increased its expression through posttranslational modification, which further induced activation of the Akt and FAK pathways. Conclusions: Our results reveal the effects of PHB2 on tumorigenesis and its regulation of RACK1 and RACK1-associated proteins and downstream signaling in NSCLC. We believe that the crosstalk between PHB2 and RACK1 provides us with a great opportunity to design and develop novel therapeutic strategies for NSCLC.
Collapse
|
14
|
Takashi Y, Tomita K, Kuwahara Y, Roudkenar MH, Roushandeh AM, Igarashi K, Nagasawa T, Nishitani Y, Sato T. Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis. Free Radic Biol Med 2020; 161:60-70. [PMID: 33017631 PMCID: PMC7530583 DOI: 10.1016/j.freeradbiomed.2020.09.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022]
Abstract
Most anti-cancer agents and radiotherapy exert their therapeutic effects via the production of free radicals. Ferroptosis is a recently described cell death process that is accompanied by iron-dependent lipid peroxidation. Hydrogen peroxide (H2O2) has been reported to induce cell death. However, it remains controversial whether H2O2-induced cell death is ferroptosis. In the present study, we aimed to elucidate the involvement of mitochondria in H2O2-induced ferroptosis and examined the molecules that regulate ferroptosis. We found that one mechanism underlying H2O2-induced cell death is ferroptosis, which occurs soon after H2O2 treatment (within 3 h after H2O2 treatment). We also investigated the involvement of mitochondria in H2O2-induced ferroptosis using mitochondrial DNA-depleted ρ0 cells because ρ0 cells produce more lipid peroxidation, hydroxyl radicals (•OH), and are more sensitive to H2O2 treatment. We found that ρ0 cells contain high Fe2+ levels that lead to •OH production by H2O2. Further, we observed that aquaporin (AQP) 3, 5, and 8 bind nicotinamide-adenine dinucleotide phosphate oxidase 2 and regulate the permeability of extracellular H2O2, thereby contributing to ferroptosis. Additionally, the role of mitochondria in ferroptosis was investigated using mitochondrial transfer in ρ0 cells. When mitochondria were transferred into ρ0 cells, the cells exhibited no sensitivity to H2O2-induced cytotoxicity because of decreased Fe2+ levels. Moreover, mitochondrial transfer upregulated the mitochondrial quality control protein prohibitin 2 (PHB2), which contributes to reduced AQP expression. Our findings also revealed the involvement of AQP and PHB2 in ferroptosis. Our results indicate that H2O2 treatment enhances AQP expression, Fe2+ level, and lipid peroxidation, and decrease mitochondrial function by downregulating PHB2, and thus, is a promising modality for effective cancer treatment.
Collapse
Affiliation(s)
- Yuko Takashi
- Department of Applied Pharmacology, Kagoshima, Japan; Restorative Dentistry and Endodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Department of Applied Pharmacology, Kagoshima, Japan; Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mehryar Habibi Roudkenar
- Department of Applied Pharmacology, Kagoshima, Japan; Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Applied Pharmacology, Kagoshima, Japan; Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Yoshihiro Nishitani
- Restorative Dentistry and Endodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima, Japan.
| |
Collapse
|
15
|
Júnior LA, Cucielo MS, Domeniconi RF, dos Santos LD, Silveira HS, da Silva Nunes I, Martinez M, Martinez FE, Fávaro WJ, Chuffa LGDA. P-MAPA and IL-12 Differentially Regulate Proteins Associated with Ovarian Cancer Progression: A Proteomic Study. ACS OMEGA 2019; 4:21761-21777. [PMID: 31891054 PMCID: PMC6933580 DOI: 10.1021/acsomega.9b02512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/27/2019] [Indexed: 05/04/2023]
Abstract
To investigate the potential role of immunotherapies in the cellular and molecular mechanisms associated with ovarian cancer (OC), we applied a comparative proteomic toll using protein identification combined with mass spectrometry. Herein, the effects of the protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride, known as P-MAPA, and the human recombinant interleukin-12 (hrIL-12) were tested alone or in combination in human SKOV-3 cells. The doses and period were defined based on a previous study, which showed that 25 μg/mL P-MAPA and 1 ng/mL IL-12 are sufficient to reduce cell metabolism after 48 h. Indeed, among 2,881 proteins modulated by the treatments, 532 of them were strictly concordant and common. P-MAPA therapy upregulated proteins involved in tight junction, focal adhesion, ribosome constitution, GTP hydrolysis, semaphorin interactions, and expression of SLIT and ROBO, whereas it downregulated ERBB4 signaling, toll-like receptor signaling, regulation of NOTCH 4, and the ubiquitin proteasome pathway. In addition, IL-12 therapy led to upregulation of leukocyte migration, tight junction, and cell signaling, while cell communication, cell metabolism, and Wnt signaling were significantly downregulated in OC cells. A clear majority of proteins that were overexpressed by the combination of P-MAPA with IL-12 are involved in tight junction, focal adhesion, DNA methylation, metabolism of RNA, and ribosomal function; only a small number of downregulated proteins were involved in cell signaling, energy and mitochondrial processes, cell oxidation and senescence, and Wnt signaling. These findings suggest that P-MAPA and IL-12 efficiently regulated important proteins associated with OC progression; these altered proteins may represent potential targets for OC treatment in addition to its immunoadjuvant effects.
Collapse
Affiliation(s)
- Luiz Antonio
Lupi Júnior
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Maira Smaniotto Cucielo
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Raquel Fantin Domeniconi
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Lucilene Delazari dos Santos
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Henrique Spaulonci Silveira
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | | | - Marcelo Martinez
- Department
of Morphology and Pathology, Federal University
of São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Francisco Eduardo Martinez
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
| | - Wagner José Fávaro
- Department
of Structural and Functional Biology, UNICAMP—University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department
of Anatomy, Institute of Biosciences and Center for the Study of Venoms
and Venomous Animals (CEVAP), UNESP—Universidade
Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil
- E-mail: . Phone: +55 (14) 3880-0027
| |
Collapse
|
16
|
Chigira T, Nagatoishi S, Takeda H, Yoshimaru T, Katagiri T, Tsumoto K. Biophysical characterization of the breast cancer-related BIG3-PHB2 interaction: Effect of non-conserved loop region of BIG3 on the structure and the interaction. Biochem Biophys Res Commun 2019; 518:183-189. [PMID: 31421830 DOI: 10.1016/j.bbrc.2019.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023]
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (BIG3) interacts with and inhibits the tumor suppressor function of prohibitin-2 (PHB2), and recent in vivo studies have demonstrated that the BIG3-PHB2 interaction is a promising target for breast cancer therapy. However, little biophysical characterization on BIG3 and its interaction with PHB2 has been reported. Here we compared the calculated 8-class secondary structure of the N-terminal domains of BIG family proteins and identified a loop region unique to BIG3. Our biophysical characterization demonstrated that this loop region significantly affects the colloidal and thermodynamic stability of BIG3 and the thermodynamic and kinetic profile of its interaction with PHB2. These results establish a model for the BIG3-PHB2 interaction and an entry for drug discovery for breast cancer.
