1
|
The Function of N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Negative Regulator in Tumor Cell Metastasis. Int J Mol Sci 2022; 23:ijms23169365. [PMID: 36012631 PMCID: PMC9408851 DOI: 10.3390/ijms23169365] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor-suppressor gene that suppresses tumorigenesis and metastasis of tumors and increases sensitivity to anti-cancer drugs. In this review, we summarize information on the clinicopathological characteristics of tumor patients according to NDRG2 expression in various tumor tissues and provide information on the metastasis inhibition-related cell signaling modulation by NDRG2. Loss of NDRG2 expression is a prognostic factor that correlates with TNM grade and tumor metastasis and has an inverse relationship with patient survival in various tumor patients. NDRG2 inhibits cell signaling, such as AKT-, NF-κB-, STAT3-, and TGF-β-mediated signaling, to induce tumor metastasis, and induces activation of GSK-3β which has anti-tumor effects. Although NDRG2 operates as an adaptor protein to mediate the interaction between kinases and phosphatases, which is essential in regulating cell signaling related to tumor metastasis, the molecular mechanism of NDRG2 as an adapter protein does not seem to be fully elucidated. This review aims to assist the research design regarding NDRG2 function as an adaptor protein and suggests NDRG2 as a molecular target to inhibit tumor metastasis and improve the prognosis in tumor patients.
Collapse
|
2
|
Feng RB, Zhou QZ, Cheng R, Li P, Zhu ST, Min L, Zhang ST. Expression and Significance of N-myc downstream regulated gene 2 in the process of Esophageal Squamous Cell Carcinogenesis. Bioengineered 2022; 13:3275-3283. [PMID: 35048779 PMCID: PMC8973974 DOI: 10.1080/21655979.2022.2025685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It has been reported that the expression of tumor suppressor gene N-myc downstream-regulated gene 2 (NDRG2) was significantly reduced in human solid tumors, including esophageal squamous cell carcinoma (ESCC). This study aimed to explore whether the difference of NDRG2 expression exists in different stages of ESCC and provides a basis for the early diagnosis and prognosis of ESCC. Immunohistochemical staining was used to investigate the expression level of NDRG2 in samples from 91 patients with mild-to-moderate dysplasia, early ESCC, and advanced ESCC. The relationship between the expression of NDRG2 and clinicopathological characteristics of the patients was analyzed. The results showed that positive expression rates of NDRG2 in tissues adjacent to early ESCC (76.7%), or from mild-to-moderate dysplasia (74.1%), and early ESCC (83.3%) were significantly higher than in tissue from advanced ESCC (55.9%). The positive expression rate in advanced ESCC was significantly lower than in the other three tissue types (p < 0.05). There was a significant difference (p < 0.05) and correlation (Cramer’s V = 0.351, p = 0.019, <0.05) between the expression of NDRG2 and the clinical stage in the 64 patients with ESCC. In conclusion, this study found that the expression of NDRG2 gradually decreased with the progression of esophageal lesions into advanced ESCC. This difference in positive expression rate was more obvious in male patients and patients under 60 years of age. Therefore, the detection of NDRG2 plays an important role in differentiating early ESCC from advanced ESCC.
Collapse
Affiliation(s)
- Rui-Bing Feng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Qiao-Zhi Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Rui Cheng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| |
Collapse
|
3
|
Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021; 171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Fatemeh Bakhtiari Far
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Zhu J, Tian L, Li H, Hao J, Wang S, Li J, Zhang J. Radiation-induced gastrointestinal syndrome is alleviated in NDRG2-deficient mice. J Gastrointest Oncol 2021; 12:100-111. [PMID: 33708428 DOI: 10.21037/jgo-20-564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Radiation-induced gastrointestinal syndrome (GIS) often occurs after therapeutic or accidental exposure to high doses of radiation. Unfortunately, there are still no effective medical treatments for GIS. N-Myc downstream regulated gene 2 (NDRG2), is a tumor suppressor gene and promotes cell apoptosis and differentiation. The aim of our study was to identify the role of NDRG2 in the progression of GIS and explore the potential mechanism. Methods We generated Ndrg2ΔG mice, lacking NDRG2 specifically in the intestinal epithelium. Survival analysis was performed to validate the effect of NDRG2 on GIS, and other common indicators (body weight loss and diarrhea) were used for the assessment of GIS. Enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR) were conducted to obtain the expression of pro-inflammatory interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α). TUNNEL and western blotting were further adopted to determine the relationship between NDRG2 and apoptosis. Finally, we performed histology and immunohistochemistry assays to explore the morphological alternations and changes of proliferation-related molecules, including Ki-67 and proliferating cell nuclear antigen (PCNA). Results We found that after 8 gray of total body ɤ-irradiation (TBI), the deletion of NDRG2 in the intestine revealed longer survival time, considerably milder symptoms of GIS, and milder damage to jejunal tissue, compared with the WT mice. Moreover, the Ndrg2ΔG mice significantly inhibited the expression of pro-inflammatory IL-1β, IL-6, and TNF-α, which were typically increased by irradiation. Apoptosis of the epithelial cells in the Ndrg2ΔG mice was significantly milder while the ratio of proliferation cells was larger in the epithelium of mice 8 days after TBI when compared with the WT mice. Conclusions These findings all indicated that NDRG2 deficiency in the intestine protects mice against radiation-induced GIS mainly through promoting proliferation and suppressing apoptosis of epithelial cells.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lianlian Tian
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Huichen Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Jun Hao
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Abstract
BACKGROUND As a member of the N-myc down-regulated gene family, N-Myc downstream-regulated gene 2 (NDRG2) contributes to the tumorigenesis of various types of cancers. However, the correlation between NDRG2 expression and the prognosis of solid tumor remains to be elucidated because of small sample sizes and inconsistent results in previous studies. In the present study, we conducted a systematic review and meta-analysis to explore the prognostic significance of NDRG2 in human solid tumors. METHODS PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure, and WanFang databases (up to April 2020) were searched for relevant studies that evaluated the impact of NDRG2 on clinical outcomes, including overall survival (OS), and disease-free survival (DFS), in solid tumors. Hazard ratios (HRs) with 95% confidence intervals (CIs) were pooled to assess the association between NDRG2 expression and the survival of patients with solid tumors. Odds ratios (ORs) with 95% CIs were pooled to estimate the correlation between NDRG2 expression and clinicopathologic characteristics in the patients. RESULTS A total of 13 eligible studies with 1980 patients were included in this meta-analysis. Low NDRG2 expression was significantly associated with poor OS (HR = 1.96, 95% CI: 1.60-2.40, P < .001) and DFS (HR = 2.70, 95% CI: 1.42-5.13, P = .002) in solid tumor. Furthermore, low NDRG2 expression was related to some phenotypes of tumor aggressiveness, such as clinical stage (OR = 3.21, 95% CI: 1.96-5.26, P < .001), lymph node metastasis (OR = 2.14, 95% CI: 1.49-3.07, P < .001), and degree of differentiation (OR = 0.60, 95% CI: 0.45-0.81, P = .001). CONCLUSIONS NDRG2 may be a meaningful biomarker of poor prognosis and a potential therapeutic target for human solid tumors.
