1
|
Li MM, Yuan J, Guan XY, Ma NF, Liu M. Molecular subclassification of gastrointestinal cancers based on cancer stem cell traits. Exp Hematol Oncol 2021; 10:53. [PMID: 34774101 PMCID: PMC8590337 DOI: 10.1186/s40164-021-00246-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Human gastrointestinal malignancies are highly heterogeneous cancers. Clinically, heterogeneity largely contributes to tumor progression and resistance to therapy. Heterogeneity within gastrointestinal cancers is defined by molecular subtypes in genomic and transcriptomic analyses. Cancer stem cells (CSCs) have been demonstrated to be a major source of tumor heterogeneity; therefore, assessing tumor heterogeneity by CSC trait-guided classification of gastrointestinal cancers is essential for the development of effective therapies. CSCs share critical features with embryonic stem cells (ESCs). Molecular investigations have revealed that embryonic genes and developmental signaling pathways regulating the properties of ESCs or cell lineage differentiation are abnormally active and might be oncofetal drivers in certain tumor subtypes. Currently, multiple strategies allow comprehensive identification of tumor subtype-specific oncofetal signatures and evaluation of subtype-specific therapies. In this review, we summarize current knowledge concerning the molecular classification of gastrointestinal malignancies based on CSC features and elucidate their clinical relevance. We also outline strategies for molecular subtype identification and subtype-based therapies. Finally, we explore how clinical implementation of tumor classification by CSC subtype might facilitate the development of more effective personalized therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Mei-Mei Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jun Yuan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Oncology, State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, China
| | - Ning-Fang Ma
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Ming Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
2
|
Tian BR, Lin WF, Zhang Y. Effects of biomechanical forces on the biological behavior of cancer stem cells. J Cancer 2021; 12:5895-5902. [PMID: 34476003 PMCID: PMC8408108 DOI: 10.7150/jca.60893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), dynamic subsets of cancer cells, are responsible for malignant progression. The unique properties of CSCs, including self-renewal, differentiation, and malignancy, closely depend on the tumor microenvironment. Mechanical components in the microenvironment, including matrix stiffness, fluid shear stress, compression and tension stress, affect the fate of CSCs and further influence the cancer process. This paper reviews recent studies of mechanical components and CSCs, and further discusses the intrinsic correlation among them. Regulatory mechanisms of mechanical microenvironment, which act on CSCs, have great potential for clinical application and provide different perspectives to drugs and treatment design.
Collapse
Affiliation(s)
- Bo Ren Tian
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, People's Republic of China
| | - Wei Fan Lin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, People's Republic of China
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Fukushi D, Shibuya-Takahashi R, Mochizuki M, Fujimori H, Kogure T, Sugai T, Iwai W, Wakui Y, Abue M, Murakami K, Nakamura Y, Yasuda J, Yamaguchi K, Sugamura K, Shibata C, Katayose Y, Satoh K, Tamai K. BEX2 is required for maintaining dormant cancer stem cell in hepatocellular carcinoma. Cancer Sci 2021; 112:4580-4592. [PMID: 34424582 PMCID: PMC8586677 DOI: 10.1111/cas.15115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for therapy resistance and share several properties with normal stem cells. Here, we show that brain‐expressed X‐linked gene 2 (BEX2), which is essential for dormant CSCs in cholangiocarcinoma, is highly expressed in human hepatocellular carcinoma (HCC) lesions compared with the adjacent normal lesions and that in 41 HCC cases the BEX2high expression group is correlated with a poor prognosis. BEX2 localizes to Ki67‐negative (nonproliferative) cancer cells in HCC tissues and is highly expressed in the dormant fraction of HCC cell lines. Knockdown of BEX2 attenuates CSC phenotypes, including sphere formation ability and aldefluor activity, and BEX2 overexpression enhances these phenotypes. Moreover, BEX2 knockdown increases cisplatin sensitivity, and BEX2 expression is induced by cisplatin treatment. Taken together, these data suggest that BEX2 induces dormant CSC properties and affects the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Daisuke Fukushi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Cancer Stem Cell, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Gastroenterology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Takayuki Kogure
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Takahiro Sugai
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| | - Wataru Iwai
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| | - Yuta Wakui
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| | - Makoto Abue
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| | - Kazuhiro Murakami
- Division of Pathology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Chikashi Shibata
- Gastroenterologic and Hepato-Biliary-Pancreatic Surgery, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Yu Katayose
- Gastroenterologic and Hepato-Biliary-Pancreatic Surgery, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Cancer Stem Cell, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Zhong H, Yuan C, He J, Yu Y, Jin Y, Huang Y, Zhao R. Engineering Peptide-Functionalized Biomimetic Nanointerfaces for Synergetic Capture of Circulating Tumor Cells in an EpCAM-Independent Manner. Anal Chem 2021; 93:9778-9787. [PMID: 34228920 DOI: 10.1021/acs.analchem.1c01254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Broad-spectrum detection and long-term monitoring of circulating tumor cells (CTCs) remain challenging due to the extreme rarity, heterogeneity, and dynamic nature of CTCs. Herein, a dual-affinity nanostructured platform was developed for capturing different subpopulations of CTCs and monitoring CTCs during treatment. Stepwise assembly of fibrous scaffolds, a ligand-exchangeable spacer, and a lysosomal protein transmembrane 4 β (LAPTM4B)-targeting peptide creates biomimetic, stimuli-responsive, and multivalent-binding nanointerfaces, which enable harvest of CTCs directly from whole blood with high yield, purity, and viability. The stable overexpression of the target LAPTM4B protein in CTCs and the enhanced peptide-protein binding facilitate the capture of rare CTCs in patients at an early stage, detection of both epithelial-positive and nonepithelial CTCs, and tracking of therapeutic responses. The reversible release of CTCs allows downstream molecular analysis and identification of specific liver cancer genes. The consistency of the information with clinical diagnosis presents the prospect of this platform for early diagnosis, metastasis prediction, and prognosis assessment.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwang Yuan
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiayuan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Li Z, Ni J, Liu L, Gu L, Wu Z, Li T, Ivanovich KI, Zhao W, Sun T, Wang T. Imaging-Guided Chemo-Photothermal Polydopamine Carbon Dots for EpCAM-Targeted Delivery toward Liver Tumor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29340-29348. [PMID: 34137582 DOI: 10.1021/acsami.1c05079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate a versatile nanoparticle with imaging-guided chemo-photothermal synergistic therapy and EpCAM-targeted delivery of liver tumor cells. EpCAM antibody (anti-EpCAM) and Pt(IV) were grafted onto the polydopamine carbon dots (PDA-CDs) by the amidation reaction. The EpCAM antibody of particles enables the targeted interaction with liver progenitor cells due to their overexpressed EpCAM protein. The tetravalent platinum prodrug [Pt(IV)] induces apoptosis with minimum toxic side effects through the interaction between cisplatin and tumor cell DNA. The nanoparticles displayed stable photothermal property and considerable anti-tumor therapeutic effect in vivo. Coupling with cellular imaging due to their fluorescence property, anti-EpCAM@PDA-CDs@Pt(IV) offers a convenient and effective platform for imaging-guided chemo-photothermal synergistic therapy toward liver cancers in the near future.