Collapse
Affiliation(s)
- Takeru Chigira
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoru Nagatoishi
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Hiroyuki Takeda
- Divison of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Bunkyocho 3, Matsuyama, Ehime, 790-8577, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
17
|
Alavi MV. Targeted OMA1 therapies for cancer. Int J Cancer 2019; 145:2330-2341. [PMID: 30714136 DOI: 10.1002/ijc.32177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
The mitochondrial inner membrane proteins OMA1 and OPA1 belong to the BAX/BAK1-dependent apoptotic signaling pathway, which can be regulated by tumor protein p53 and the prohibitins PHB and PHB2 in the context of neoplastic disease. For the most part these proteins have been studied separate from each other. Here, I argue that the OMA1 mechanism of action represents the missing link between p53 and cytochrome c release. The mitochondrial fusion protein OPA1 is cleaved by OMA1 in a stress-dependent manner generating S-OPA1. Excessive S-OPA1 can facilitate outer membrane permeabilization upon BAX/BAK1 activation through its membrane shaping properties. p53 helps outer membrane permeabilization in a 2-step process. First, cytosolic p53 activates BAX/BAK1 at the mitochondrial surface. Then, in a second step, p53 binds to prohibitin thereby releasing the restraint on OMA1. This activates OMA1, which cleaves OPA1 and promotes cytochrome c release. Clearly, OMA1 and OPA1 are not root causes for cancer. Yet many cancer cells rely on this pathway for survival, which can explain why loss of p53 function promotes tumor growth and confers resistance to chemotherapies.
Collapse
|
18
|
Deng B, Tarhan YE, Ueda K, Ren L, Katagiri T, Park JH, Nakamura Y. Critical Role of Estrogen Receptor Alpha O-Glycosylation by N-Acetylgalactosaminyltransferase 6 (GALNT6) in Its Nuclear Localization in Breast Cancer Cells. Neoplasia 2018; 20:1038-1044. [PMID: 30208353 PMCID: PMC6138801 DOI: 10.1016/j.neo.2018.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/12/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022]
Abstract
Alteration of protein O-glycosylation in various human cancers including breast cancer is well known, but molecular roles of their aberrant glycosylations on cancer have not been fully understood. We previously reported critical roles of polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6 or GalNAc-T6) that was upregulated in a great majority of breast cancer tissues. Here we further report O-glycosylation of estrogen receptor alpha (ER-α) by GALNT6 and the significant role of its nuclear localization in breast cancer cells. Knockdown of GALNT6 expression in two breast cancer cell lines, T47D and MCF7, in which both ER-α and GALNT6 were highly expressed, by small interfering RNA could significantly attenuate expression of ER-α. Immunocytochemical analysis clearly demonstrated the drastic decrease of ER-α protein in the nucleus of these cancer cells. Accordingly, the downstream genes of the ER-α pathway such as MYC, CCND1, and CTSD were significantly downregulated. We confirmed GALNT6-dependent ER-α O-glycosylation and identified O-glycosylation of S573 in an F domain of ER-α by GALNT6 through LC-MS/MS analysis. We also obtained evidences showing that the glycosylation of ER-α at S573 by GALNT6 is essential for protein stability and nuclear localization of ER-α in breast cancer cells. Furthermore, we designed cell membrane-permeable peptides including the O-glycosylation site and found a significant decrease of the cell viability of breast cancer cells by treatment of these peptides in a GALNT6 expression-dependent manner. Our study suggests that targeting the GALNT6 enzymatic activity as well as the GALNT6/ER-α interaction could be a promising therapeutic approach to ER-α-positive breast cancer patients.
Collapse
Affiliation(s)
- Boya Deng
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yunus Emre Tarhan
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Research Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Lili Ren
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
COMP-prohibitin 2 interaction maintains mitochondrial homeostasis and controls smooth muscle cell identity. Cell Death Dis 2018; 9:676. [PMID: 29867124 PMCID: PMC5986769 DOI: 10.1038/s41419-018-0703-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are highly phenotypically plastic, and loss of the contractile phenotype in VSMCs has been recognized at the early onset of the pathology of a variety of vascular diseases. However, the endogenous regulatory mechanism to maintain contractile phenotype in VSMCs remains elusive. Moreover, little has been known about the role of the mitochondrial bioenergetics in terms of VSMC homeostasis. Herein, we asked if glycoprotein COMP (Cartilage oligomeric matrix protein) is involved in mitochondrial bioenergetics and therefore regulates VSMCs homeostasis. By using fluorescence assay, subcellular western blot and liquid chromatography tandem mass spectrometry analysis, we found that extracellular matrix protein COMP unexpectedly localized within mitochondria. Further mitochondrial transplantation revealed that both mitochondrial and non-mitochondrial COMP maintained VSMC identity. Moreover, microarray analysis revealed that COMP deficiency impaired mitochondrial oxidative phosphorylation in VSMCs. Further study confirmed that COMP deficiency caused mitochondrial oxidative phosphorylation dysfunction accompanied by morphological abnormality. Moreover, the interactome of mitochondrial COMP revealed that COMP interacted with prohibitin 2, and COMP-prohibitin 2 interaction maintained mitochondrial homeostasis. Additionally, disruption of COMP-prohibitin 2 interaction caused VSMC dedifferentiation in vitro and enhanced the neointima formation post rat carotid artery injury in vivo. In conclusion, COMP-prohibitin 2 interaction in mitochondria plays an important role in maintaining the contractile phenotype of VSMCs by regulating mitochondrial oxidative phosphorylation. Maintaining the homeostasis of mitochondrial respiration through COMP-prohibitin 2 interaction may shed light on prevention of vascular disease.
Collapse
|
20
|
Miyagawa Y, Matsushita Y, Suzuki H, Komatsu M, Yoshimaru T, Kimura R, Yanai A, Honda J, Tangoku A, Sasa M, Miyoshi Y, Katagiri T. Frequent downregulation of LRRC26 by epigenetic alterations is involved in the malignant progression of triple-negative breast cancer. Int J Oncol 2018; 52:1539-1558. [PMID: 29512727 DOI: 10.3892/ijo.2018.4301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/21/2018] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC), defined as breast cancer lacking estrogen- and progesterone‑receptor expression and human epidermal growth factor receptor 2 (HER2) amplification, is a heterogeneous disease. RNA-sequencing analysis of 15 TNBC specimens and The Cancer Genome Atlas-TNBC dataset analysis identified the frequent downregulation of leucine-rich repeat-containing 26 (LRRC26), which negatively regulates nuclear factor-κB (NF-κB) signaling, in TNBC tissues. Quantitative polymerase chain reaction and bisulfite pyrosequencing analyses revealed that LRRC26 was frequently silenced in TNBC tissues and cell lines as a result of promoter methylation. LRRC26 expression was restored by 5-aza-2'-deoxycytidine (5'-aza-dC) treatment in HCC1937 TNBC cells, which lack LRRC26 expression. Notably, small interfering RNA-mediated knockdown of LRRC26 expression significantly enhanced the anchorage-independent growth, invasion and migration of HCC70 cells, whereas ectopic overexpression of LRRC26 in BT20 cells suppressed their invasion and migration. Conversely, neither knockdown nor overexpression of LRRC26 had an effect on cell viability in the absence of tumor necrosis factor-α (TNF-α) stimulation. Meanwhile, overexpression of LRRC26 caused the reduction of TNF-α-mediated NF-κB luciferase reporter activity, whereas depleting LRRC26 expression resulted in the upregulation of TNF-α-mediated NF-κB downstream genes [interleukin-6 (IL-6), IL-8 and C-X-C motif chemokine ligand-1]. Taken together, these findings demonstrate that LRRC26 is frequently downregulated in TNBC due to DNA methylation and that it suppresses the TNF-α-independent anchorage-independent growth, invasion and migration of TNBC cells. Loss of LRRC26 function may be a critical event in the aggressiveness of TNBC cells through a TNF-α/NF-κB-independent mechanism.