Collapse
Affiliation(s)
- Aiqin Gu
- Nursing Department, Taizhou People's Hospital, Affiliated 5 to Nantong University
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, Jiangsu Province, China
| | - Jun Ye
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, Jiangsu Province, China
| | - Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, Jiangsu Province, China
| |
Collapse
|
6
|
Cao L, Hu T, Lu H, Peng D. N-MYC Downstream Regulated Gene 4 ( NDRG4), a Frequent Downregulated Gene through DNA Hypermethylation, plays a Tumor Suppressive Role in Esophageal Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12092573. [PMID: 32927604 PMCID: PMC7565689 DOI: 10.3390/cancers12092573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Esophageal adenocarcinoma has become a major clinical challenge in the western world due to its rapid increasing incidence and poor overall prognosis. Understanding the molecular events of its tumorigenesis is the key to better diagnosis and development of better therapeutic strategies. In the current study we aimed to identify epigenetic alteration targets in esophageal adenocarcinoma. We focused on a candidate gene, NDRG4 (N-myc downregulated gene 4). We found that NDRG4 was frequent downregulated in esophageal adenocarcinoma through DNA hypermethylation of its promoter region. Re-expression of NRDG4 in cancer cells significantly suppressed tumor growth via inhibition of cell proliferation. These results will improve our understanding on how dysfunction of NDRG4 contributes to esophageal adenocarcinoma. DNA hypermethylation of NDRG4 may be a useful biomarker in clinical monitoring of esophageal adenocarcinoma patients. Abstract The incidence of esophageal adenocarcinoma (EAC) has been rising dramatically in the past few decades in the United States and Western world. The N-myc downregulated gene 4 (NDRG4) belongs to the human NDRG family. In this study, we aimed to identify the expression levels, regulation, and functions of NDRG4 in EAC. Using an integrative epigenetic approach, we identified genes showing significant downregulation in EAC and displaying upregulation after 5-Aza-deoxycitidine. Among these genes, likely to be regulated by DNA methylation, NDRG4 was among the top 10 candidate genes. Analyses of TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) data sets and EAC tissue samples demonstrated that NDRG4 was significantly downregulated in EAC (p < 0.05). Using Pyrosequencing technology for quantification of DNA methylation, we detected that NDRG4 promoter methylation level was significantly higher in EAC tissue samples, as compared to normal esophagus samples (p < 0.01). A strong inverse correlation between NDRG4 methylation and its gene expression levels (r = −0.4, p < 0.01) was observed. Treatment with 5-Aza restored the NDRG4 expression, confirming that hypermethylation is a driving force for NDRG4 silencing in EAC. Pathway and gene set enrichment analyses of TCGA data suggested that NDRG4 is strongly associated with genes related to cell cycle regulation. Western blotting analysis showed significant downregulation of Cyclin D1, CDK4 and CDK6 in EAC cells after overexpression of NDRG4. Functionally, we found that the reconstitution of NDRG4 resulted in a significant reduction in tumor cell growth in two-dimensional (2D) and three-dimensional (3D) organotypic culture models and inhibited tumor cell proliferation as indicated by the EdU (5-ethynyl-2′-deoxyuridine) proliferation assay.
Collapse
Affiliation(s)
- Longlong Cao
- Department of Surgery, Miller School of Medicine, Miami, FL 33136, USA; (L.C.); (T.H.); (H.L.)
| | - Tianling Hu
- Department of Surgery, Miller School of Medicine, Miami, FL 33136, USA; (L.C.); (T.H.); (H.L.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, Miami, FL 33136, USA; (L.C.); (T.H.); (H.L.)
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, Miami, FL 33136, USA; (L.C.); (T.H.); (H.L.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Correspondence: ; Tel.: 305-243-3989
| |
Collapse
|
7
|
Chen W, Peng J, Ou Q, Wen Y, Jiang W, Deng Y, Zhao Y, Wan D, Pan Z, Fang Y. Expression of NDRG2 in Human Colorectal Cancer and its Association with Prognosis. J Cancer 2019; 10:3373-3380. [PMID: 31293640 PMCID: PMC6603412 DOI: 10.7150/jca.31382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: As a member of the N-myc downregulated gene family, N-Myc downstream-regulated gene 2 (NDRG2) contributes to tumorigenesis of various types of cancer. The expression status of NDRG2 in colorectal cancer (CRC) and its prognostic value remain to be elucidated. The goal of this study was to determine the expression pattern of NDRG2 in human CRC and its association of NDRG2 expression with prognosis. Methods: Immunohistochemistry was used to determine the level of NDRG2 expressions in 316 CRC tissues. The medical records of consecutive CRC patients undergoing primary tumor resection from September 2000 to February 2015 were retrospectively selected. Then, we compared to specific clinicopathological features in patients with different level of NDRG2 expressions. The correlation of NDRG2 expression with 3-year survival rate was assessed by Kaplan-Meier method and Cox regression modeling. Results: NDRG2 was expressed in 94.6% (299/316) of CRC tissues. The median IHC score of NDRG2 expression was significantly lower in tumor tissues compared with that of tumor-adjacent normal tissues [4.50(range 0.00-12.00) vs. 10.00 (range 0.00-12.00), P < 0.001].Survival analysis indicated that patients with low NDRG2 expression had poorer 3-year OS than those with high NDRG2 expression (59.9% vs. 76.6%, P = 0.017). Low NDRG2 expression also presented a significantly poorer 3-year OS rate in patient with stage IV disease (29.4% vs. 56.5%, P = 0.002), liver metastasis(32.2% vs. 54.7%, P = 0.005) and those receiving liver resection(56.5% vs. 71.9% , P = 0.012). Multivariate analysis indicated that high NDRG2 expression was independently associated with poor OS (hazard ratio [HR]: 1.499; 95% confidence interval [CI]: 1.037-2.165; P = 0.031). Conclusions: Low expression of NDRG2 was associated with unfavorable prognosis in CRC patients with primary tumor resection. Detection of NDRG2 expression might be useful for providing valuable information of individualized therapy for CRC patients.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Clinical Laboratory, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Qingjian Ou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yongshan Wen
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Wu Jiang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yuxiang Deng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yujie Zhao
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Desen Wan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yujing Fang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| |
Collapse
|
8
|