Collapse
Affiliation(s)
- Zeyu Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jiatong Ni
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Liping Liu
- Harbin First Specialist Hospital, 217 Hongwei Road, Harbin 150056, China
| | - Liyuan Gu
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Zhiguang Wu
- Institute of Pharmacy, Sechenov University, Moscow 119991, Russia
| | - Tianlong Li
- Institute of Pharmacy, Sechenov University, Moscow 119991, Russia
| | | | - Wancheng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ting Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Ghaderi F, Jokar N, Gholamrezanezhad A, Assadi M, Ahmadzadehfar H. Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Hu CL, Zhang YJ, Zhang XF, Fei X, Zhang H, Li CG, Sun B. 3D Culture of Circulating Tumor Cells for Evaluating Early Recurrence and Metastasis in Patients with Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:2673-2688. [PMID: 33888992 PMCID: PMC8057830 DOI: 10.2147/ott.s298427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Circulating tumor cells (CTCs) are considered to be a key factor involved in tumor metastasis. However, the isolation and culture of CTCs in vitro remains challenging, and their clinical application for predicting prognosis and survival is still limited. The development of accurate evaluating system for CTCs will benefit for clinical assessment of HCC. Methods Density gradient centrifugation and magnetic separation based on CD45 antibody were used to isolate CTCs. 3D culture was used to maintain and amplify CTCs and HCC cells. Cellular immunofluorescence was used to identify CTCs and spheroids. The cutoff value of CTC spheroid was calculated using X-tile software. The relationship between clinicopathological variables and CTC spheroids in HCC patients is analyzed. In vivo models were used to evaluate tumor growth and metastasis of CTC spheroids. Results Patient-derived CTCs/HCC cells were isolated and expanded to form spheroids using 3D culture. CTC spheroids could be used to predict short-term recurrence of CTCs compared with conventional CTC enumeration. Different cell lines exhibited different formation rates and grew to different sizes. Identification of CTC spheroids revealed that EpCAM and β-catenin were expressed in spheroids derived from HCC cells and in the HCC/CTCs. EpCAM-positive HCC cells exhibited improved spheroid formation in 3D culture and were more tumorigenic and likely to metastasize to the lung in vivo. Abnormal activation of the Wnt/β-catenin signaling pathway was observed in EpCAM positive cells. Conclusion CTC spheroids could predict prognosis of HCC more precisely compared with conventional CTC enumeration. EpCAM may participate in the formation and survival of CTC spheroids which dependent on Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong-Li Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Yan-Jun Zhang
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, People's Republic of China
| | - Xiao-Feng Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Chun-Guang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| |
Collapse
|
8
|
Zhang J, Shi J, Zhang H, Zhu Y, Liu W, Zhang K, Zhang Z. Localized fluorescent imaging of multiple proteins on individual extracellular vesicles using rolling circle amplification for cancer diagnosis. J Extracell Vesicles 2020; 10:e12025. [PMID: 33304477 PMCID: PMC7710127 DOI: 10.1002/jev2.12025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EV) have attracted increasing attention as tumour biomarkers due to their unique biological property. However, conventional methods for EV analysis are mainly based on bulk measurements, which masks the EV‐to‐EV heterogeneity in tumour diagnosis and classification. Herein, a localized fluorescent imaging method (termed Digital Profiling of Proteins on Individual EV, DPPIE) was developed for analysis of multiple proteins on individual EV. In this assay, an anti‐CD9 antibody engineered biochip was used to capture EV from clinical plasma sample. Then the captured EV was specifically recognized by multiple DNA aptamers (CD63/EpCAM/MUC1), followed by rolling circle amplification to generate localized fluorescent signals. By‐analyzing the heterogeneity of individual EV, we found that the high‐dimensional data collected from each individual EV would provide more precise information than bulk measurement (ELISA) and the percent of CD63/EpCAM/MUC1‐triple‐positive EV in breast cancer patients was significantly higher than that of healthy donors, and this method can achieve an overall accuracy of 91%. Moreover, using DPPIE, we are able to distinguish the EV between lung adenocarcinoma and lung squamous carcinoma patients. This individual EV heterogeneity analysis strategy provides a new way for digging more information on EV to achieve multi‐cancer diagnosis and classification.
Collapse
Affiliation(s)
- Junli Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Jinjin Shi
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Hongling Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Yifan Zhu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Wei Liu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Kaixiang Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Zhenzhong Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
9
|
Li Z, Wang T, Gu L, Wang H, Zhao Y, Lu S, Zhao W, Sun T. N-doped carbon dots modified with the epithelial cell adhesion molecule antibody as an imaging agent for HepG2 cells using their ultra-sensitive response to Al 3. NANOTECHNOLOGY 2020; 31:485703. [PMID: 33118523 DOI: 10.1088/1361-6528/abb0b5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Carbon dots (CDs) are emerging as an ideal multifunctional materials due to their ease of preparation and excellent properties in medical imaging technology, environmental monitoring, chemical analysis and other fields. N-doped CDs modified with the epithelial cell adhesion molecule antibody (anti-EpCAM-NCDs) were synthesized in an ingenious and high-output approach. Due to the fluorescence enhancement effect of the introduced N atoms, the obtained anti-EpCAM-NCDs exhibited a strong green emission with an absolute quantum yield of up to 32.5%. Anti-EpCAM-NCDs have immunofluorescent properties and an active targeting function. The fluorescence effect and fluorescence quenching of anti-EpCAM-NCDs are used to image cells and detect Al3+, respectively. Experimental results show that this probe exhibited a wide linear response to Al3+over a concentration range of 0-100μM with a detection limit and quantification limit of 3 nM and 6 nM, respectively. Significantly, anti-EpCAM-NCDs, which have negligible cytotoxicity, excellent biocompatibility and high photostability, could be used for the intracellular imaging of HepG2 cells and the detection of Al3+in environmental and biological samples. As an efficient multifunctional material, anti-EpCAM-NCDs hold great promise for a number of applications in biological systems.
Collapse
Affiliation(s)
- Zeyu Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, People's Republic of China
| | - Ting Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, People's Republic of China
| | - Liyuan Gu
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, People's Republic of China
| | - Henan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, People's Republic of China
| | - Yuliang Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, People's Republic of China
| | - Shuting Lu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, People's Republic of China
| | - Wancheng Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, People's Republic of China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, People's Republic of China
| |
Collapse
|
10
|
Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020; 9:E1896. [PMID: 32823711 PMCID: PMC7464860 DOI: 10.3390/cells9081896] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
- Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| |
Collapse
|
11
|
Effects of Pyrrole-Imidazole Polyamides Targeting Human TGF-β1 on the Malignant Phenotypes of Liver Cancer Cells. Molecules 2020; 25:molecules25122883. [PMID: 32585841 PMCID: PMC7356887 DOI: 10.3390/molecules25122883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic pyrrole-imidazole (PI) polyamides bind to the minor groove of double-helical DNA with high affinity and specificity, and inhibit the transcription of corresponding genes. In liver cancer, transforming growth factor (TGF)-β expression is correlated with tumor grade, and high-grade liver cancer tissues express epithelial-mesenchymal transition markers. TGF-β1 was reported to be involved in cancer development by transforming precancer cells to cancer stem cells (CSCs). This study aimed to evaluate the effects of TGF-β1-targeting PI polyamide on the growth of liver cancer cells and CSCs and their TGF-β1 expression. We analyzed TGF-β1 expression level after the administration of GB1101, a PI polyamide that targets human TGF-β1 promoter, and examined its effects on cell proliferation, invasiveness, and TGF-β1 mRNA expression level. GB1101 treatment dose-dependently decreased TGF-β1 mRNA levels in HepG2 and HLF cells, and inhibited HepG2 colony formation associated with downregulation of TGF-β1 mRNA. Although GB1101 did not substantially inhibit the proliferation of HepG2 cells compared to untreated control cells, GB1101 significantly suppressed the invasion of HLF cells, which displayed high expression of CD44, a marker for CSCs. Furthermore, GB1101 significantly inhibited HLF cell sphere formation by inhibiting TGF-β1 expression, in addition to suppressing the proliferation of HLE and HLF cells. Taken together, GB1101 reduced TGF-β1 expression in liver cancer cells and suppressed cell invasion; therefore, GB1101 is a novel candidate drug for the treatment of liver cancer.