Collapse
Affiliation(s)
- Yoshimasa Miyagawa
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Ryuichiro Kimura
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Ayako Yanai
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Junko Honda
- Department of Surgery, National Hospital Organization Higashitokushima Medical Center, Tokushima 779-0193, Japan
| | - Akira Tangoku
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima 770-0052, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
21
|
Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep 2018; 8:1479. [PMID: 29367618 PMCID: PMC5784149 DOI: 10.1038/s41598-018-19917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2018] [Indexed: 01/03/2023] Open
Abstract
Prohibitin 2 (PHB2), as a conserved multifunctional protein, is traditionally localized in the mitochondrial inner membrane and essential for maintenance of mitochondrial function. Here, we investigated the role of PHB2 in human rhabdomyosarcoma (RMS) RD cells and found substantial localization of PHB2 in the nucleolus. We demonstrated that PHB2 knockdown inhibited RD cell proliferation through inducing cell cycle arrest and suppressing DNA synthesis. Meanwhile, down-regulation of PHB2 also induced apoptosis and promoted differentiation in fractions of RD cells. In addition, PHB2 silencing led to altered nucleolar morphology, as observed by transmission electron microscopy, and impaired nucleolar function, as evidenced by down-regulation of 45S and 18S ribosomal RNA synthesis. Consistently, upon PHB2 knockdown, occupancy of c-Myc at the ribosomal DNA (rDNA) promoter was attenuated, while more myoblast determination protein 1 (MyoD) molecules bound to the rDNA promoter. In conclusion, our findings suggest that nucleolar PHB2 is involved in maintaining nucleolar morphology and function in RD cells by regulating a variety of transcription factors, which is likely to be one of the underlying mechanisms by which PHB2 promotes tumor proliferation and represses differentiation. Our study provides new insight into the pathogenesis of RMS and novel characterizations of the highly conserved PHB2 protein.
Collapse
|
22
|
Taniguchi K, Matsumura K, Kageyama S, Ii H, Ashihara E, Chano T, Kawauchi A, Yoshiki T, Nakata S. Prohibitin-2 is a novel regulator of p21 WAF1/CIP1 induced by depletion of γ-glutamylcyclotransferase. Biochem Biophys Res Commun 2018; 496:218-224. [PMID: 29307834 DOI: 10.1016/j.bbrc.2018.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
Previous studies show that gamma-glutamylcyclotransferase (GGCT) is expressed at high levels in various cancer tissues and that its knockdown inhibits MCF7 cancer cell growth via upregulation of p21WAF1/CIP1 (p21). However, the detailed underlying mechanism is unclear. Here, we used yeast two-hybrid screening and co-immunoprecipitation to identify Prohibitin-2 (PHB2) as a novel protein that interacts with GGCT. We also show that nuclear expression of PHB2 in MCF7 cells falls upon GGCT knockdown, and that overexpression of PHB2 inhibits p21 upregulation. A chromatin immunoprecipitation assay revealed that nuclear PHB2 proteins bind to the p21 promoter, and that this interaction is abrogated by GGCT knockdown. Moreover, knockdown of PHB2 alone led to significant upregulation of p21 and mimicked the cellular events induced by GGCT depletion, including G0/G1 arrest, cellular senescence, and growth inhibition, in a p21 induction-dependent manner. Taken together, the results indicate that PHB2 plays a central role in p21 upregulation following GGCT knockdown and as such may promote deregulated proliferation of cancer cells by suppressing p21.
Collapse
Affiliation(s)
- Keiko Taniguchi
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto 607-8414, Japan
| | - Kengo Matsumura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Shogoin-kawaharacho 54, Sakyoku, Kyoto 606-8507, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan
| | - Hiromi Ii
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto 607-8414, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto 607-8414, Japan
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan
| | - Tatsuhiro Yoshiki
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto 607-8414, Japan; Department of Urology, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan
| | - Susumu Nakata
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto 607-8414, Japan.
| |
Collapse
|
23
|
Park H, Shimamura T, Imoto S, Miyano S. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks. J Comput Biol 2017; 25:130-145. [PMID: 29053381 DOI: 10.1089/cmb.2017.0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is currently much discussion about sample (patient)-specific gene regulatory network identification, since the efficiently constructed sample-specific gene networks lead to effective personalized cancer therapy. Although statistical approaches have been proposed for inferring gene regulatory networks, the methods cannot reveal sample-specific characteristics because the existing methods, such as an L1-type regularization, provide averaged results for all samples. Thus, we cannot reveal sample-specific characteristics in transcriptional regulatory networks. To settle on this issue, the NetworkProfiler was proposed based on the kernel-based L1-type regularization. The NetworkProfiler imposes a weight on each sample based on the Gaussian kernal function for controlling effect of samples on modeling a target sample, where the amount of weight depends on similarity of cancer characteristics between samples. The method, however, cannot perform gene regulatory network identification well for a target sample in a sparse region (i.e., for a target sample, there are only a few samples having a similar characteristic of the target sample, where the characteristic is considered as a modulator in sample-specific gene network construction), since a constant bandwidth in the Gaussian kernel function cannot effectively group samples for modeling a target sample in sparse region. The cancer characteristics, such as an anti-cancer drug sensitivity, are usually nonuniformly distributed, and thus modeling for samples in a sparse region is also a crucial issue. We propose a novel kernel-based L1-type regularization method based on a modified k-nearest neighbor (KNN)-Gaussian kernel function, called an adaptive NetworkProfiler. By using the modified KNN-Gaussian kernel function, our method provides robust results against the distribution of modulators, and properly groups samples according to a cancer characteristic for sample-specific analysis. Furthermore, we propose a sample-specific generalized cross-validation for choosing the sample-specific tuning parameters in the kernel-based L1-type regularization method. Numerical studies demonstrate that the proposed adaptive NetworkProfiler effectively performs sample-specific gene network construction. We apply the proposed statistical strategy to the publicly available Sanger Genomic data analysis, and extract anti-cancer drug sensitivity-specific gene regulatory networks.