Yang YQ, Tian T, Zhu HY, Liang JH, Wu W, Wu JZ, Xia Y, Wang L, Fan L, Li JY, Xu W. NDRG2 mRNA levels and miR-28-5p and miR-650 activity in chronic lymphocytic leukemia. BMC Cancer 2018; 18:1009. [PMID: 30348117 PMCID: PMC6196416 DOI: 10.1186/s12885-018-4915-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background NDRG2 is identified as a tumor suppressor gene in many tumors, and functions in cell proliferation, differentiation and apoptosis. Recent data indicate that NDRG2 expression is up-regulated by TP53. Moreover, proposed mechanisms of NDRG2 inactivation include epigenetic silencing of the NDRG2 promoter and down-regulation by microRNAs (miRNAs). However, few studies have ever been done on the role of NDRG2 and the NDRG2-regulating miRNAs interference in chronic lymphocytic leukemia (CLL). Methods NDRG2 and microRNAs mRNA levels in CLL subjects were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay was performed to determine NDRG2-related miRNAs. Low expression of mature exogenous miRNAs in CLL cells was established by transient transfection. NDRG2 protein levels in CLL cells were detected by western blot. In addition, flow cytometry was conducted to examine the apoptosis of CLL cells. Results Lower expression of NDRG2 was found in the B-cells from 102 CLL patients compared the 40 normal subjects (P < 0.001). Patients with advanced Binet stage (P = 0.001), high lactate dehydrogenase (LDH) level (P = 0.036), un-mutated immunoglobulin heavy chain variable region gene (IGHV) (P = 0.004) and those with p53 aberrations (P < 0.001) had a markedly lower levels of NDRG2 mRNA. This decrease was associated with briefer time-to-treatment (P = 0.001) and poorer survival (P < 0.001). High expression of miR-28-5p and miR-650 was associated with Binet B/C stage (P = 0.044) and IGHV un-mutated (P = 0.011), as well as Binet B/C stage (P = 0.013) and p53 aberrations (P = 0.037), respectively. Inhibition of miR-28-5p or miR-650 could induce more apoptosis in CLL cells with germline TP53. Conclusions NDRG2 mRNA levels might be a useful prognostic variable for patients of CLL and up-regulating NDRG2 transcription may be a therapy approach in CLL without p53 aberrations. Electronic supplementary material The online version of this article (10.1186/s12885-018-4915-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Qiong Yang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Tian Tian
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hua-Yuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jin-Hua Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jian-Yong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China. .,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
9
|
Chiang KC, Yang SW, Chang KP, Feng TH, Chang KS, Tsui KH, Shin YS, Chen CC, Chao M, Juang HH. Caffeic Acid Phenethyl Ester Induces N-myc Downstream Regulated Gene 1 to Inhibit Cell Proliferation and Invasion of Human Nasopharyngeal Cancer Cells. Int J Mol Sci 2018; 19:ijms19051397. [PMID: 29738439 PMCID: PMC5983775 DOI: 10.3390/ijms19051397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis, is widely studied due to its anti-cancer effect. Nasopharyngeal carcinoma (NPC) is distinct from other head and neck carcinomas and has a high risk of distant metastases. N-myc downstream regulated gene 1 (NDRG1) is demonstrated as a tumor suppressor gene in several cancers. Our result showed that CAPE treatment could repress NPC cell growth, through induction of S phase cell cycle arrest, and invasion. CAPE treatment stimulated NDRG1 expression in NPC cells. NDRG1 knockdown increased NPC cell proliferation and invasion and rendered NPC cells less responsive to CAPE growth-inhibiting effect, indicating CAPE repressed NPC cell growth partly through NDRG1indcution. CAPE treatment increased phosphorylation of ERK, JNK, and p38 in a dose- and time-dependent manner. Pre-treatments by inhibitors of ERK (PD0325901), JNK (SP600125), or p38 (SB201290), respectively, all could partly inhibit the CAPE effect on NDRG1 induction in NPC cells. Further, STAT3 activity was also repressed by CAPE in NPC cells. In summary, CAPE attenuates NPC cell proliferation and invasion by upregulating NDRG1 expression via MAPK pathway and by inhibiting phosphorylation of STAT3. Considering the poor prognosis of NPC patients with metastasis, CAPE could be a promising agent against NPC.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- Zebrafish Center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Shih-Wei Yang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Kai-Ping Chang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital Lin-Kou, Kwei-Shan, Tao-Yuan 204, Taiwan;
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan;
| | - Yi-Syuan Shin
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan; (Y.-S.S.); (C.-C.C.)
| | - Chiu-Chun Chen
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan; (Y.-S.S.); (C.-C.C.)
| | - Mei Chao
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital Lin-Kou, Kwei-Shan, Tao-Yuan 244, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan;
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
10
|
NDRG2 suppresses proliferation, migration, invasion and epithelial-mesenchymal transition of esophageal cancer cells through regulating the AKT/XIAP signaling pathway. Int J Biochem Cell Biol 2018. [PMID: 29530788 DOI: 10.1016/j.biocel.2018.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N-Myc downstream-regulated gene 2 (NDRG2) has recently revealed as a candidate tumor suppressor gene. To inhibit tumor growth and decrease morbidity of esophageal cancer (EC), this study aims to test the hypothesis that the upregulation of NDRG2 may suppress proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of EC cells by regulating the AKT/XIAP signaling pathway. Immunohistochemistry was conducted for the identification of NDRG2, protein kinase B (p-AKT), X-linked inhibitor of apoptosis protein (XIAP) in EC tissues. To identify the regulatory mechanism of NDRG2 on the AKT/XIAP signaling pathway and EMT in EC, over-expressed lentiviral vector and shRNA were applied for up-regulating and interfering NDRG2 expression, and a series of determinations on the biological behavior of EC cells were performed to validate this regulation action. The results of immunohistochemistry showed NDRG2 was lowly expressed in EC tissues while p-AKT and XIAP are highly expressed. Over-expression of NDRG2 suppresses the proteins related to AKT/XIAP signaling pathway and EMT. Besides, a series of determinations shows the proliferation, migration and invasion of TE-13 cells were suppressed by over-expressed NDRG2, while the cell cycle progression was blocked and cell apoptosis was promoted. And in vivo experiment also demonstrated NDRG2 could inhibit tumor growth. Our findings demonstrate over-expression of NDRG2 works as tumor suppressive role in EC through its effects on inhibition of cell migration, invasion, and EMT by inhibiting the AKT/XIAP signaling pathway.
Collapse
|
11
|
Potential role of the N-MYC downstream-regulated gene family in reprogramming cancer metabolism under hypoxia. Oncotarget 2018; 7:57442-57451. [PMID: 27447861 PMCID: PMC5303000 DOI: 10.18632/oncotarget.10684] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
Metabolic reprogramming toward aerobic glycolysis and lactate fermentation supplies cancer cells with intermediate metabolites, which are used as macromolecule precursors. The oncogene MYC contributes to such aerobic metabolism by activating the expression of numerous genes essential for glycolysis and mitochondrial biogenesis. However, to survive and evolve in a hypoxic tumor milieu, cancer cells must revise MYC-driven metabolism because the mitochondrial respiratory chain provides free electrons to generate oxygen free radicals with inefficient production of ATP due to oxygen depletion. Instead, hypoxia-inducible transcription factor hypoxia-inducible factor 1 (HIF-1) takes over the role of MYC in glycolysis, but suppresses mitochondrial biogenesis and activity to protect cells from such threats. Recently, the N-MYC downstream-regulated gene (NDRG) family has received attention as potential biomarkers of cancer prognosis. NDRGs are repressed MYC-dependently in various cancers, but induced under hypoxia because HIF-1 directly activates their promoters and indirectly de-represses them by antagonizing MYC. In this review, we summarize the current understanding of the reprogramming of cancer metabolism via the counterbalance between MYC and HIF-1, and discuss the proven and putative roles of the NDRG family in adjusting cancer metabolism according to the ambient oxygen level.