Collapse
|
12
|
Alhabbab RY. Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Front Genet 2020; 11:312. [PMID: 32391048 PMCID: PMC7188929 DOI: 10.3389/fgene.2020.00312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The term cancer stem cell (CSC) starts 25 years ago with the evidence that CSC is a subpopulation of tumor cells that have renewal ability and can differentiate into several distinct linages. Therefore, CSCs play crucial role in the initiation and the maintenance of cancer. Moreover, it has been proposed throughout several studies that CSCs are behind the failure of the conventional chemo-/radiotherapy as well as cancer recurrence due to their ability to resist the therapy and their ability to re-regenerate. Thus, the need for targeted therapy to eliminate CSCs is crucial; for that reason, chimeric antigen receptor (CAR) T cells has currently been in use with high rate of success in leukemia and, to some degree, in patients with solid tumors. This review outlines the most common CSC populations and their common markers, in particular CD133, CD90, EpCAM, CD44, ALDH, and EGFRVIII, the interaction between CSCs and the immune system, CAR T cell genetic engineering and signaling, CAR T cells in targeting CSCs, and the barriers in using CAR T cells as immunotherapy to treat solid cancers.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Division of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Wu D, Yu Y, Jin D, Xiao MM, Zhang ZY, Zhang GJ. Dual-Aptamer Modified Graphene Field-Effect Transistor Nanosensor for Label-Free and Specific Detection of Hepatocellular Carcinoma-Derived Microvesicles. Anal Chem 2020; 92:4006-4015. [PMID: 32040907 DOI: 10.1021/acs.analchem.9b05531] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancerous microvesicles (MVs), which are heterogeneous membrane-bound nanovesicles shed from the surfaces of cancer cells into the extracellular environment, have been widely recognized as promising "biofingerprints" for various cancers. High-performance identification of cancerous MVs plays a vital role in the early diagnosis of cancer, yet it is still technically challenging. Herein, we report a gold nanoparticle (AuNP)-decorated, dual-aptamer modified reduced graphene oxide (RGO) field-effect transistor (AAP-GFET) nanosensor for the label-free, specific, and sensitive quantification of HepG2 cell-derived MVs (HepG2-MVs). After GFET chips were fabricated, AuNPs were then decorated on the RGO surface. For specific capture and detection of HepG2-MVs, both sulfhydrylated HepG2 cell specific TLS11a aptamer (AptTLS11a) and epithelial cell adhesion molecule aptamer (AptEpCAM) were immobilized on the AuNP surface through an Au-S bond. This developed nanosensor delivered a broad linear dynamic range from 6 × 105 to 6 × 109 particles/mL and achieved a high sensitivity of 84 particles/μL for HepG2-MVs detection. Moreover, this AAP-GFET platform was able to distinguish HepG2-MVs from other liver cancer-related serum proteins (such as AFP and CEA) and MVs derived from human normal cells and other cancer cells of lung, pancreas, and prostate, suggesting its excellent method specificity. Compared with those modified with a single type of aptamer alone (AptTLS11a or AptEpCAM), such an AAP-GFET nanosensor showed greatly enhanced signals, suggesting that the dual-aptamer-based bio-nano interface was uniquely designed and could realize more sensitive quantification of HepG2-MVs. Using this platform to detect HepG2-MVs in clinical blood samples, we found that there were significant differences between healthy controls and hepatocellular carcinoma (HCC) patients, indicating its great potential in early HCC diagnosis.
Collapse
Affiliation(s)
- Ding Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, Hubei 430065, P.R. China
| | - Yi Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, Hubei 430065, P.R. China
| | - Dan Jin
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, Hubei 430065, P.R. China
| | - Meng-Meng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Zhi-Yong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
14
|
Al Faruque H, Choi ES, Lee HR, Kim JH, Park S, Kim E. Targeted removal of leukemia cells from the circulating system by whole-body magnetic hyperthermia in mice. NANOSCALE 2020; 12:2773-2786. [PMID: 31957767 DOI: 10.1039/c9nr06730b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Until now, magnetic hyperthermia was used to remove solid tumors by targeting magnetic nanoparticles (MNPs) to tumor sites. In this study, leukemia cells in the bloodstream were directly removed by whole-body hyperthermia, using leukemia cell-specific MNPs. An epithelial cellular adhesion molecule (EpCAM) antibody was immobilized on the surface of MNPs (EpCAM-MNPs) to introduce the specificity of MNPs to leukemia cells. The viability of THP1 cells (human monocytic leukemia cells) was decreased to 40.8% of that in control samples by hyperthermia using EpCAM-MNPs. In AKR mice, an animal model of lymphoblastic leukemia, the number of leukemia cells was measured following the intravenous injection of EpCAM-MNPs and subsequent whole-body hyperthermia treatment. The result showed that the leukemia cell number was also decreased to 43.8% of that without the treatment of hyperthermia, determined by Leishman staining of leukemia cells. To support the results, simulation analysis of heat transfer from MNPs to leukemia cells was performed using COMSOL Multiphysics simulation software. The surface temperature of leukemia cells adhered to EpCAM-MNPs was predicted to be increased to 82 °C, whereas the temperature of free cells without adhered MNPs was predicted to be 38 °C. Taken together, leukemia cells were selectively removed by magnetic hyperthermia from the bloodstream, because EpCAM-modified magnetic particles were specifically attached to leukemia cell surfaces. This approach has the potential to remove metastatic cancer cells, and pathogenic bacteria and viruses floating in the bloodstream.
Collapse
Affiliation(s)
- Hasan Al Faruque
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Eun-Sook Choi
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Hyo-Ryong Lee
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Jung-Hee Kim
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Sukho Park
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Eunjoo Kim
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
15
|
Ishiguro K, Yan IK, Lewis-Tuffin L, Patel T. Targeting Liver Cancer Stem Cells Using Engineered Biological Nanoparticles for the Treatment of Hepatocellular Cancer. Hepatol Commun 2020; 4:298-313. [PMID: 32025612 PMCID: PMC6996342 DOI: 10.1002/hep4.1462] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
By exploiting their biological functions, the use of biological nanoparticles such as extracellular vesicles can provide an efficient and effective approach for hepatic delivery of RNA‐based therapeutics for the treatment of liver cancers such as hepatocellular cancer (HCC). Targeting liver cancer stem cells (LCSC) within HCC provide an untapped opportunity to improve outcomes by enhancing therapeutic responses. Cells with tumor‐initiating capabilities such as LCSC can be identified by expression of markers such as epithelial cell adhesion molecule (EpCAM) on their cell surface. EpCAM is a target of Wnt/β‐catenin signaling, a fundamental pathway in stem‐cell growth. Moreover, mutations in the β‐catenin gene are frequently observed in HCC and can be associated with constitutive activation of the Wnt/β‐catenin pathway. However, targeting these pathways for the treatment of HCC has been challenging. Using RNA nanotechnology, we developed engineered biological nanoparticles capable of specific and effective delivery of RNA therapeutics targeting β‐catenin to LCSC. Extracellular vesicles isolated from milk were loaded with small interfering RNA to β‐catenin and decorated with RNA scaffolds to incorporate RNA aptamers capable of binding to EpCAM. Cellular uptake of these EpCAM‐targeting therapeutic milk‐derived nanovesicles in vitro resulted in loss of β‐catenin expression and decreased proliferation. The uptake and therapeutic efficacy of these engineered biological nanotherapeutics was demonstrated in vivo using tumor xenograft mouse models. Conclusion: β‐catenin can be targeted directly to control the proliferation of hepatic cancer stem cells using small interfering RNA delivered using target‐specific biological nanoparticles. Application of this RNA nanotechnology–based approach to engineer biological nanotherapeutics provides a platform for developing cell‐surface molecule–directed targeted therapeutics.
Collapse
Affiliation(s)
- Kaori Ishiguro
- Department of Transplantation Mayo Clinic Jacksonville FL.,Department of Cancer Biology Mayo Clinic Jacksonville FL
| | - Irene K Yan
- Department of Transplantation Mayo Clinic Jacksonville FL.,Department of Cancer Biology Mayo Clinic Jacksonville FL
| | | | - Tushar Patel
- Department of Transplantation Mayo Clinic Jacksonville FL.,Department of Cancer Biology Mayo Clinic Jacksonville FL
| |
Collapse
|
16
|
Aboudehen K. Regulation of mTOR signaling by long non-coding RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194449. [PMID: 31751821 DOI: 10.1016/j.bbagrm.2019.194449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a major signaling hub that coordinates cellular and organismal responses, such as cell growth, proliferation, apoptosis, and metabolism. Dysregulation of mTOR signaling occurs in many human diseases, and there are significant ongoing efforts to pharmacologically target this pathway. Long noncoding RNAs (lncRNA), defined by a length > 200 nucleotides and absence of a long open-reading-frame, are a class of non-protein-coding RNAs. Mutations and dysregulations of lncRNAs are directly linked to the development and progression of many diseases, including cancer, diabetes, and neurologic disorders. Recent findings reveal diverse functions for lncRNA that include transcriptional regulation, organization of nuclear domains, and regulation of proteins or RNA molecules. Despite considerable development in our understanding of lncRNA over the past decade, only a fraction of annotated lncRNAs has been examined for biological function. In addition, lncRNAs have emerged as therapeutic targets due to their ability to modulate multiple pathways, including mTOR signaling. This review will provide an up-to-date summary of lncRNAs that are involved in regulating mTOR pathway.