Collapse
Affiliation(s)
- Heewon Park
- 1 Faculty of Global and Science Studies, Yamaguchi University , Yamaguchi Prefecture, Japan
| | - Teppei Shimamura
- 2 Graduate School of Medicine, Nagoya University , Nagoya, Japan
| | - Seiya Imoto
- 3 Health Intelligence Center, Institute of Medical Science, University of Tokyo , Tokyo, Japan
| | - Satoru Miyano
- 4 Human Genome Center, Institute of Medical Science, University of Tokyo , Tokyo, Japan
| |
Collapse
|
24
|
Ross JA, Robles-Escajeda E, Oaxaca DM, Padilla DL, Kirken RA. The prohibitin protein complex promotes mitochondrial stabilization and cell survival in hematologic malignancies. Oncotarget 2017; 8:65445-65456. [PMID: 29029444 PMCID: PMC5630344 DOI: 10.18632/oncotarget.18920] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Prohibitins (PHB1 and PHB2) have been proposed to play important roles in cancer development and progression, however their oncogenic mechanism of action has not been fully elucidated. Previously, we showed that the PHB1 and PHB2 protein complex is required for mitochondrial homeostasis and survival of normal human lymphocytes. In this study, novel evidence is provided that indicates mitochondrial prohibitins are overexpressed in hematologic tumor cells and promote cell survival under conditions of oxidative stress. Immunofluorescent confocal microscopy revealed both proteins to be primarily confined to mitochondria in primary patient lymphoid and myeloid tumor cells and tumor cell lines, including Kit225 cells. Subsequently, siRNA-mediated knockdown of PHB1 and PHB2 in Kit225 cells significantly enhanced sensitivity to H2O2-induced cell death, suggesting a protective or anti-apoptotic function in hematologic malignancies. Indeed, PHB1 and PHB2 protein levels were significantly higher in tumor cells isolated from leukemia and lymphoma patients compared to PBMCs from healthy donors. These findings suggest that PHB1 and PHB2 are upregulated during tumorigenesis to maintain mitochondrial integrity and therefore may serve as novel biomarkers and molecular targets for therapeutic intervention in certain types of hematologic malignancies.
Collapse
Affiliation(s)
- Jeremy A Ross
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Elisa Robles-Escajeda
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Derrick M Oaxaca
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Diana L Padilla
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Robert A Kirken
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
25
|
Yoshimaru T, Ono M, Bando Y, Chen YA, Mizuguchi K, Shima H, Komatsu M, Imoto I, Izumi K, Honda J, Miyoshi Y, Sasa M, Katagiri T. A-kinase anchoring protein BIG3 coordinates oestrogen signalling in breast cancer cells. Nat Commun 2017; 8:15427. [PMID: 28555617 PMCID: PMC5512694 DOI: 10.1038/ncomms15427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Approximately 70% of breast cancer cells express oestrogen receptor alpha (ERα). Previous studies have shown that the Brefeldin A-inhibited guanine nucleotide-exchange protein 3–prohibitin 2 (BIG3-PHB2) complex has a crucial role in these cells. However, it remains unclear how BIG3 regulates the suppressive activity of PHB2. Here we demonstrate that BIG3 functions as an A-kinase anchoring protein that binds protein kinase A (PKA) and the α isoform of the catalytic subunit of protein phosphatase 1 (PP1Cα), thereby dephosphorylating and inactivating PHB2. E2-induced PKA-mediated phosphorylation of BIG3-S305 and -S1208 serves to enhance PP1Cα activity, resulting in E2/ERα signalling activation via PHB2 inactivation due to PHB2-S39 dephosphorylation. Furthermore, an analysis of independent cohorts of ERα-positive breast cancers patients reveal that both BIG3 overexpression and PHB2-S39 dephosphorylation are strongly associated with poor prognosis. This is the first demonstration of the mechanism of E2/ERα signalling activation via the BIG3–PKA–PP1Cα tri-complex in breast cancer cells. BIG3 is highly expressed in breast cancers and its interaction with PHB2 results in constitutive activation of E2/ERa signalling. Here the authors unveil the mechanistic details of this regulation showing that BIG3 binds PKA and regulates PP1Ca activity in an oestrogen-dependent manner.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yi-An Chen
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshimashiote, Natori, Miyagi 981-1293, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Keisuke Izumi
- Department of Molecular and Environmental Pathology, Graduate School of Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Junko Honda
- Department of Surgery, National Hospital Organization Higashitokushima Medical Center, 1-1 Ohmukai-kita, Ootera, Itano, Tokushima 779-0193, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, 4-7-7 Nakashimada-cho, Tokushima 770-0052, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
26
|
Stapled BIG3 helical peptide ERAP potentiates anti-tumour activity for breast cancer therapeutics. Sci Rep 2017; 7:1821. [PMID: 28500289 PMCID: PMC5431889 DOI: 10.1038/s41598-017-01951-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 12/02/2022] Open
Abstract
Estradiol (E2) and the oestrogen receptor-alpha (ERα) signalling pathway play pivotal roles in the proliferative activity of breast cancer cells. Recent findings show that the brefeldin A-inhibited guanine nucleotide-exchange protein 3-prohibitin 2 (BIG3-PHB2) complex plays a crucial role in E2/ERα signalling modulation in breast cancer cells. Moreover, specific inhibition of the BIG3-PHB2 interaction using the ERα activity-regulator synthetic peptide (ERAP: 165–177 amino acids), derived from α-helical BIG3 sequence, resulted in a significant anti-tumour effect. However, the duration of this effect was very short for viable clinical application. We developed the chemically modified ERAP using stapling methods (stapledERAP) to improve the duration of its antitumour effects. The stapledERAP specifically inhibited the BIG3-PHB2 interaction and exhibited long-lasting suppressive activity. Its intracellular localization without the membrane-permeable polyarginine sequence was possible via the formation of a stable α-helix structure by stapling. Tumour bearing-mice treated daily or weekly with stapledERAP effectively prevented the BIG3-PHB2 interaction, leading to complete regression of E2-dependent tumours in vivo. Most importantly, combination of stapledERAP with tamoxifen, fulvestrant, and everolimus caused synergistic inhibitory effects on growth of breast cancer cells. Our findings suggested that the stapled ERAP may be a promising anti-tumour drug to suppress luminal-type breast cancer growth.