Collapse
|
12
|
Hu W, Yang Y, Fan C, Ma Z, Deng C, Li T, Lv J, Yao W, Gao J. Clinical and pathological significance of N-Myc downstream-regulated gene 2 (NDRG2) in diverse human cancers. Apoptosis 2018; 21:675-82. [PMID: 27113371 DOI: 10.1007/s10495-016-1244-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human N-Myc downstream-regulated gene 2 (NDRG2), located at chromosome 14q11.2, has been reported to be down-regulated and associated with the progression and prognosis of diverse cancers. Collectively, previous studies suggest that NDRG2 functions as a candidate tumor-suppressor gene; thus, up-regulation of NDRG2 protein might act as a promising therapeutic strategy for malignant tumors. The aim of this review was to comprehensively present the clinical and pathological significance of NDRG2 in human cancers.
Collapse
Affiliation(s)
- Wei Hu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Weiwei Yao
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
13
|
NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway. Cell Tissue Res 2017. [DOI: 10.1007/s00441-017-2643-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Ma Y, Wu L, Liu X, Xu Y, Shi W, Liang Y, Yao L, Zheng J, Zhang J. KLF4 inhibits colorectal cancer cell proliferation dependent on NDRG2 signaling. Oncol Rep 2017; 38:975-984. [DOI: 10.3892/or.2017.5736] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/02/2017] [Indexed: 11/06/2022] Open
|
15
|
Chung LC, Chiang KC, Feng TH, Chang KS, Chuang ST, Chen YJ, Tsui KH, Lee JC, Juang HH. Caffeic acid phenethyl ester upregulates N-myc downstream regulated gene 1 via ERK pathway to inhibit human oral cancer cell growth in vitro and in vivo. Mol Nutr Food Res 2017; 61. [PMID: 28181403 DOI: 10.1002/mnfr.201600842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/21/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
SCOPE Caffeic acid phenethyl ester (CAPE), a bioactive component of propolis, is considered as a new anti-cancer agent. Oral squamous cell carcinoma (OSCC) is the most common oral cancer with unsatisfying survival. N-myc downstream regulated family genes (NDRGs) involve in numerous physiological processes. We investigated the anti-cancer effect of CAPE on OSCC and related mechanisms. METHODS AND RESULTS Cell proliferation assay, western blot, gene transfection and knockdown, and reporter assay were applied. We showed that CAPE attenuated OSCC cell proliferation and invasion in vitro, and safely and effectively inhibited OSCC cell growth in a xenograft animal model. CAPE treatment induced NDRG1, but not NDRG2 and NDRG3, expression in OSCC cells as determined by western blot, RT-qPCR, and reporter assay. The 5'-deletion assay demonstrated that CAPE increased NDRG1 promoter activity depending on the region of -128 to +46 of the 5'-flanking of NDRG1 gene. NDRG1 gene knockdown attenuated CAPE anti-growth effect on OSCC cells. CAPE activated mitogen-activated protein kinase (MAPK) signaling pathway. The extracellular signal regulated kinase (ERK) inhibitor (PD0325901) and ERK1 knockdown blocked CAPE-induced NDRG1 expression in OSCC cells. CONCLUSION CAPE activated MAPK signaling pathway and increased NDRG1 expression through phosphorylation of ERK1/2 to repress OSCC cells growth.
Collapse
Affiliation(s)
- Li-Chuan Chung
- Department of General Education Center, Mackay Medicine, Nursing and Management College, New Taipei City, Taiwan
| | - Kun-Chun Chiang
- Zebrafish Center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Sung-Ting Chuang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Jehn-Chuan Lee
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan.,School of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
16
|
Yamamura A, Miura K, Karasawa H, Motoi F, Mizuguchi Y, Saiki Y, Fukushige S, Sunamura M, Shibata C, Unno M, Horii A. NDRG2 , suppressed expression associates with poor prognosis in pancreatic cancer, is hypermethylated in the second promoter in human gastrointestinal cancers. Biochem Biophys Res Commun 2017; 484:138-143. [DOI: 10.1016/j.bbrc.2017.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/29/2022]
|
17
|
Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget 2016; 7:209-23. [PMID: 26506239 PMCID: PMC4807993 DOI: 10.18632/oncotarget.6228] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor and cell stress-related gene. NDRG2 is associated with tumor incidence, progression, and metastasis. NDRG2 regulates tumor-associated genes and is regulated by multiple conditions, treatments, and protein/RNA entities, including hyperthermia, trichostatin A and 5-aza-2'-deoxycytidine, which are promising potential cancer therapeutics. In this review, we discuss the expression as well as the clinical and pathological significance of NDRG2 in cancer. The pathological processes and molecular pathways regulated by NDRG2 are also summarized. Moreover, mechanisms for increasing NDRG2 expression in tumors and the potential directions of future NDRG2 research are discussed. The information reviewed here should assist in experimental design and increase the potential of NDRG2 as a therapeutic target for cancer.
Collapse
|
18
|
Guo Y, Pan Q, Zhang J, Xu X, Liu X, Wang Q, Yi R, Xie X, Yao L, Liu W, Shen L. Functional and clinical evidence that TAZ is a candidate oncogene in hepatocellular carcinoma. J Cell Biochem 2016; 116:2465-75. [PMID: 25650113 DOI: 10.1002/jcb.25117] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/23/2015] [Indexed: 01/02/2023]
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) has been reported to be associated with carcinogenesis. However, the cellular function of TAZ in human hepatocellular carcinoma (HCC) remains elusive. In this study, an immunohistochemistry analysis revealed that the expression of TAZ in cancer tissue samples from 180 HCC patients was significantly higher than that in adjacent normal tissues. In addition, TAZ overexpression was significantly correlated with aggressive tumor characteristics such as tumor size, TNM stage, lymph node or distant metastasis, histological differentiation, and recurrent HCC (P < 0.05). The Kaplan-Meier test showed that TAZ-positive expression was related to a poor prognosis compared to TAZ-negative expression (P < 0.05). Furthermore, the expression level of TAZ was generally correlated with the invasiveness of cancer cells. The overexpression of TAZ in the Huh7 cell line, which endogenously expresses TAZ at low levels, significantly promoted cell proliferation, migration and invasion and inhibited apoptosis, whereas RNA interference-mediated knockdown of TAZ in the highly invasive cell line MHCC-97H significantly suppressed cell proliferation, migration and invasion in vitro and tumor formation in vivo.