Collapse
Affiliation(s)
- Karam Aboudehen
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Feng L, Huang S, An G, Wang G, Gu S, Zhao X. Identification of new cancer stem cell markers and signaling pathways in HER‑2‑positive breast cancer by transcriptome sequencing. Int J Oncol 2019; 55:1003-1018. [PMID: 31545416 PMCID: PMC6776190 DOI: 10.3892/ijo.2019.4876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Human epidermal growth factor receptor (HER)‑2‑positive breast cancer accounts for ~25% of all breast cancer cases, has a high propensity for relapse, metastasis and drug resistance, and is associated with a poor prognosis. Therefore, it is necessary to develop more effective therapeutic targets for the treatment of HER‑2‑positive breast cancer. CD44+/CD24‑/low is currently the most commonly used marker for breast cancer stem cells (CSCs), which are considered the main cause of drug resistance, relapse and metastasis. In the present study, the ratio of CD44+/CD24‑/low cells was almost zero in SK‑BR‑3 cells; however, it was >90% in MDA‑MB‑231 cells, as determined by flow cytometry. Since SK‑BR‑3 and MDA‑MB‑231 cells both exhibit a strong propensity for invasion and migration, it was hypothesized that there may be other markers of CSCs in SK‑BR‑3 cells. Therefore, transcriptome sequencing was performed for SK‑BR‑3 and MDA‑MB‑231 cells. It was observed that several leukocyte differentiation antigens and other CSC markers were significantly more highly expressed in SK‑BR‑3 cells. Furthermore, the expression of aldehyde dehydrogenase (ALDH)1A3, CD164 and epithelial cell adhesion molecule (EpCAM) was higher in SK‑BR‑3 cells compared with in other subtypes of breast cell lines, as determined by reverse transcription‑polymerase chain reaction and western blot analysis. In addition, the expression levels of ALDH1A3, ALDH3B2 and EpCAM were higher in HER‑2‑positive breast cancer compared with in paracancerous tissues and other subtypes of breast cancer, as determined by immunohistochemistry. The expression of β‑catenin in the Wnt signaling pathway was lower in SK‑BR‑3 cells compared with in MDA‑MB‑231 cells, which may be used as a prognostic indicator for breast cancer. These findings may help identify novel CSC markers and therapeutic targets for HER‑2‑positive breast cancer.
Collapse
Affiliation(s)
- Lu Feng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gaili An
- Department of Clinical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Guanying Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shanzhi Gu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xinhan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
18
|
Barbato L, Bocchetti M, Di Biase A, Regad T. Cancer Stem Cells and Targeting Strategies. Cells 2019; 8:cells8080926. [PMID: 31426611 PMCID: PMC6721823 DOI: 10.3390/cells8080926] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance is a major problem in cancer therapy as cancer cells develop mechanisms that counteract the effect of chemotherapeutic compounds, leading to relapse and the development of more aggressive cancers that contribute to poor prognosis and survival rates of treated patients. Cancer stem cells (CSCs) play a key role in this event. Apart from their slow proliferative property, CSCs have developed a range of cellular processes that involve drug efflux, drug enzymatic inactivation and other mechanisms. In addition, the microenvironment where CSCs evolve (CSC niche), effectively contributes to their role in cancer initiation, progression and chemoresistance. In the CSC niche, immune cells, mesenchymal stem cells (MSCs), endothelial cells and cancer associated fibroblasts (CAFs) contribute to the maintenance of CSC malignancy via the secretion of factors that promote cancer progression and resistance to chemotherapy. Due to these factors that hinder successful cancer therapies, CSCs are a subject of intense research that aims at better understanding of CSC behaviour and at developing efficient targeting therapies. In this review, we provide an overview of cancer stem cells, their role in cancer initiation, progression and chemoresistance, and discuss the progress that has been made in the development of CSC targeted therapies.
Collapse
Affiliation(s)
- Luisa Barbato
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Marco Bocchetti
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Di Biase
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
19
|
Taniguchi H, Suzuki Y, Natori Y. The Evolving Landscape of Cancer Stem Cells and Ways to Overcome Cancer Heterogeneity. Cancers (Basel) 2019; 11:cancers11040532. [PMID: 31013960 PMCID: PMC6520864 DOI: 10.3390/cancers11040532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) with therapeutic resistance and plasticity can be found in various types of tumors and are recognized as attractive targets for treatments. As CSCs are derived from tissue stem or progenitor cells, and/or dedifferentiated mature cells, their signal transduction pathways are critical in the regulation of CSCs; chronic inflammation causes the accumulation of genetic mutations and aberrant epigenetic changes in these cells, potentially leading to the production of CSCs. However, the nature of CSCs appears to be stronger than the treatments of the past. To improve the treatments targeting CSCs, it is important to inhibit several molecules on the signaling cascades in CSCs simultaneously, and to overcome cancer heterogeneity caused by the plasticity. To select suitable target molecules for CSCs, we have to explore the landscape of CSCs from the perspective of cancer stemness and signaling systems, based on the curated databases of cancer-related genes. We have been studying the integration of a broad range of knowledge and experiences from cancer biology, and also from other interdisciplinary basic sciences. In this review, we have introduced the concept of developing novel strategies targeting CSCs.
Collapse
Affiliation(s)
- Hiroaki Taniguchi
- The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-0071, Japan.
- Clinical and Translational Research Center Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yasunori Suzuki
- Clinical and Translational Research Center Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yukikazu Natori
- BioThinkTank Co. Ltd. 4-10-1-E1706 Minatomirai, Nishi-ku Yokohama, Kanagawa 220-0012, Japan.
| |
Collapse
|
20
|
Wu G, Zhan S, Rui C, Sho E, Shi X, Ding Y. Microporous cellulosic scaffold as a spheroid culture system modulates chemotherapeutic responses and stemness in hepatocellular carcinoma. J Cell Biochem 2018; 120:5244-5255. [PMID: 30302811 DOI: 10.1002/jcb.27799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Guoyi Wu
- Department of Hepatobiliary Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- Clinical Medical Center for Digestive Disease of Jiangsu Province Nanjing China
| | - Shanshan Zhan
- Department of Hepatobiliary Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- Clinical Medical Center for Digestive Disease of Jiangsu Province Nanjing China
| | - Chen Rui
- KCI Biotech (Suzhou), Inc Suzhou China
| | | | - Xiaolei Shi
- Department of Hepatobiliary Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- Clinical Medical Center for Digestive Disease of Jiangsu Province Nanjing China
| | - Yitao Ding
- Department of Hepatobiliary Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- Clinical Medical Center for Digestive Disease of Jiangsu Province Nanjing China
| |
Collapse
|
21
|
Immunohistochemical Coexpression of Epithelial Cell Adhesion Molecule and Alpha-Fetoprotein in Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2018; 2018:5970852. [PMID: 30112355 PMCID: PMC6077358 DOI: 10.1155/2018/5970852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND AIM The epithelial cell adhesion molecule (EpCAM) has been proposed as a marker for cancer stem cells in human hepatocellular carcinoma (HCC) as well as in the development of novel target therapies. This study aimed to investigate the immunohistochemical expression of EpCAM and alpha-fetoprotein (AFP) in HCC patients and their association with clinicopathological characteristics. METHODS This study included Child-Pugh A HCC patients undergoing curative surgical resection. RESULTS A significant difference was observed in the ratio between the different phenotypes (p = 0.002), identifying 12 (29.3%) EPCAM positive tumors and 29 (70.7%) negative tumors. EpCAM+ expression was associated with AFP + (OR = 12.5, 95% CI, 1.9-84.1, p<0.001). In univariate analysis, a significant association was observed between AFP+ and EPCAM+ and the serum AFP level. A diameter of ≤ 5 cm was associated with EPCAM+, while angiolymphatic invasion was associated with APF+. In a multivariate analysis, only tumors of ≤ 5 cm were significantly associated with EpCAM+ (OR = 8.7; 95%CI, 1.27-100.0; p = 0.022). The overall survival rate was 74.9%, 69.4%, 69.4%, and 53.5% at 12, 24, 36, and 48 months, respectively. CONCLUSION A considerable number of patients with EpCAM+ HCC would benefit from a specific target therapy.