Collapse
|
27
|
Murakami Y, Tripathi LP, Prathipati P, Mizuguchi K. Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery. Curr Opin Struct Biol 2017; 44:134-142. [PMID: 28364585 DOI: 10.1016/j.sbi.2017.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/05/2017] [Accepted: 02/23/2017] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions (PPIs) are vital to maintaining cellular homeostasis. Several PPI dysregulations have been implicated in the etiology of various diseases and hence PPIs have emerged as promising targets for drug discovery. Surface residues and hotspot residues at the interface of PPIs form the core regions, which play a key role in modulating cellular processes such as signal transduction and are used as starting points for drug design. In this review, we briefly discuss how PPI networks (PPINs) inferred from experimentally characterized PPI data have been utilized for knowledge discovery and how in silico approaches to PPI characterization can contribute to PPIN-based biological research. Next, we describe the principles of in silico PPI prediction and survey the existing PPI and PPI site prediction servers that are useful for drug discovery. Finally, we discuss the potential of in silico PPI prediction in drug discovery.
Collapse
Affiliation(s)
- Yoichi Murakami
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Lokesh P Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Philip Prathipati
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
28
|
Bak MJ, Das Gupta S, Wahler J, Suh N. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer. Semin Cancer Biol 2016; 40-41:170-191. [PMID: 27016037 DOI: 10.1016/j.semcancer.2016.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
29
|
Abstract
Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.
Collapse
Affiliation(s)
- Ya-Ting Peng
- Department of Respiratory Medicine, Respiratory Disease Research Institute, Second XiangYa Hospital of Central South University, Changsha, 410011, People's Republic of China
| | | | | | | |
Collapse
|
30
|
Dai X, Guo W, Zhan C, Liu X, Bai Z, Yang Y. WDR5 Expression Is Prognostic of Breast Cancer Outcome. PLoS One 2015; 10:e0124964. [PMID: 26355959 PMCID: PMC4565643 DOI: 10.1371/journal.pone.0124964] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
WDR5 is a core component of the human mixed lineage leukemia-2 complex, which plays central roles in ER positive tumour cells and is a major driver of androgen-dependent prostate cancer cell proliferation. Given the similarities between breast and prostate cancers, we explore the potential prognostic value of WDR5 gene expression on breast cancer survival. Our findings reveal that WDR5 over-expression is associated with poor breast cancer clinical outcome in three gene expression data sets and BreastMark. The eQTL analysis reveals 130 trans-eQTL SNPs whose genes mapped with statistical significance are significantly associated with patient survival. These genes together with WDR5 are enriched with “cellular development, gene expression, cell cycle” signallings. Knocking down WDR5 in MCF7 dramatically decreases cell viability, but does not alter tumour cell response to doxorubicin. Our study reveals the prognostic value of WDR5 expression in breast cancer which is under long-range regulation of genes involved in cell cycle, and anthracycline could be coupled with treatments targeting WDR5 once such a regimen is available.
Collapse
Affiliation(s)
- Xiaofeng Dai
- School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- * E-mail: (YKY); (XFD)
| | - Wenwen Guo
- School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Chunjun Zhan
- School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Zhonghu Bai
- School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- * E-mail: (YKY); (XFD)
| |
Collapse
|
31
|
Kim NH, Yoshimaru T, Chen YA, Matsuo T, Komatsu M, Miyoshi Y, Tanaka E, Sasa M, Mizuguchi K, Katagiri T. BIG3 Inhibits the Estrogen-Dependent Nuclear Translocation of PHB2 via Multiple Karyopherin-Alpha Proteins in Breast Cancer Cells. PLoS One 2015; 10:e0127707. [PMID: 26052702 PMCID: PMC4460025 DOI: 10.1371/journal.pone.0127707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/17/2015] [Indexed: 12/25/2022] Open
Abstract
We recently reported that brefeldin A-inhibited guanine nucleotide-exchange protein 3 (BIG3) binds Prohibitin 2 (PHB2) in cytoplasm, thereby causing a loss of function of the PHB2 tumor suppressor in the nuclei of breast cancer cells. However, little is known regarding the mechanism by which BIG3 inhibits the nuclear translocation of PHB2 into breast cancer cells. Here, we report that BIG3 blocks the estrogen (E2)-dependent nuclear import of PHB2 via the karyopherin alpha (KPNA) family in breast cancer cells. We found that overexpressed PHB2 interacted with KPNA1, KPNA5, and KPNA6, thereby leading to the E2-dependent translocation of PHB2 into the nuclei of breast cancer cells. More importantly, knockdown of each endogenous KPNA by siRNA caused a significant inhibition of E2-dependent translocation of PHB2 in BIG3-depleted breast cancer cells, thereby enhancing activation of estrogen receptor alpha (ERα). These data indicated that BIG3 may block the KPNAs (KPNA1, KPNA5, and KPNA6) binding region(s) of PHB2, thereby leading to inhibition of KPNAs-mediated PHB2 nuclear translocation in the presence of E2 in breast cancer cells. Understanding this regulation of PHB2 nuclear import may provide therapeutic strategies for controlling E2/ERα signals in breast cancer cells.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Yi-An Chen
- National Institute of Biomedical Innovation, Osaka, Japan
| | - Taisuke Matsuo
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Japan
| | | | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
32
|
Chigira T, Nagatoishi S, Tsumoto K. Differential binding of prohibitin-2 to estrogen receptor α and to drug-resistant ERα mutants. Biochem Biophys Res Commun 2015; 463:726-31. [PMID: 26049107 DOI: 10.1016/j.bbrc.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 02/05/2023]
Abstract
Endocrine resistance is one of the most challenging problems in estrogen receptor alpha (ERα)-positive breast cancer. The transcriptional activity of ERα is controlled by several coregulators, including prohibitin-2 (PHB2). Because of its ability to repress the transcriptional activity of activated ERα, PHB2 is a promising antiproliferative agent. In this study, were analyzed the interaction of PHB2 with ERα and three mutants (Y537S, D538G, and E380Q) that are frequently associated with a lack of sensitivity to hormonal treatments, to help advance novel drug discovery. PHB2 bound to ERα wild-type (WT), Y537S, and D538G, but did not bind to E380Q. The binding thermodynamics of Y537S and D538G to PHB2 were favorably altered entropically compared with those of WT to PHB2. Our results show that PHB2 binds to the ligand binding domain of ERα with a conformational change in the helix 12 of ERα.
Collapse
Affiliation(s)
- Takeru Chigira
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|
33
|
Bavelloni A, Piazzi M, Raffini M, Faenza I, Blalock WL. Prohibitin 2: At a communications crossroads. IUBMB Life 2015; 67:239-54. [PMID: 25904163 DOI: 10.1002/iub.1366] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 01/02/2023]
Abstract
Prohibitins (PHBs) are a highly conserved class of proteins first discovered as inhibitors of cellular proliferation. Since then PHBs have been found to have a significant role in transcription, nuclear signaling, mitochondrial structural integrity, cell division, and cellular membrane metabolism, placing these proteins among the key regulators of pathologies such as cancer, neuromuscular degeneration, and other metabolic diseases. The human genome encodes two PHB proteins, prohibitin 1 (PHB1) and prohibitin 2 (PHB2), which function not only as a heterodimeric complex, but also independently. While many previous reviews have focused on the better characterized prohibitin, PHB1, this review focuses on PHB2 and new data concerning its cellular functions both in complex with PHB1 and independent of PHB1.