Collapse
Affiliation(s)
- Yan Guo
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qiao Pan
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jing Zhang
- Experiment Teaching Center, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinyuan Xu
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiping Liu
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qinhao Wang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ru Yi
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaobo Xie
- Department of Disease Surveillance And Control, Centers for Diseases Control and Prevention of Guangzhou Military District, Guangzhou, 510507, China
| | - Libo Yao
- Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wenchao Liu
- Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lan Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
19
|
Kang K, Nam S, Kim B, Lim JH, Yang Y, Lee MS, Lim JS. Inhibition of osteoclast differentiation by overexpression of NDRG2 in monocytes. Biochem Biophys Res Commun 2015; 468:611-6. [PMID: 26546825 DOI: 10.1016/j.bbrc.2015.10.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/31/2015] [Indexed: 11/29/2022]
Abstract
N-Myc downstream-regulated gene 2 (NDRG2), a member of the NDRG family of differentiation-related genes, has been characterized as a regulator of dendritic cell differentiation from monocytes, CD34(+) progenitor cells, and myelomonocytic leukemic cells. In this study, we show that NDRG2 overexpression inhibits the differentiation of U937 cells into osteoclasts in response to stimulation with a combination of macrophage colony-stimulating factor (M-CSF) and soluble receptor activator of NF-κB ligand (RANKL). U937 cells stably expressing NDRG2 are unable to differentiate into multinucleated osteoclast-like cells and display reduced tartrate-resistant acid phosphatase (TRAP) activity and resorption pit formation. Furthermore, NDRG2 expression significantly suppresses the expression of genes that are crucial for the proliferation, survival, differentiation, and function of osteoclasts, including c-Fos, Atp6v0d2, RANK, and OSCAR. The activation of ERK1/2 and p38 is also inhibited by NDRG2 expression during osteoclastogenesis, and the inhibition of osteoclastogenesis by NDRG2 correlates with the down-regulation of the expression of the transcription factor PU.1. Taken together, our results suggest that the expression of NDRG2 potentially inhibits osteoclast differentiation and plays a role in modulating the signal transduction pathway responsible for osteoclastogenesis.
Collapse
Affiliation(s)
- Kyeongah Kang
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Sorim Nam
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Bomi Kim
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Ji Hyun Lim
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Young Yang
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences and the Research Center for Women's Disease, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| |
Collapse
|
20
|
Anderson KJ, Russell AP, Foletta VC. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio 2015; 5:668-81. [PMID: 26380811 PMCID: PMC4556729 DOI: 10.1016/j.fob.2015.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/11/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023] Open
Abstract
The function of the stress-responsive N-myc downstream-regulated gene 2 (NDRG2) in the control of myoblast growth, and the amino acids contributing to its function, are not well characterized. Here, we investigated the effect of increased NDRG2 levels on the proliferation, differentiation and apoptosis in skeletal muscle cells under basal and stress conditions. NDRG2 overexpression increased C2C12 myoblast proliferation and the expression of positive cell cycle regulators, cdk2, cyclin B and cyclin D, and phosphorylation of Rb, while the serine/threonine-deficient NDRG2, 3A-NDRG2, had less effect. The onset of differentiation was enhanced by NDRG2 as determined through the myogenic regulatory factor expression profiles and myocyte fusion index. However, the overall level of differentiation in myotubes was not different. While NDRG2 up-regulated caspase 3/7 activities during differentiation, no increase in apoptosis was measured by TUNEL assay or through cleavage of caspase 3 and PARP proteins. During H2O2 treatment to induce oxidative stress, NDRG2 helped protect against the loss of proliferation and ER stress as measured by GRP78 expression with 3A-NDRG2 displaying less protection. NDRG2 also attenuated apoptosis by reducing cleavage of PARP and caspase 3 and expression of pro-apoptotic Bax while enhancing the pro-survival Bcl-2 and Bcl-xL levels. In contrast, Mcl-1 was not altered, and NDRG2 did not protect against palmitate-induced lipotoxicity. Our findings show that NDRG2 overexpression increases myoblast proliferation and caspase 3/7 activities without increasing overall differentiation. Furthermore, NDRG2 attenuates H2O2-induced oxidative stress and specific serine and threonine amino acid residues appear to contribute to its function in muscle cells.
Collapse
Key Words
- Acta1, skeletal muscle alpha-actin
- Akt, thymoma viral proto-oncogene
- Apoptosis
- Bax, Bcl-2-associated X protein
- Bcl-2, B cell leukemia/lymphoma 2
- Bcl-xL, Bcl-2-like 1
- Caspase, apoptosis-related cysteine peptidase
- Cdk, cyclin-dependent kinase
- Ckm, muscle creatine kinase
- Differentiation
- ER stress
- ER, endoplasmic reticulum
- GRP78, glucose-regulated protein 78
- H2O2, hydrogen peroxide
- Lipotoxicity
- MRFs, myogenic regulatory factors
- Mcl-1, myeloid cell leukemia 1
- Myf5, myogenic factor 5
- Myh7, myosin, heavy polypeptide 7
- MyoD, myogenic differentiation
- Myoblast
- Myotube
- NDRG2
- NDRG2, N-myc downstream-regulated gene 2
- Oxidative stress
- PA, palmitate
- PARP, poly (ADP-ribose) polymerase family, member
- PKCθ, protein kinase C theta
- Proliferation
- Rb, retinoblastoma
- SGK1, serum- and glucocorticoid-inducible kinase 1
- p21, p21 waf1/cip1
- p27, p27 kip1
Collapse
Affiliation(s)
- Kimberley J Anderson
- Centre for Physical Activity and Nutrition Research (C-PAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research (C-PAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| | - Victoria C Foletta
- Centre for Physical Activity and Nutrition Research (C-PAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| |
Collapse
|
21
|
Qiang S, Du ZF, Huang M. Adenovirus-mediated NDRG2 inhibits the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro. ASIAN PAC J TROP MED 2014; 7:873-8. [PMID: 25441986 DOI: 10.1016/s1995-7645(14)60152-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/10/2014] [Accepted: 10/15/2014] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro. METHOD NDRG2 was harvested by RT-PCR, confirmed by DNA sequencing, and then cloned into the eukaryotic expression vector pIRES2-EGFP, which encodes green fluorescent protein (GFP), to construct pIRES2-EGFP-NDRG2 plasmid. OS-RC-2 cells with NDRG2 negative expression were transfected with pIRES2-EGFP-NDRG2 plasmid. The growth of transfected OS-RC-2 cells was observed under light and fluorescence microscopes. After colony-forming cell assays, cell proliferation detection and MTT assays, the growth curves of cells in each group were plotted to investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of OS-RC-2 cells. Cell cycle was determined by flow cytometry. Confocal laser scanning microscopy showed that NDRG2 protein was specifically located on subcellular organelle. RESULTS A eukaryotic expression vector pIRES2-EGFP-NDRG2 was successfully constructed. After NDRG2 transfection, the growth of OS-RC-2 cells was inhibited. Flow cytometry showed that cells were arrested in S phase but the peak of cell apoptosis was not present, and confocal laser scanning microscopy showed that NDRG2 protein was located in mitochondrion. CONCLUSIONS NDRG2 can significantly inhibit the proliferation of OS-RC-2 cells in vitro and its protein is specifically expressed in the mitochondrion.