Collapse
|
22
|
Li YH, Yang SL, Zhang GF, Wu JC, Gong LL, Lin RX. Mefloquine targets β-catenin pathway and thus can play a role in the treatment of liver cancer. Microb Pathog 2018; 118:357-360. [PMID: 29578061 DOI: 10.1016/j.micpath.2018.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
Abstract
The current study was designed and performed to investigate the effect of mefloquine on the proliferation and tumor formation potential of liver cancer stem cells. CD133 + HepG2 cells were identified using MACS and showed markedly higher tumor formation potential compared to the parental cells. The secondary tumors formed by CD133 + cells were markedly large in size and more in number compared to the parental cells. Mefloquine treatment of CD133 + HepG2 cells inhibited the proliferation selectively in concentration based manner. The rate of proliferation was inhibited to 82 and 12% in parental and CD133 + sphere forming cells, respectively on treatment with 10 μM concentration of mefloquine. The number of secondary tumors formed by primary tumors was decreased significantly on treatment with 10 μM mefloquine concentration. Treatment of the liver cancer stem cells with mefloquine markedly decreased the potential to undergo self-renewal at 10 μM concentration after 48 h. The results from western blot analysis showed significantly higher expression of cancer stem cell molecules β-catenin and cyclin D1 in LCSCs. Treatment of the LCSCs with various concentrations of mefloquine reduced the expression levels of β-catenin and cyclin D1. Administration of the CD133 + cell tumor xenografts in the mice led to the formation of large sized tumors in the control group. However, the tumor growth was inhibited significantly in the mice on treatment with 10 mg/kg doses of mefloquine after day 21. The tumor weight was significantly lower in the animals of mefloquine treatment group compared to the control group. Thus, mefloquine treatment inhibits self-renewal and proliferation potential of cells through targeting β-catenin pathway.
Collapse
Affiliation(s)
- Yu-Hui Li
- Department of General Surgery, China-Japan Union Hospital Affiliated to Jilin University, Changchun 130061, China
| | - Shu-Li Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Guo-Feng Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jia-Cheng Wu
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Lu-Lu Gong
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rui-Xin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
23
|
Increased liver carcinogenesis and enrichment of stem cell properties in livers of Dickkopf 2 (Dkk2) deleted mice. Oncotarget 2018; 7:28903-13. [PMID: 25826080 PMCID: PMC5045365 DOI: 10.18632/oncotarget.3293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/08/2015] [Indexed: 01/02/2023] Open
Abstract
Dkk2 a antagonist of the Wnt/β-catenin-signaling pathway was shown to be silenced in diverse cancers. More recent data indicate that Dkk family members may also possess functions independent of Wnt-signaling during carcinogenesis. The detailed biological function of Dkks and its relevance for liver cancer is unknown. We analyzed the effects of a genetic deletion of Dkk2 (Dkk2−/−) in a hepatocarcinogenesis model using DEN/Phenobarbital. Untreated Dkk2−/− animals, showed considerable atypia with variation of hepatocyte size and chromatin density. In livers of Dkk2−/− mice nodule formation was seen at 9 months of age with focal loss of trabecular architecture and atypical hepatocytes and after DEN induction Dkk2−/− mice developed significantly more liver tumors compared to controls. Whole transcriptome analysis of untreated Dkk2−/− liver tissue revealed a Dkk2-dependent genetic network involving Wnt/β-Catenin but also multiple additional oncogenic factors, such as e.g. Pdgf-b, Gdf-15 and Hnf4a. Dkk2−/− tumor cells showed a significant deregulation of stemness genes associated with enhanced colony forming properties. Integration of the Dkk2−/− signature into human data was strongly associated with patients survival. Dkk2 deletion results in alterations of liver morphology leading to an increased frequency of liver cancer. The associated genetic changes included factors not primarily related to Wnt/β-Catenin-signaling and correlated with the clinical outcome of HCC-patients.
Collapse
|
24
|
Qiu L, Li H, Fu S, Chen X, Lu L. Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. Oncol Lett 2017; 15:2039-2048. [PMID: 29434903 DOI: 10.3892/ol.2017.7568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Liver cancer stem cells (LCSCs) have important roles in the occurrence, development, recurrence, therapy resistance and metastasis of hepatocellular carcinoma (HCC). Therefore, intensive studies are undergoing to identify the mechanisms by which LCSCs contribute to HCC invasion and metastasis, and to design more efficient treatments for this disease. With continuous efforts in LCSC research over the years, therapies targeting LCSCs are thought to have great potential for the clinical treatment and prognosis of liver cancer. Novel LCSC surface markers are continuously discovered and several have been used in targeted therapies to reduce HCC recurrence, metastasis, and drug resistance following tumor resection. The present review describes the surface markers characterizing LCSCs and the recent progress in therapies targeting these markers, including antibodies and polypeptides.
Collapse
Affiliation(s)
- Lige Qiu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Hailiang Li
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Sirui Fu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaofang Chen
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Stem Cell and Regenerative Medicine Laboratory, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - Ligong Lu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
25
|
Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 2017; 7:11018-32. [PMID: 26783961 PMCID: PMC4905455 DOI: 10.18632/oncotarget.6920] [Citation(s) in RCA: 404] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kaori Tanaka
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuji Tanaka
- Division of Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
26
|
Wei Y, Wang Y, Gong J, Rao L, Wu Z, Nie T, Shi D, Zhang L. High expression of MAGE-A9 contributes to stemness and malignancy of human hepatocellular carcinoma. Int J Oncol 2017; 52:219-230. [PMID: 29138811 DOI: 10.3892/ijo.2017.4198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/23/2017] [Indexed: 01/30/2023] Open
Abstract
MAGE-A9, a well-characterized cancer testis antigen (CTA), belongs to a member of melanoma antigen gene (MAGE) family. In human malignancies, aberrant expression of MAGE genes correlated with poor clinical prognosis, increased tumor growth, metastases, and enrichment in stem cell populations of certain cancers. Cancer stem cells (CSCs) have been proposed to contribute to the major malignant phenotypes of liver cancer, including recurrence, metastasis and chemoresistance. However, expression and potential role of MAGE-A9 in liver cancer stem cells (LCSCs) still remain unclear. In the present study, we first analyzed the expression profiling of MAGE family genes in EpCAM+ and EpCAM- human hepatocellular carcinoma (HCC), based on public Gene Expression Omnibus (GEO) database. Among these examined MAGE members, MAGE-A9 is the only one with significantly higher expression in EpCAM+ HCC specimens as compared with EpCAM- HCC. Quantitative PCR analysis further confirmed that MAGE-A9 expression significantly elevated in a subtype of HCC patients that had features of hepatic stem/progenitor cells with high-level expression of EpCAM and α-fetoprotein (AFP). Moreover, MAGE-A9 displayed remarkably enriched expression in EpCAM+ HCC cells that were sorted by fluorescence-activated cell sorting and cultured HCC cell spheroids with characteristics of stem/progenitor cells. Functional experiments further revealed that MAGE-A9 overexpression promoted cell proliferation, colony formation, migration, chemoresistance, and tumorigenicity in the context of EpCAM+ HCC cells, whereas MAGE-A9 knockdown significantly inhibited anchorage-dependent and spheroid colony formation and in vivo tumorigenicity. Collectively, these data demonstrate that MAGE-A9 functions as an important regulator of LCSCs, and MAGE-A9 may serve as a potential therapeutic target against HCC stem/progenitor cells.
Collapse
Affiliation(s)
- Youping Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Yanqin Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Jing Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Lihua Rao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Zhiwei Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Teng Nie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Dongling Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Liming Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| |
Collapse
|
27
|
Wu JF, Chang HH, Lu MY, Jou ST, Chang KC, Ni YH, Chang MH. Prognostic roles of pathology markers immunoexpression and clinical parameters in Hepatoblastoma. J Biomed Sci 2017; 24:62. [PMID: 28851352 PMCID: PMC5574230 DOI: 10.1186/s12929-017-0369-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hepatoblastoma, a leading primary hepatic malignant tumor in children, is originated from primitive hepatic stem cells. We aimed to elucidate the relationships between the histological distribution of β-catenin and hepatic stem cell markers with the clinical outcomes of hepatoblastoma. METHODS Immunohistochemistry was applied to detect β-catenin and hepatic stem cell markers expression in 31 hepatoblastoma tumors. We analyzed the relationship between the stem cell markers and the clinical course of hepatoblastoma. RESULTS Thirty-one hepatoblastoma patients were diagnosed at a mean age of 2.58 ± 3.78 years, and 7 (22.58%) died. A lack of anticipated decrease in alpha-fetal protein levels after neoadjuvant chemotherapy indicated a higher mortality rate. Nuclear β-catenin expression was significantly associated with membranous epithelial cell adhesion molecule (EpCAM) expression in hepatoblastoma tumor specimens. The co-expression of nuclear β-catenin and membranous EpCAM together with an age at diagnosis ≤1.25 years were predictive of an alpha-fetoprotein level < 1200 ng/mL after neoadjuvant chemotherapy (P < 0.05). An alpha-fetoprotein level < 1200 ng/mL after neoadjuvant chemotherapy and age at hepatoblastoma diagnosis ≤1.25 years are both predictors of better overall and native liver survival in hepatoblastoma patients. CONCLUSIONS Presence of membranous EpCAM with nuclear β-catenin and younger diagnostic age of hepatoblastoma are predictive of serum alpha-fetoprotein levels drop after chemotherapy. Younger diagnostic age and lower alpha-fetoprotein levels after neoadjuvant chemotherapy and are predictive of better overall and native liver survival in hepatoblastoma patients.