Collapse
Affiliation(s)
- Alberto Bavelloni
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Manuela Piazzi
- Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - Mirco Raffini
- Laboratory RAMSES, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical Sciences, University of Bologna, Bologna, Italy
| | - William L Blalock
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy.,National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| |
Collapse
|
34
|
Yoshimaru T, Komatsu M, Miyoshi Y, Honda J, Sasa M, Katagiri T. Therapeutic advances in BIG3-PHB2 inhibition targeting the crosstalk between estrogen and growth factors in breast cancer. Cancer Sci 2015; 106:550-8. [PMID: 25736224 PMCID: PMC4452155 DOI: 10.1111/cas.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/11/2015] [Accepted: 02/28/2015] [Indexed: 12/13/2022] Open
Abstract
Our previous studies demonstrated that specific inhibition of the BIG3-PHB2 complex, which is a critical modulator in estrogen (E2) signaling, using ERAP, a dominant negative peptide inhibitor, leads to suppression of E2-dependent estrogen receptor (ER) alpha activation through the reactivation of the tumor suppressive activity of PHB2. Here, we report that ERAP has significant suppressive effects against synergistic activation caused by the crosstalk between E2 and growth factors associated with intrinsic or acquired resistance to anti-estrogen tamoxifen in breast cancer cells. Intrinsic PHB2 released from BIG3 by ERAP effectively disrupted each interaction of membrane-associated ERα and insulin-like growth factor 1 receptor beta (IGF-1Rβ), EGFR, PI3K or human epidermal growth factor 2 (HER2) in the presence of E2 and the growth factors IGF or EGF, followed by inhibited the activation of IGF-1Rβ, EGFR or HER2, and reduced Akt, MAPK and ERα phosphorylation levels, resulting in significant suppression of proliferation of ERα-positive breast cancer cells in vitro and in vivo. More importantly, combined treatment with ERAP and tamoxifen led to a synergistic suppression of signaling that was activated by crosstalk between E2 and growth factors or HER2 amplification. Taken together, our findings suggest that the specific inhibition of BIG3-PHB2 is a novel potential therapeutic approach for the treatment of tamoxifen-resistant breast cancers activated by the crosstalk between E2 and growth factor signaling, especially in premenopausal women.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine, Department of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Junko Honda
- Department of Surgery, National Hospital Organization Higashitokushima Medical Center, Tokushima, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
35
|
Bach LA. Recent insights into the actions of IGFBP-6. J Cell Commun Signal 2015; 9:189-200. [PMID: 25808083 DOI: 10.1007/s12079-015-0288-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/16/2015] [Indexed: 12/28/2022] Open
Abstract
IGFBP-6 is an O-linked glycoprotein that preferentially binds IGF-II over IGF-I. It is a relatively selective inhibitor of IGF-II actions including proliferation, survival and differentiation of a wide range of cells. IGFBP-6 has recently been shown to have a number of IGF-independent actions, including promotion of apoptosis in some cells and inhibition of angiogenesis. IGFBP-6 also induces migration of tumour cells including rhabdomyosarcomas by an IGF-independent mechanism. This chemotactic effect is mediated by MAP kinases. IGFBP-6 binds to prohibitin-2 on the cell surface and the latter is required for IGFBP-6-induced migration by a mechanism that is independent of MAP kinases. IGFBP-6 may enter the nucleus and modulate cell survival and differentiation. IGFBP-6 expression is decreased in a number of cancer cells and it has been postulated to act as a tumour suppressor. IGFBP-6 expression is increased in a smaller number of cancers, which may reflect a compensatory mechanism to control IGF-II actions or IGF-independent actions. The relative balance of IGF-dependent and IGF-independent actions of IGFBP-6 in vivo together with the related question regarding the roles of IGFBP-6 binding to IGF and non-IGF ligands are keys to understanding the physiological role of this protein.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia,
| |
Collapse
|
36
|
Yoshimaru T, Komatsu M, Tashiro E, Imoto M, Osada H, Miyoshi Y, Honda J, Sasa M, Katagiri T. Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions. Sci Rep 2014; 4:7355. [PMID: 25483453 PMCID: PMC4258681 DOI: 10.1038/srep07355] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Xanthohumol (XN) is a natural anticancer compound that inhibits the proliferation of oestrogen receptor-α (ERα)-positive breast cancer cells. However, the precise mechanism of the antitumour effects of XN on oestrogen (E2)-dependent cell growth, and especially its direct target molecule(s), remain(s) largely unknown. Here, we focus on whether XN directly binds to the tumour suppressor protein prohibitin 2 (PHB2), forming a novel natural antitumour compound targeting the BIG3-PHB2 complex and acting as a pivotal modulator of E2/ERα signalling in breast cancer cells. XN treatment effectively prevented the BIG3-PHB2 interaction, thereby releasing PHB2 to directly bind to both nuclear- and cytoplasmic ERα. This event led to the complete suppression of the E2-signalling pathways and ERα-positive breast cancer cell growth both in vitro and in vivo, but did not suppress the growth of normal mammary epithelial cells. Our findings suggest that XN may be a promising natural compound to suppress the growth of luminal-type breast cancer.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | | | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Junko Honda
- Department of Surgery, National Hospital Organization Higashitokushima Medical Center, Tokushima, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
37
|
Identification of novel epigenetically inactivated gene PAMR1 in breast carcinoma. Oncol Rep 2014; 33:267-73. [PMID: 25370079 DOI: 10.3892/or.2014.3581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/03/2014] [Indexed: 11/05/2022] Open
Abstract
Development of cancer is a complex process involving multiple genetic and epigenetic alterations. In our microarray analysis of 81 breast carcinoma specimens, we identified peptidase domain containing associated with muscle regeneration 1 (PAMR1) as being frequently suppressed in breast cancer tissues. PAMR1 expression was also reduced in all tested breast cancer cell lines, while PAMR1 was expressed moderately in normal breast tissues and primary mammary epithelial cells. DNA sequencing of the PAMR1 promoter after sodium bisulfite treatment revealed that CpG sites were hypermethylated in the breast cancer tissues and cell lines. PAMR1 expression was restored by 5-aza-2' deoxycytidine treatment, demonstrating that promoter hypermethylation contributed to PAMR1 inactivation in the breast cancer cells. In addition, ectopic expression of PAMR1 markedly suppressed cancer cell growth. In summary, our study identified PAMR1 as a putative tumor suppressor which was frequently inactivated by promoter hypermethylation in breast cancer tissues.