Collapse
Affiliation(s)
- Sheng Qiang
- Zhangjiagang Hospital of Traditional Chinese Medicine, Shenbingke 215600, China.
| | - Zhen-Fang Du
- Zhangjiagang Hospital of Traditional Chinese Medicine, Shenbingke 215600, China
| | - Min Huang
- Zhangjiagang Hospital of Traditional Chinese Medicine, Shenbingke 215600, China
| |
Collapse
|
22
|
Gadaleta RM, Cariello M, Sabbà C, Moschetta A. Tissue-specific actions of FXR in metabolism and cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:30-9. [PMID: 25139561 DOI: 10.1016/j.bbalip.2014.08.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/25/2022]
Abstract
The nuclear Farnesoid X Receptor (FXR) is a transcription factor critically involved in metabolic homeostasis in the gut-liver axis. FXR activity is mediated by hormonal and dietary signals and driven by bile acids (BAs), which are the natural FXR ligands. Given the great physiological importance in BA homeostasis, as well as in the regulation of glucose and lipid metabolism, FXR plays a pivotal role in the pathogenesis of a wide range of disease of the liver, biliary tract and intestine, including hepatic and colorectal cancer. In the last years several studies have shown the relative FXR tissue-specific importance, highlighting synergism and additive effects in the liver and intestine. Gain- and loss-of-FXR-function mouse models have been generated in order to identify the biological processes and the molecular FXR targets. Taking advantage of the knowledge on the structure-activity relationship of BAs for FXR, semi-synthetic and synthetic molecules have been generated to obtain more selective and powerful FXR activators than BAs. This article is part of a Special Issue entitled: Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Raffaella Maria Gadaleta
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, UK
| | - Marica Cariello
- National Cancer Research Center, IRCCS Istituto Oncologico "Giovanni Paolo II", Bari, Italy
| | - Carlo Sabbà
- Clinica Medica Frugoni, Department of Interdisciplinary Medicine, University of Bari, Italy
| | - Antonio Moschetta
- National Cancer Research Center, IRCCS Istituto Oncologico "Giovanni Paolo II", Bari, Italy; Clinica Medica Frugoni, Department of Interdisciplinary Medicine, University of Bari, Italy.
| |
Collapse
|
23
|
Adenovirus-Mediated NDRG2 Inhibits the Proliferation of Human Renal Cell Carcinoma Cell Line OS-RC-2 in Vitro. Cell Biochem Biophys 2014; 70:593-600. [DOI: 10.1007/s12013-014-9961-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Skiriutė D, Steponaitis G, Vaitkienė P, Mikučiūnas M, Skauminas K, Tamašauskas A, Kazlauskas A. Glioma Malignancy-Dependent NDRG2 Gene Methylation and Downregulation Correlates with Poor Patient Outcome. J Cancer 2014; 5:446-56. [PMID: 24847385 PMCID: PMC4026998 DOI: 10.7150/jca.9140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/10/2014] [Indexed: 12/12/2022] Open
Abstract
Aims: NDRG2 (N-myc downstream regulated gene 2) gene is involved in important biological processes: cell differentiation, growth and apoptosis. Several molecular studies have shown NDRG2 as a promising diagnostic marker involved in brain tumor pathology. The aim of the study was to investigate how changes in epigenetic modification and activity of NDRG2 reflect on glioma malignancy and patient outcome. Methods: 137 different malignancy grade gliomas were used as the study material: 14 pilocytic astrocytomas grade I, 45 diffuse astrocytomas grade II, 29 anaplastic astrocytomas grade III, and 49 grade IV astrocytomas (glioblastomas). Promoter methylation analysis has been carried out by using methylation-specific PCR, whereas RT-PCR and Western-blot analyses were used to measure NDRG2 expression levels. Results: We demonstrated that NDRG2 gene methylation frequency increased whereas expression at both mRNA and protein levels markedly decreased in glioblastoma specimens compared to the lower grade astrocytomas. NDRG2 transcript and protein levels did not correlate with the promoter methylation state, suggesting the presence of alternative regulatory gene expression mechanisms that may operate in a tissue-specific manner in gliomas. Kaplan-Meier analyses revealed significant differences in survival time in gliomas stratified by NDRG2 methylation status and mRNA and protein expression levels. Conclusions: Our findings highlight the usefulness of combining epigenetic data to gene expression patterns at mRNA and protein level in tumor biomarker studies, and suggest that NDRG2 downregulation might bear influence on glioma tumor progression while being associated with higher malignancy grade.
Collapse
Affiliation(s)
- Daina Skiriutė
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Giedrius Steponaitis
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Paulina Vaitkienė
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Mykolas Mikučiūnas
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Kęstutis Skauminas
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Arimantas Tamašauskas
- 2. 2 Department of Neurosurgery, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009, Kaunas, Lithuania
| | - Arunas Kazlauskas
- 1. 1 Laboratory of Neurooncology and Genetics, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| |
Collapse
|
25
|
Zhang ZG, Li G, Feng DY, Zhang J, Zhang J, Qin HZ, Ma LT, Gao GD, Wu L. Overexpression of NDRG2 Can Inhibit Neuroblastoma Cell Proliferation through Negative Regulation by CYR61. Asian Pac J Cancer Prev 2014; 15:239-44. [DOI: 10.7314/apjcp.2014.15.1.239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Yamamura A, Miura K, Karasawa H, Morishita K, Abe K, Mizuguchi Y, Saiki Y, Fukushige S, Kaneko N, Sase T, Nagase H, Sunamura M, Motoi F, Egawa S, Shibata C, Unno M, Sasaki I, Horii A. Suppressed expression of NDRG2 correlates with poor prognosis in pancreatic cancer. Biochem Biophys Res Commun 2013; 441:102-7. [PMID: 24134849 DOI: 10.1016/j.bbrc.2013.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis; the molecular mechanisms of the development of this disease have not yet been fully elucidated. N-myc downstream regulated gene 2 (NDRG2), one of the candidate tumor suppressor genes, is frequently downregulated in pancreatic cancer, but there has been little information regarding its expression in surgically resected pancreatic cancer specimens. We investigated an association between NDRG2 expression and prognosis in 69 primary resected pancreatic cancer specimens by immunohistochemistry and observed a significant association between poor prognosis and NDRG2-negative staining (P=0.038). Treatment with trichostatin A, a histone deacetylase inhibitor, predominantly up-regulated NDRG2 expression in the NDRG2 low-expressing cell lines (PANC-1, PCI-35, PK-45P, and AsPC-1). In contrast, no increased NDRG2 expression was observed after treatment with 5-aza-2' deoxycytidine, a DNA demethylating agent, and no hypermethylation was detected in either pancreatic cancer cell lines or surgically resected specimens by methylation specific PCR. Our present results suggest that (1) NDRG2 is functioning as one of the candidate tumor-suppressor genes in pancreatic carcinogenesis, (2) epigenetic mechanisms such as histone modifications play an essential role in NDRG2 silencing, and (3) the expression of NDRG2 is an independent prognostic factor in pancreatic cancer.