Collapse
Affiliation(s)
- Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital, No. 8, Chung-Shan S. Rd, Taipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, No. 8, Chung-Shan S. Rd, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University Hospital, No. 8, Chung-Shan S. Rd, Taipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University Hospital, No. 8, Chung-Shan S. Rd, Taipei, Taiwan
| | - Kai-Chi Chang
- Department of Emergency, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, No. 8, Chung-Shan S. Rd, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, No. 8, Chung-Shan S. Rd, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University Hospital, No. 8, Chung-Shan S. Rd, Taipei, Taiwan. .,Hepatitis Research Center, National Taiwan University Hospital, No. 8, Chung-Shan S. Rd, Taipei, Taiwan.
| |
Collapse
|
28
|
Hu K, Huang P, Luo H, Yao Z, Wang Q, Xiong Z, Lin J, Huang H, Xu S, Zhang P, Liu B. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells. FEBS Open Bio 2017; 7:1144-1153. [PMID: 28781954 PMCID: PMC5537062 DOI: 10.1002/2211-5463.12254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023] Open
Abstract
Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.
Collapse
Affiliation(s)
- Kunpeng Hu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Pinzhu Huang
- Department of Gastrointestinal Surgery The Sixth Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Hui Luo
- Department of Operating Room The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhicheng Yao
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Qingliang Wang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhiyong Xiong
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Jizong Lin
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - He Huang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shilei Xu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Peng Zhang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Bo Liu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| |
Collapse
|
29
|
Agliano A, Calvo A, Box C. The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol 2017; 44:25-42. [DOI: 10.1016/j.semcancer.2017.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
|
30
|
Nasu K, Yamaguchi K, Takanashi T, Tamai K, Sato I, Ine S, Sasaki O, Satoh K, Tanaka N, Tanaka Y, Fukushima T, Harigae H, Sugamura K. Crucial role of carbonic anhydrase IX in tumorigenicity of xenotransplanted adult T-cell leukemia-derived cells. Cancer Sci 2017; 108:435-443. [PMID: 28075522 PMCID: PMC5378273 DOI: 10.1111/cas.13163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Carbonic anhydrase IX (CA9) is a membrane‐associated carbonic anhydrase that regulates cellular pH, is upregulated in various solid tumors, and is considered to be a therapeutic target. Here, we describe the essential role of CA9 in the tumorigenicity of cells derived from human adult T‐cell leukemia/lymphoma (ATL). We previously established the highly tumorigenic ST1‐N6 subline from the ATL‐derived ST1 cell line by serial xenotransplantation in NOG mice. In the present study, we first show that CA9 expression is strongly enhanced in ST1‐N6 cells. We then sorted ST1 cells by high or low CA9 expression and established ST1‐CA9high and ST1‐CA9low sublines. ST1‐CA9high cells, like ST1‐N6 cells, were more strongly tumorigenic than ST1‐CA9low or parental ST1 cells when injected into NOG mice. Knockdown of CA9 with shRNAs suppressed the ability of ST1‐CA9high cells to initiate tumors, and the tumorigenicity of ST1 cells was significantly enhanced by introducing wild‐type CA9 or a CA9 mutant with deletion of an intracytoplasmic domain. However, a CA9 with point mutations in the catalytic site did not increase the tumorigenicity of ST1 cells. Furthermore, we detected a small population of CA9+CD25+ cells in lymph nodes of ATL patients. These findings suggest that CA9, and particularly its carbonic anhydrase activity, promotes the tumorigenicity of ATL‐derived cells and may be involved in malignant development of lymphoma‐type ATL.
Collapse
Affiliation(s)
- Kentaro Nasu
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoka Takanashi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Keiichi Tamai
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Ikuro Sato
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Pathology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Shoji Ine
- Division of Hematology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Osamu Sasaki
- Division of Hematology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kennichi Satoh
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuyuki Tanaka
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takuya Fukushima
- Laboratory of Hemato-Immunology, Faculty of Medicine, School of Health Sciences, University of the Ryukyus, Okinawa, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
31
|
Taniguchi H, Moriya C, Igarashi H, Saitoh A, Yamamoto H, Adachi Y, Imai K. Cancer stem cells in human gastrointestinal cancer. Cancer Sci 2017; 107:1556-1562. [PMID: 27575869 PMCID: PMC5132287 DOI: 10.1111/cas.13069] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are thought to be responsible for tumor initiation, drug and radiation resistance, invasive growth, metastasis, and tumor relapse, which are the main causes of cancer-related deaths. Gastrointestinal cancers are the most common malignancies and still the most frequent cause of cancer-related mortality worldwide. Because gastrointestinal CSCs are also thought to be resistant to conventional therapies, an effective and novel cancer treatment is imperative. The first reported CSCs in a gastrointestinal tumor were found in colorectal cancer in 2007. Subsequently, CSCs were reported in other gastrointestinal cancers, such as esophagus, stomach, liver, and pancreas. Specific phenotypes could be used to distinguish CSCs from non-CSCs. For example, gastrointestinal CSCs express unique surface markers, exist in a side-population fraction, show high aldehyde dehydrogenase-1 activity, form tumorspheres when cultured in non-adherent conditions, and demonstrate high tumorigenic potential in immunocompromised mice. The signal transduction pathways in gastrointestinal CSCs are similar to those involved in normal embryonic development. Moreover, CSCs are modified by the aberrant expression of several microRNAs. Thus, it is very difficult to target gastrointestinal CSCs. This review focuses on the current research on gastrointestinal CSCs and future strategies to abolish the gastrointestinal CSC phenotype.
Collapse
Affiliation(s)
- Hiroaki Taniguchi
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chiharu Moriya
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hisayoshi Igarashi
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Anri Saitoh
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasushi Adachi
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohzoh Imai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Ji J, Tang J, Deng L, Xie Y, Jiang R, Li G, Sun B. LINC00152 promotes proliferation in hepatocellular carcinoma by targeting EpCAM via the mTOR signaling pathway. Oncotarget 2016; 6:42813-24. [PMID: 26540343 PMCID: PMC4767473 DOI: 10.18632/oncotarget.5970] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/16/2015] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is well known as the sixth most common malignant tumor and the third leading cause of cancer-related deaths globally. LINC00152 was documented as an important long non-coding RNA (lncRNA) involved in the pathogenesis of gastric cancer; however, the detailed mechanism of action of LINC00152 remains unknown. Here, based on the increased level of LINC00152 in HCC tissues, we found that LINC00152 could promote cell proliferation in vitro and tumor growth in vivo. Furthermore, microarray-based analysis indicated that LINC00152 could activate the mechanistic target of rapamycin(mTOR) pathway by binding to the promoter of EpCAM through a cis-regulation, as confirmed by Gal4-λN/BoxB reporter system. Thus, LINC00152 might be involved in the oncogenesis of HCC by activating the mTOR signaling pathway and might be a novel index for clinical diagnosis in the future.
Collapse
Affiliation(s)
- Jie Ji
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Junwei Tang
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Lei Deng
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Yu Xie
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Runqiu Jiang
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Guoqiang Li
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Beicheng Sun
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
33
|
Tanaka K, Tomita H, Hisamatsu K, Nakashima T, Hatano Y, Sasaki Y, Osada S, Tanaka T, Miyazaki T, Yoshida K, Hara A. ALDH1A1-overexpressing cells are differentiated cells but not cancer stem or progenitor cells in human hepatocellular carcinoma. Oncotarget 2016; 6:24722-32. [PMID: 26160842 PMCID: PMC4694791 DOI: 10.18632/oncotarget.4406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) is considered to be a cancer stem cell marker in several human malignancies. However, the role of ALDH1A1 in hepatocellular carcinoma (HCC) has not been well elucidated. In this study, we investigated the relationship between ALDH1A1 and clinicopathological findings and examined whether ALDH1A1 deserves to be a cancer stem cell marker in HCC. Sixty HCC samples obtained from surgical resection were collected for immunohistochemical (IHC) staining. Of these 60 samples, 47 samples of HCC tumorous and non-tumorous tissues were evaluated with qRT-PCR. There was no significant difference in the ALDH1A1-mRNA level between tumorous and non-tumorous tissues. Tumorous ALDH1A1-mRNA level had no relationship with the clinicopathological features. Immunoreactivity of ALDH1A1 was classified into two groups based on the percentage of ALDH1A1-overexpressing cells. The ALDH1A1-high group was significantly associated with low serum levels of α-fetoprotein, small tumor diameter, very little lymphovascular invasion, more differentiated pathology and good stage. The ALDH1A1-high group showed more favorable prognosis for recurrence-free survival. In double-staining IHC, ALDH1A1 was not co-expressed with BMI1, EpCAM, CD13, CD24, CD90 and CD133, which reported as cancer stem cell markers in HCC. In conclusion, ALDH1A1-overexpressing cells could appear to be differentiated cells rather than cancer stem cells in HCC.