Collapse
|
38
|
Chen YA, Murakami Y, Ahmad S, Yoshimaru T, Katagiri T, Mizuguchi K. Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (BIG3) is predicted to interact with its partner through an ARM-type α-helical structure. BMC Res Notes 2014; 7:435. [PMID: 24997568 PMCID: PMC4096751 DOI: 10.1186/1756-0500-7-435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022] Open
Abstract
Background Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (BIG3) has been identified recently as a novel regulator of estrogen signalling in breast cancer cells. Despite being a potential target for new breast cancer treatment, its amino acid sequence suggests no association with any well-characterized protein family and provides little clues as to its molecular function. In this paper, we predicted the structure, function and interactions of BIG3 using a range of bioinformatic tools. Results Homology search results showed that BIG3 had distinct features from its paralogues, BIG1 and BIG2, with a unique region between the two shared domains, Sec7 and DUF1981. Although BIG3 contains Sec7 domain, the lack of the conserved motif and the critical glutamate residue suggested no potential guaninyl-exchange factor (GEF) activity. Fold recognition tools predicted BIG3 to adopt an α-helical repeat structure similar to that of the armadillo (ARM) family. Using state-of-the-art methods, we predicted interaction sites between BIG3 and its partner PHB2. Conclusions The combined results of the structure and interaction prediction led to a novel hypothesis that one of the predicted helices of BIG3 might play an important role in binding to PHB2 and thereby preventing its translocation to the nucleus. This hypothesis has been subsequently verified experimentally.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenji Mizuguchi
- National Institute of Biomedical Innovation, 7-6-8 Saito-asagi, Ibaraki city, Osaka 567-0085, Japan.
| |
Collapse
|
39
|
Yoshimaru T, Komatsu M, Matsuo T, Chen YA, Murakami Y, Mizuguchi K, Mizohata E, Inoue T, Akiyama M, Yamaguchi R, Imoto S, Miyano S, Miyoshi Y, Sasa M, Nakamura Y, Katagiri T. Targeting BIG3-PHB2 interaction to overcome tamoxifen resistance in breast cancer cells. Nat Commun 2014; 4:2443. [PMID: 24051437 PMCID: PMC3791465 DOI: 10.1038/ncomms3443] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022] Open
Abstract
The acquisition of endocrine resistance is a common obstacle in endocrine therapy of patients with oestrogen receptor-α (ERα)-positive breast tumours. We previously demonstrated that the BIG3–PHB2 complex has a crucial role in the modulation of oestrogen/ERα signalling in breast cancer cells. Here we report a cell-permeable peptide inhibitor, called ERAP, that regulates multiple ERα-signalling pathways associated with tamoxifen resistance in breast cancer cells by inhibiting the interaction between BIG3 and PHB2. Intrinsic PHB2 released from BIG3 by ERAP directly binds to both nuclear- and membrane-associated ERα, which leads to the inhibition of multiple ERα-signalling pathways, including genomic and non-genomic ERα activation and ERα phosphorylation, and the growth of ERα-positive breast cancer cells both in vitro and in vivo. More importantly, ERAP treatment suppresses tamoxifen resistance and enhances tamoxifen responsiveness in ERα-positive breast cancer cells. These findings suggest inhibiting the interaction between BIG3 and PHB2 may be a new therapeutic strategy for the treatment of luminal-type breast cancer. Oestrogen receptor-α (ERα) signalling has a role in breast cancer drug resistance. Here, the authors report a synthetic peptide that disrupts the interaction between the signalling molecules BIG3 and PHB2, and thereby suppresses tamoxifen resistance.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li H, Wei S, Cheng K, Gounko NV, Ericksen RE, Xu A, Hong W, Han W. BIG3 inhibits insulin granule biogenesis and insulin secretion. EMBO Rep 2014; 15:714-22. [PMID: 24711543 DOI: 10.1002/embr.201338181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While molecular regulation of insulin granule exocytosis is relatively well understood, insulin granule biogenesis and maturation and its influence on glucose homeostasis are relatively unclear. Here, we identify a novel protein highly expressed in insulin-secreting cells and name it BIG3 due to its similarity to BIG/GBF of the Arf-GTP exchange factor (GEF) family. BIG3 is predominantly localized to insulin- and clathrin-positive trans-Golgi network (TGN) compartments. BIG3-deficient insulin-secreting cells display increased insulin content and granule number and elevated insulin secretion upon stimulation. Moreover, BIG3 deficiency results in faster processing of proinsulin to insulin and chromogranin A to β-granin in β-cells. BIG3-knockout mice exhibit postprandial hyperinsulinemia, hyperglycemia, impaired glucose tolerance, and insulin resistance. Collectively, these results demonstrate that BIG3 negatively modulates insulin granule biogenesis and insulin secretion and participates in the regulation of systemic glucose homeostasis.
Collapse
Affiliation(s)
- Hongyu Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shunhui Wei
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kenneth Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Natalia V Gounko
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Joint IMB-IMCB Electron Microscopy Suite, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Russell E Ericksen
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China Department of Medicine, University of Hong Kong, Hong Kong, China Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
41
|
Matsuo T, Komatsu M, Yoshimaru T, Kiyotani K, Miyoshi Y, Sasa M, Katagiri T. Involvement of B3GALNT2 overexpression in the cell growth of breast cancer. Int J Oncol 2013; 44:427-34. [PMID: 24285400 DOI: 10.3892/ijo.2013.2187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/07/2013] [Indexed: 11/06/2022] Open
Abstract
A number of glycosyltransferases have been identified and biologically characterized in cancer cells, yet their exact pathophysiological functions are largely unknown. Here, we report the critical role of β1,3-N-acetylgalactosaminyltransferase II (B3GALNT2), which transfers N-acetylgalactosamine (GalNAc) in a β1,3 linkage to N-acetylglucosamine, in the growth of breast cancer cells. Comprehensive transcriptomics, quantitative PCR and northern blot analyses indicated this molecule to be exclusively upregulated in the majority of breast cancers. Knockdown of B3GALNT2 expression by small interfering RNA attenuated cell growth and induced apoptosis in breast cancer cells. Overexpression of B3GALNT2 in HEK293T cells prompted secretion of the gene product into the culture medium, suggesting that B3GALNT2 is potentially a secreted protein. Furthermore, we demonstrated that B3GALNT2 is N-glycosylated on both Asn-116 and Asn-174 and that this modification is necessary for its secretion in breast cancer cells. Our findings suggest that this molecule represents a promising candidate for the development of a novel therapeutic targeting drug and a potential diagnostic tumor marker for patients with breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Taisuke Matsuo
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Kazuma Kiyotani
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima 770-0052, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
42
|
Thuaud F, Ribeiro N, Nebigil CG, Désaubry L. Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. ACTA ACUST UNITED AC 2013; 20:316-31. [PMID: 23521790 PMCID: PMC7111013 DOI: 10.1016/j.chembiol.2013.02.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Prohibitins (PHBs) are scaffold proteins that modulate many signaling pathways controlling cell survival, metabolism, and inflammation. Several drugs that target PHBs have been identified and evaluated for various clinical applications. Preclinical and clinical studies indicate that these PHB ligands may be useful in oncology, cardiology, and neurology, as well as against obesity. This review covers the physiological role of PHBs in health and diseases and current developments concerning PHB ligands.