Collapse
Affiliation(s)
- Akihiro Yamamura
- Department of Surgery, Tohoku University, Graduate School of Medicine, Sendai, Japan; Department of Pathology, Tohoku University, Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang F, Gao Z, Li X, Li Y, Li X, Zhong H, Xu N, Cao F, Wang Q, Xiong L. NDRG2 is involved in anti-apoptosis induced by electroacupuncture pretreatment after focal cerebral ischemia in rats. Neurol Res 2013; 35:406-14. [PMID: 23540409 DOI: 10.1179/1743132813y.0000000159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We first reported that electroacupuncture (EA) pretreatment at the Baihui acupoint (GV20) induces ischemic tolerance. Our recent study demonstrated that N-Myc downstream-regulated gene 2 (NDRG2) expression was up-regulated following transient focal cerebral ischemia. Therefore, we investigated whether NDRG2 was involved in the ischemic tolerance induced by EA pretreatment in rats. METHODS Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 120 minutes in male Sprague-Dawley rats. The neurobehavioral score, infarction volume, and extent of neuronal apoptosis were evaluated at 24 hours after reperfusion. The expression of NDRG2 in the brain was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting, and immunofluorescent staining. RESULTS Electroacupuncture pretreatment decreased infarction volume and improved neurologic scores at 24 hours after reperfusion. Double immunofluorescence revealed that NDRG2 expression in astrocytes was suppressed in the EA group at 24 hours after reperfusion, and that NDRG2 protein expression was weak in the nucleus and strong in the cytoplasm of the EA group, but strong in the nucleus of the MCAO group. Triple immunofluorescent staining for terminal deoxynucleotidyl transferase nick-end labeling (TUNEL), NDRG2, and 4',6-diamidino-2-phenylindole (DAPI) showed that NDRG2 co-localised with apoptotic cells. Moreover, the number of apoptotic cells decreased with the attenuation of NDRG2 expression in the EA group compared to the MCAO group. CONCLUSION Our results indicated that NDRG2 is involved in anti-apoptosis induced by EA pretreatment after focal cerebral ischemia in rats. N-Myc downstream-regulated gene 2 was involved in EA pretreatment-induced cerebral ischemic tolerance. These findings may be important for our understanding of the cellular signaling pathways induced by EA pretreatment.
Collapse
Affiliation(s)
- Feng Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhong M, Zhang X, Li B, Chen CS, Ji GL, Li SX, Bi DQ, Zhao QC, Shi H. Expression of MSP58 in hepatocellular carcinoma. Med Oncol 2013; 30:539. [PMID: 23519485 DOI: 10.1007/s12032-013-0539-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/07/2013] [Indexed: 02/06/2023]
Abstract
We have investigated the expression and role of the 58-kDa micro-spherule protein (MSP58) in hepatocellular carcinoma (HCC). Immunohistochemistry was performed in 252 samples from patients with HCC to detect the expression level of MSP58. Results indicated that the expression level of MSP58 in the cancer samples was significantly higher than that in adjacent normal tissues. The Wilcoxon-Mann-Whitney test showed significant difference in the expression of MSP58 in patients with serum AFP, tumor size, histological differentiation, and universal integrated circuit card (UICC) stage (P < 0.001, P = 0.004, P < 0.001, P < 0.001, respectively). A total of 252 HCC patients were followed up for five consecutive years, and Kaplan-Meier survival analysis demonstrated that the survival time of HCC patients with low expression of MSP58 was longer than those with high expression during the 5-year follow-up period (P < 0.001). Cox regression analysis indicated that high expression of MSP58 (++ or +++), serum AFP (≥25 μg/L), tumor size (≥3 cm), and UICC stage (III or IV) were the independent poor prognostic factors of HCC (P = 0.008, 0.0290, 0.001, 0.047, respectively). Furthermore, down-regulation of MSP58 was introduced to HCC cell lines (HepG2 and Huh7) by plasmid transfection. In vivo and in vitro studies indicated that MSP58si markedly reduced proliferation and promoted the apoptosis of HepG2 and Huh7 cells. In summary, our results demonstrated that MSP58 played an important role in the proliferation and apoptosis of HCC cells and the expression of MSP58 in HCC patients was closely related to the prognosis.
Collapse
Affiliation(s)
- Ming Zhong
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model. PLoS One 2012; 7:e43044. [PMID: 23056173 PMCID: PMC3467263 DOI: 10.1371/journal.pone.0043044] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023] Open
Abstract
The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR−/− mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies. We show reduced NDRG2 mRNA in livers of FXR−/− mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options.
Collapse
|
30
|
Liang ZL, Kang K, Yoon S, Huang SM, Lim JS, Kim JM, Lim JS, Lee HJ. NDRG2 is involved in the oncogenic properties of renal cell carcinoma and its loss is a novel independent poor prognostic factor after nephrectomy. Ann Surg Oncol 2012; 19:2763-2772. [PMID: 22246425 DOI: 10.1245/s10434-011-2204-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Indexed: 09/22/2023]
Abstract
BACKGROUND Although NDRG2 is a candidate tumor suppressor, its exact role in renal cell carcinoma (RCC) is not fully understood. We investigated the functional role of NDRG2 and its clinical relevance in RCC tumorigenesis. METHODS NDRG2 expression and its clinical implications in clear cell RCC were evaluated. Biological function was assessed by a proliferation assay, anchorage-independent growth assay, and wound healing and transwell migration assays in RCC cell lines overexpressing NDRG2 coupled with an investigation of the effects of NDRG2 expression on the epithelial-mesenchymal transition (EMT). RESULTS NDRG2 was differentially expressed in patients with RCC. A loss of NDRG2 was significantly associated with a higher proportion of tumors >10 cm and a high nuclear grade. Furthermore, multivariate analyses indicated that a loss of NDRG2 was an independent poor prognostic factor for patient survival (recurrence-free survival, hazard ratio 7.901; disease-specific survival, hazard ratio 15.395; overall survival, hazard ratio 11.339; P < 0.001 for all parameters). NDRG2 expression inhibited the anchorage-independent growth and migration of RCC cells. NDRG2 expression also modulated the expression of EMT-related genes such as Snail, Slug, and SIP1, and it decreased EMT signaling in RCC cells. Finally, NDRG2 recovered E-cadherin expression in E-cadherin-negative RCC cells. CONCLUSIONS These results indicate that a lack of NDRG2 is associated with oncogenic properties through the loss of its role as a tumor suppressor, and that NDRG2 is an independent poor prognostic factor predicting survival in clear cell RCC, suggesting that it can serve as a novel prognostic biomarker.