Collapse
Affiliation(s)
- Kaori Tanaka
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kenji Hisamatsu
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takayuki Nakashima
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshiyuki Sasaki
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Osada
- Department of Multidisciplinary Therapy for Hepato-Biliary-Pancreatic Cancer, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuji Tanaka
- Division of Pathology, Gifu Municipal Hospital, Gifu, Japan
| | | | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
34
|
Sun JH, Luo Q, Liu LL, Song GB. Liver cancer stem cell markers: Progression and therapeutic implications. World J Gastroenterol 2016; 22:3547-3557. [PMID: 27053846 PMCID: PMC4814640 DOI: 10.3748/wjg.v22.i13.3547] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets.
Collapse
|
35
|
Yamaguchi K, Takanashi T, Nasu K, Tamai K, Mochizuki M, Satoh I, Ine S, Sasaki O, Satoh K, Tanaka N, Harigae H, Sugamura K. Xenotransplantation elicits salient tumorigenicity of adult T-cell leukemia-derived cells via aberrant AKT activation. Cancer Sci 2016; 107:638-43. [PMID: 26928911 PMCID: PMC4970830 DOI: 10.1111/cas.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/13/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
The transplantation of human cancer cells into immunodeficient NOD/SCID/IL‐2Rγcnull (NOG) mice often causes highly malignant cell populations like cancer stem cells to emerge. Here, by serial transplantation in NOG mice, we established two highly tumorigenic adult T‐cell leukemia‐derived cell lines, ST1‐N6 and TL‐Om1‐N8. When transplanted s.c., these cells formed tumors significantly earlier and from fewer initial cells than their parental lines ST1 and TL‐Om1. We found that protein kinase B (AKT) signaling was upregulated in ST1‐N6 and TL‐Om1‐N8 cells, and that this upregulation was due to the decreased expression of a negative regulator, INPP5D. Furthermore, the introduction of a constitutively active AKT mutant expression vector into ST1 cells augmented the tumorigenicity of the cells, whereas treatment with the AKT inhibitor MK‐2206 attenuated the progression of tumors induced by ST1‐N6 cells. Collectively, our results reveal that the AKT signaling pathway plays a critical role in the malignancy of adult T‐cell leukemia‐derived cells.
Collapse
Affiliation(s)
- Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoka Takanashi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kentaro Nasu
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Tamai
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ikuro Satoh
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pathology, Miyagi Cancer Center, Natori, Japan
| | - Shoji Ine
- Division of Hematology, Miyagi Cancer Center, Natori, Japan
| | - Osamu Sasaki
- Division of Hematology, Miyagi Cancer Center, Natori, Japan
| | - Kennichi Satoh
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuyuki Tanaka
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
36
|
Epithelial cell adhesion molecule in human hepatocellular carcinoma cell lines: a target of chemoresistence. BMC Cancer 2016; 16:228. [PMID: 26984381 PMCID: PMC4794840 DOI: 10.1186/s12885-016-2252-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023] Open
Abstract
Background The low survival rate of hepatocellular carcinoma (HCC) is partly attributable to its resistance to existing chemotherapeutic agents. Until now, there have been limited chemotherapeutic agents for liver cancer. Epithelial cell adhesion molecule (EpCAM) has been found to be over-expressed during stages of carcinogenesis and has been associated with poor overall survival in many cancers. The aim of this study was to evaluate EpCAM expression in HCC and evaluate the effects of EpCAM to established chemotherapy. Methods Three human hepatocellular carcinoma cell lines—HepG2, Hep3B and HuH-7—were pre- and post-treated with doxorubicin, 5-fluorouracil (5-FU) and cisplatin. Cell viability and EpCAM protein expression were measured by MTT assay and Western Blotting respectively. EpCAM positive cells were analyzed by flow cytometry. To evaluate the effects of doxorubicin efficacy on EpCAM positive cells, a small interfering RNA (siRNA) specific to EpCAM was transfected into the cells and treated with doxorubicin. Results: EpCAM was significantly down-regulated by doxorubicin treatment in all three HCC cell lines (P <0.05 or 0.01). EpCAM expression was down-regulated by the 5-FU and cisplatin in HepG2 cells, however the EpCAM expression was up-regulated by 5-FU and cisplatin in Hep3B cell line. EpCAM expression was down-regulated by 5-FU, and up-regulated by cisplatin in Huh-7 cell line. Flow cytometry assay showed doxorubicin exposure decreased EpCAM positive cell quantities in three HCC cell lines. EpCAM siRNA knock-down attenuated cell mortality after doxorubicin exposure. Conclusion All of these findings demonstrate that EpCAM is one of targets of chemoresistence.
Collapse
|
37
|
Guan DX, Shi J, Zhang Y, Zhao JS, Long LY, Chen TW, Zhang EB, Feng YY, Bao WD, Deng YZ, Qiu L, Zhang XL, Koeffler HP, Cheng SQ, Li JJ, Xie D. Sorafenib enriches epithelial cell adhesion molecule-positive tumor initiating cells and exacerbates a subtype of hepatocellular carcinoma through TSC2-AKT cascade. Hepatology 2015; 62:1791-803. [PMID: 26257239 DOI: 10.1002/hep.28117] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Sorafenib is a specific adenosine triphosphate-competitive RAF inhibitor used as a first-line treatment of advanced hepatocellular carcinoma (HCC). However, the responses are variable, reflecting heterogeneity of the disease, while the resistance mechanism remains poorly understood. Here, we report that sorafenib treatment can exacerbate disease progression in both patient-derived xenografts and cell line-derived xenografts and that the therapeutic effect of the drug inversely covaries to the ratio of epithelial cell adhesion molecule-positive cells, which may be tumor initiating cells in HCC. The TSC2-AKT cascade mediates this sorafenib resistance. In response to sorafenib treatment, formation of the TSC1/2 complex is enhanced, causing increased phosphorylation of AKT, which contributes to up-regulation of "stemness"-related genes in epithelial cell adhesion molecule-positive cells and enhancement of tumorigenicity. The expression of TSC2 negatively correlated with prognosis in clinical sorafenib therapy. Furthermore, all-trans retinoic acid decreased AKT activity, reduced the epithelial cell adhesion molecule-positive cell population enriched by sorafenib, and potentiated the therapeutic effect of sorafenib in the patient-derived xenograft model. CONCLUSION Our findings suggest that a subtype of HCC is not suitable for sorafenib therapy; this resistance to sorafenib can be predicted by the status of TSC2, and agents inducing differentiation of tumor initiating cells (e.g., all-trans retinoic acid) should improve the prognosis of this subtype of HCC.
Collapse
Affiliation(s)
- Dong-Xian Guan
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Shi
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yang Zhang
- The Second Hospital of Anhui Medical University, Hefei, China
| | - Jiang-Sha Zhao
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Yun Long
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tian-Wei Chen
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Er-Bin Zhang
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuan-Yuan Feng
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Dai Bao
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yue-Zhen Deng
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Qiu
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xue-Li Zhang
- Department of General Surgery of FenXian Hospital, Shanghai, China
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA
| | - Shu-qun Cheng
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jing-Jing Li
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Xie
- Laboratory of Molecular Oncology, Institute for Nutritional Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Wang XH, Liu MN, Sun X, Xu CH, Liu J, Chen J, Xu RL, Li BX. TGF-β1 pathway affects the protein expression of many signaling pathways, markers of liver cancer stem cells, cytokeratins, and TERT in liver cancer HepG2 cells. Tumour Biol 2015; 37:3675-81. [DOI: 10.1007/s13277-015-4101-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022] Open
|
39
|
Increased Oxidative Stress as a Selective Anticancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:294303. [PMID: 26273420 PMCID: PMC4529973 DOI: 10.1155/2015/294303] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are closely related to tumorgenesis. Under hypoxic environment, increased levels of ROS induce the expression of hypoxia inducible factors (HIFs) in cancer stem cells (CSCs), resulting in the promotion of the upregulation of CSC markers, and the reduction of intracellular ROS level, thus facilitating CSCs survival and proliferation. Although the ROS level is regulated by powerful antioxidant defense mechanisms in cancer cells, it is observed to remain higher than that in normal cells. Cancer cells may be more sensitive than normal cells to the accumulation of ROS; consequently, it is supposed that increased oxidative stress by exogenous ROS generation therapy has an effect on selectively killing cancer cells without affecting normal cells. This paper reviews the mechanisms of redox regulation in CSCs and the pivotal role of ROS in anticancer treatment.