Collapse
Affiliation(s)
- Frédéric Thuaud
- Therapeutic Innovation Laboratory UMR 7200, CNRS/Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch Cedex, France
| | | | | | | |
Collapse
|
43
|
Fu P, Yang Z, Bach LA. Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration. J Biol Chem 2013; 288:29890-900. [PMID: 24003225 DOI: 10.1074/jbc.m113.510826] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor (IGF)-binding protein (IGFBP)-6 decreases cancer cell proliferation and survival by inhibiting the effects of IGF-II. More recently, IGFBP-6 was found to promote the migration of rhabdomyosarcoma (RMS) cells in an IGF-independent manner, and MAPK pathways were involved in this process. However, the precise molecular mechanisms of these IGF-independent migratory actions of IGFBP-6 are largely unknown. Here, we report that prohibitin-2 (PHB2), a single-span membrane protein, is a key regulator of IGFBP-6-induced RMS cell migration. PHB2 and IGFBP-6 co-localize on the RMS cell surface, and they specifically interact, as demonstrated by affinity chromatography, co-immunoprecipitation, biosensor analysis, and confocal microscopy. Binding affinities for PHB2 are 9.0 ± 1.0 nM for IGFBP-6 and 10.2 ± 0.5 nM for mIGFBP-6, a non-IGF-binding mutant of IGFBP-6. The C-domain but not the N-domain of IGFBP-6 is involved in PHB2 binding. In addition, IGFBP-6 indirectly increases PHB2 tyrosine phosphorylation on RMS membranes. Importantly, PHB2 knockdown completely abolished IGFBP-6-mediated RMS cell migration. In contrast, IGFBP-6-induced MAPK pathway activation was not affected, suggesting that PHB2 may act as a downstream effector of these pathways. These results indicate that PHB2 plays a key role in this IGF-independent action of IGFBP-6 and suggest a possible therapeutic target for RMS.
Collapse
Affiliation(s)
- Ping Fu
- From the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Prahran, Victoria 3181, Australia and
| | | | | |
Collapse
|
44
|
Yurugi H, Tanida S, Ishida A, Akita K, Toda M, Inoue M, Nakada H. Expression of prohibitins on the surface of activated T cells. Biochem Biophys Res Commun 2012; 420:275-80. [DOI: 10.1016/j.bbrc.2012.02.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 12/30/2022]
|
45
|
Kategaya LS, Hilliard A, Zhang L, Asara JM, Ptáček LJ, Fu YH. Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. PLoS One 2012; 7:e31987. [PMID: 22384121 PMCID: PMC3288064 DOI: 10.1371/journal.pone.0031987] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/16/2012] [Indexed: 11/18/2022] Open
Abstract
Throughout the day, clock proteins synchronize changes in animal physiology (e.g., wakefulness and appetite) with external cues (e.g., daylight and food). In vertebrates, both casein kinase 1 delta and epsilon (CK1δ and CK1ε) regulate these circadian changes by phosphorylating other core clock proteins. In addition, CK1 can regulate circadian-dependent transcription in a non-catalytic manner, however, the mechanism is unknown. Furthermore, the extent of functional redundancy between these closely related kinases is debated. To further advance knowledge about CK1δ and CK1ε mechanisms of action in the biological clock, we first carried out proteomic analysis of both kinases in human cells. Next, we tested interesting candidates in a cell-based circadian readout which resulted in the discovery of PROHIBITIN 2 (PHB2) as a modulator of period length. Decreasing the expression of PHB2 increases circadian-driven transcription, thus revealing PHB2 acts as an inhibitor in the molecular clock. While stable binding of PHB2 to either kinase was not detected, knocking down CK1ε expression increases PHB2 protein levels and, unexpectedly, knocking down CK1δ decreases PHB2 transcript levels. Thus, isolating CK1 protein complexes led to the identification of PHB2 as an inhibitor of circadian transcription. Furthermore, we show that CK1δ and CK1ε differentially regulate the expression of PHB2.
Collapse
Affiliation(s)
- Lorna S. Kategaya
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Aisha Hilliard
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Louying Zhang
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Louis J. Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of Ameica
| | - Ying-Hui Fu
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
46
|
Proteomic Analysis for Malonylastragaloside I in U937 Leukemia Cells by Modified Label-free Quantitative Strategy with LC Chip Q-TOF MS/MS. Chin J Nat Med 2011. [DOI: 10.1016/s1875-5364(11)60068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
CaMK IV phosphorylates prohibitin 2 and regulates prohibitin 2-mediated repression of MEF2 transcription. Cell Signal 2011; 23:1686-90. [PMID: 21689744 PMCID: PMC7127762 DOI: 10.1016/j.cellsig.2011.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/06/2011] [Indexed: 12/19/2022]
Abstract
Prohibitin 2 (PHB2) is an evolutionarily conserved and ubiquitously expressed multifunctional protein which is present in various cellular compartments including the nucleus. However, mechanisms underlying various functions of PHB2 are not fully explored yet. Previously we showed that PHB2 interacts with Akt and inhibits muscle differentiation by repressing the transcriptional activity of both MyoD and MEF2. Here we show that Calcium/Calmodulin-dependent kinase IV (CaMK IV) specifically binds to the C terminus of PHB2 and phosphorylates PHB2 at serine 91. Ectopic expression of CaMK IV and PHB2 in C2C12 cells results effectively in decreased PHB2-mediated repression of MEF2-dependent gene expression. Conversely, PHB2 mutant (S91A) resistant to CaMK IV phosphorylation has less effective in relieving the inhibition of MEF2 transcription by PHB2. Our findings suggest that CaMK IV interacts with and regulates PHB2 through phosphorylation, which could be one of the mechanisms underlying the CaMK-mediated activation of MEF2.
Collapse
|
48
|
|
49
|
Park JH, Nishidate T, Kijima K, Ohashi T, Takegawa K, Fujikane T, Hirata K, Nakamura Y, Katagiri T. Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis. Cancer Res 2010; 70:2759-69. [PMID: 20215525 DOI: 10.1158/0008-5472.can-09-3911] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The structure of O-glycosylated proteins is altered in breast cancer cells, but the mechanisms of such an aberrant modification have been largely unknown. We here report critical roles of a novel druggable target, polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6), which is upregulated in a great majority of breast cancers and encodes a glycosyltransferase responsible for initiating mucin-type O-glycosylation. Knockdown of GALNT6 by small interfering RNA significantly enhanced cell adhesion function and suppressed the growth of breast cancer cells. Western blot and immunostaining analyses indicated that wild-type GALNT6 protein could glycosylate and stabilize an oncoprotein mucin 1 (MUC1), which was upregulated with GALNT6 in breast cancer specimens. Furthermore, knockdown of GALNT6 or MUC1 led to similar morphologic changes of cancer cells accompanied by the increase of cell adhesion molecules beta-catenin and E-cadherin. Our findings implied that overexpression of GALNT6 might contribute to mammary carcinogenesis through aberrant glycosylation and stabilization of MUC1 and that screening of GALNT6 inhibitors would be valuable for the development of novel therapeutic modalities against breast cancer.
Collapse
Affiliation(s)
- Jae-Hyun Park
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|