Collapse
MESH Headings
- Aged
- Blotting, Western
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/mortality
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/surgery
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/pathology
- Epithelial-Mesenchymal Transition
- Female
- Follow-Up Studies
- Humans
- Immunoenzyme Techniques
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/mortality
- Kidney Neoplasms/pathology
- Kidney Neoplasms/surgery
- Male
- Middle Aged
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Neoplasm Staging
- Nephrectomy/mortality
- Postoperative Complications
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Survival Rate
- Tissue Array Analysis
- Tumor Cells, Cultured
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Wound Healing
Collapse
Affiliation(s)
- Zhe Long Liang
- Department of Pathology, Cancer Research Institute, and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Shi H, Li SJ, Zhang B, Liu HL, Chen CS. Expression of MSP58 in human colorectal cancer and its correlation with prognosis. Med Oncol 2012; 29:3136-42. [PMID: 22773039 PMCID: PMC3505539 DOI: 10.1007/s12032-012-0284-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 12/21/2022]
Abstract
We had reported that MSP58 regulates colorectal cancer cell proliferation, development, and apoptosis, by the cyclin D1-cyclin-dependent kinase 4-p21 pathway. In this study, MSP58 protein expression was examined by immunohistochemistry in 499 specimens of CRC. The relationship between various clinicopathological features and overall patient survival rate was analyzed. The association of MSP58 expression with the 499 CRC patients’ survival rate was assessed by Kaplan–Meier and Cox regression. Using ROC curve to provide sensitivity and specificity of the score of MSP58 predicts local recurrence and survival of CRC patients. The expression of MSP58 was positively correlated with the depth of invasion (P < 0.001), local recurrence (P = 0.008), tumor grade (P = 0.002), and UICC stage (P < 0.001). The Kaplan–Meier survival analysis demonstrated that the survival time of CRC patients with low expression of MSP58 was longer than those with high expression during the 5-year follow-up period (P < 0.001). COX regression analysis indicated that high expression of MSP58 (P < 0.001), depth of invasion >pT1 (P = 0.008), distant organ metastasis (pM1) (P < 0.001), regional lymph node metastasis (≥pN1) (P < 0.001), and local recurrence (Yes) (P = 0.007) were independent, poor prognostic factors of CRC. ROC curve showed the score of MSP58 expression level did provide a maximal sensitivity and specificity to predict local recurrence and survival of CRC patients. Our results demonstrated MSP58 might serve as a novel prognostic marker that is independent of, and additive to, the UICC staging system.
Collapse
Affiliation(s)
- Hai Shi
- State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shanxi, People's Republic of China.
| | | | | | | | | |
Collapse
|
32
|
Li T, Hu J, He GH, Li Y, Zhu CC, Hou WG, Zhang S, Li W, Zhang JS, Wang Z, Liu XP, Yao LB, Zhang YQ. Up-regulation of NDRG2 through nuclear factor-kappa B is required for Leydig cell apoptosis in both human and murine infertile testes. Biochim Biophys Acta Mol Basis Dis 2011; 1822:301-13. [PMID: 22138128 DOI: 10.1016/j.bbadis.2011.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 12/26/2022]
Abstract
Many pro-apoptotic factors, such as nuclear factor-kappa B (NF-κB) and Fas, play crucial roles in the process of Leydig cell apoptosis, ultimately leading to male sterility, such as in Sertoli cell only syndrome (SCO) and hypospermatogenesis. However, the molecular mechanism of such apoptosis is unclear. Recent reports on N-myc downstream-regulated gene 2 (ndrg2) have suggested that it is involved in cellular differentiation, development, and apoptosis. The unique expression of NDRG2 in SCO and hypospermatogenic testis suggests its pivotal role in those diseases. In this study, we analyzed NDRG2 expression profiles in the testes of normal spermatogenesis patients, hypospermatogenesis patients, and SCO patients, as well as in vivo and in vitro models, which were Sprague-Dawley rats and the Leydig cell line TM3 treated with the Leydig cell-specific toxicant ethane-dimethanesulfonate (EDS). Our data confirm that NDRG2 is normally exclusively located in the cytoplasm of Leydig cells and is up-regulated and translocates into the nucleus under apoptotic stimulations in human and murine testis. Meanwhile, transcription factor NF-κB was activated by EDS administration, bound to the ndrg2 promoter, and further increased in expression, effects that were abolished by NF-κB inhibitor Pyrrolidine dithiocarbamate (PDTC). Furthermore, siRNA knock-down of ndrg2 led to increased proliferative or decreased apoptotic TM3 cells, while over-expression of ndrg2 had the reverse effect. This study reveals that ndrg2 is a novel gene that participates in Leydig cell apoptosis, with essential functions in testicular cells, and suggests its possible role in apoptotic Leydig cells and male fertility.
Collapse
Affiliation(s)
- Teng Li
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Takahashi K, Saitoh A, Yamada M, Iwai T, Inagaki M, Yamada M. Dexamethasone indirectly induces Ndrg2 expression in rat astrocytes. J Neurosci Res 2011; 90:160-6. [PMID: 21928335 DOI: 10.1002/jnr.22727] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/17/2011] [Accepted: 06/02/2011] [Indexed: 12/16/2022]
Abstract
N-myc downstream-regulated gene 2 (Ndrg2) has been associated with cell proliferation, differentiation, and apoptosis. Ndrg2 expression in the brain is induced by glucocorticoid treatment or chronic stress in vivo. It has been postulated that glucocorticoid-induced Ndrg2 expression in astrocytes is regulated by the glucocorticoid response element half-site (GRE1/2) upstream of the Ndrg2 transcription site. Here we examined the mechanisms of dexamethasone-induced Ndrg2 expression in rat astrocytes. Ndrg2 mRNA expression in primary astrocytes was significantly increased after 24 hr of exposure to dexamethasone in a concentration-dependent manner. Dexamethasone-induced Ndrg2 mRNA and protein expression was blocked by pretreatment with RU486, a glucocorticoid receptor antagonist. Moreover, dexamethasone-induced Ndrg2 mRNA expression was reduced by pretreatment with the protein synthesis inhibitor cycloheximide. The Ndrg2 reporter assay showed that deletion of a putative GRE1/2, located upstream of Ndrg2, did not affect induction by dexamethasone. A region between -755 and -701 bp from the transcription start site was shown to regulate induction by dexamethasone using promoter constructs progressively deleted from the 5' to 3' ends. This region contained the predicted transcription factor binding sites for early B-cell factor 1 (Ebf1), nuclear factor-κB (NFκB), and paired box gene 5 (Pax5). Mutation at the NFκB- or Pax5-binding site, but not the Ebf1 binding site, abolished dexamethasone-induced promoter activation. These results indicate that Ndrg2 expression was indirectly induced by dexamethasone at the DNA level, potentially by the binding of NFκB or Pax5 to the transcription factor binding sites, and GRE1/2 was not involved in this induction.
Collapse
Affiliation(s)
- Kou Takahashi
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|