Collapse
|
40
|
Andrews TE, Wang D, Harki DA. Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery. Drug Deliv Transl Res 2015; 3:121-42. [PMID: 25787981 DOI: 10.1007/s13346-012-0075-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The recognition that the persistence of cancer stem cells (CSCs) in patients following chemotherapy can result in disease relapse underscores the necessity to develop therapeutics against those cells. CSCs display a unique repertoire of cell surface macromolecules, which have proven essential for their characterization and isolation. Additionally, CSC-specific cell surface macromolecules or markers provide targets for the development of specific agents to destroy them. In this review, we compiled those cell surface molecules that have been validated as CSC markers for many common blood and solid tumors. We describe the unique chemical and structural features of the most common cell surface markers, as well as recent efforts to deliver chemotherapeutic agents into CSCs by targeting those macromolecules.
Collapse
Affiliation(s)
- Timothy E Andrews
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware St SE, Minneapolis, MN, 55414, USA
| | | | | |
Collapse
|
41
|
Niu ZS, Niu XJ, Wang M. Management of hepatocellular carcinoma: Predictive value of immunohistochemical markers for postoperative survival. World J Hepatol 2015; 7:7-27. [PMID: 25624992 PMCID: PMC4295195 DOI: 10.4254/wjh.v7.i1.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/02/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for over 90% of all primary liver cancers. With an ever increasing incidence trend year by year, it has become the third most common cause of death from cancer worldwide. Hepatic resection is generally considered to be one of the most effective therapies for HCC patients, however, there is a high risk of recurrence in postoperative HCC. In clinical practice, there exists an urgent need for valid prognostic markers to identify patients with prognosis, hence the importance of studies on prognostic markers in improving the prediction of HCC prognosis. This review focuses on the most promising immunohistochemical prognostic markers in predicting the postoperative survival of HCC patients.
Collapse
|
42
|
Xu LB, Liu C. Role of liver stem cells in hepatocarcinogenesis. World J Stem Cells 2014; 6:579-590. [PMID: 25426254 PMCID: PMC4178257 DOI: 10.4252/wjsc.v6.i5.579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/24/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the “cancer stem cell hypothesis”, which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells (liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future.
Collapse
|
43
|
Overexpression of miR-200a suppresses epithelial-mesenchymal transition of liver cancer stem cells. Tumour Biol 2014; 36:2447-56. [DOI: 10.1007/s13277-014-2856-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/13/2014] [Indexed: 01/11/2023] Open
|
44
|
Hashimoto N, Tsunedomi R, Yoshimura K, Watanabe Y, Hazama S, Oka M. Cancer stem-like sphere cells induced from de-differentiated hepatocellular carcinoma-derived cell lines possess the resistance to anti-cancer drugs. BMC Cancer 2014; 14:722. [PMID: 25260650 PMCID: PMC4190290 DOI: 10.1186/1471-2407-14-722] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are thought to play important roles in therapy-resistance. In this study, we induced cancer stem-like cells from hepatocellular carcinoma (HCC) cell lines using a unique medium, and examined their potential for resistance to anti-cancer drugs. METHODS The human HCC cell lines SK-HEP-1 (SK), HLE, Hep 3B, and HuH-7 were used to induce cancer stem-like cells with our sphere induction medium supplemented with neural survival factor-1. NANOG and LIN28A were examined as stemness markers. Several surface markers for CSC such as CD24, CD44, CD44 variant, and CD90 were analyzed by flow-cytometry. To assess the resistance to anti-cancer drugs, the MTS assay, cell cycle analysis, and reactive oxygen species (ROS) activity assay were performed. RESULTS Poorly differentiated HCC derived SK and undifferentiated HCC derived HLE cell lines efficiently formed spheres of cells (SK-sphere and HLE-sphere), but well-differentiated HCC-derived HuH-7 and Hep 3B cells did not. SK-spheres showed increased NANOG, LIN28A, and ALDH1A1 mRNA levels compared to parental cells. We observed more CD44 variant-positive cells in SK-spheres than in parental cells. The cell viability of SK-spheres was significantly higher than that of SK cells in the presence of several anti-cancer drugs except sorafenib (1.7- to 7.3-fold, each P < 0.05). The cell cycle of SK-spheres was arrested at the G0/G1 phase compared to SK cells. SK-spheres showed higher ABCG2 and HIF1A mRNA expression and lower ROS production compared to parental cells. CONCLUSION Our novel method successfully induced cancer stem-like cells, which possessed chemoresistance that was related to the cell cycle, drug efflux, and ROS.
Collapse
Affiliation(s)
- Noriaki Hashimoto
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | - Ryouichi Tsunedomi
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | - Kiyoshi Yoshimura
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | - Yusaku Watanabe
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | - Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | - Masaaki Oka
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| |
Collapse
|
45
|
Moghbeli M, Moghbeli F, Forghanifard MM, Abbaszadegan MR. Cancer stem cell detection and isolation. Med Oncol 2014; 31:69. [PMID: 25064729 DOI: 10.1007/s12032-014-0069-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022]
Abstract
Only 10 % of cancer-related deaths result from primary tumors; most are caused by metastatic tumors. It is believed that the metastatic power of tumor cells is attributed to features of a stem cell-like subpopulation of tumor cells known as cancer stem cells (CSCs). Cancer stem cells are resistant to chemotherapeutic treatments and can induce dormancy in tumor cells for long periods. Detection, isolation, and characterization of CSCs in solid tumors are hallmarks of cancer-targeted therapies in recent years. There are inevitable similarities between normal and cancer stem cells; therefore, finding specific methods or markers to differentiate them is critical to cancer therapies. Considering CSCs involvement in tumor relapse and chemotherapeutic resistance, identification of such cells in tumors is imperative for effective targeted therapy. The present review introduces practical and specific protocols used to isolate CSCs from solid tumors from colon, esophagus, liver, breast, brain, and cervix.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | |
Collapse
|
46
|
Tamai K, Nakamura M, Mizuma M, Mochizuki M, Yokoyama M, Endo H, Yamaguchi K, Nakagawa T, Shiina M, Unno M, Muramoto K, Sato I, Satoh K, Sugamura K, Tanaka N. Suppressive expression of CD274 increases tumorigenesis and cancer stem cell phenotypes in cholangiocarcinoma. Cancer Sci 2014; 105:667-74. [PMID: 24673799 PMCID: PMC4317902 DOI: 10.1111/cas.12406] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 01/05/2023] Open
Abstract
Cholangiocarcinoma is an aggressive malignant tumor originating from intrahepatic or extrahepatic bile ducts. Its malignant phenotypes may be assumed by cancer stem cells (CSC). Here, we demonstrate that CD274 (PD-L1), known as an immunomodulatory ligand, has suppressive effects on CSC-related phenotypes of cholangiocarcinoma. Using two human cholangiocarcinoma cell lines, RBE and HuCCT1, we attempted to isolate the CD274low and CD274high cells from each cell line, and xenografted them into immunodeficient NOD/scid/γcnull (NOG) mice. We found that the CD274low cells isolated from both RBE and HuCCT1 are highly tumorigenic in NOG mice compared with CD274high cells. Furthermore, the CD274low cells possess several CSC-related characteristics, such as high aldehyde dehydrogenase (ALDH) activity, reduced reactive oxygen species production and a dormant state in the cell cycle. Furthermore, depletion of CD274 expression by shRNA in RBE cells enhances their tumorigenicity and increases ALDH activity. These findings are compatible with our observation that clinical cholangiocarcinoma specimens are classified into low and high groups for CD274 expression, and the CD274 low group shows poorer prognosis when compared with the CD274 high group. These results strongly suggest that CD274 has a novel function in the negative regulation of CSC-related phenotypes in human cholangiocarcinoma, which is distinct from its immunomodulatory actions.
Collapse
Affiliation(s)
- Keiichi Tamai
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
He G, Cao X, He M, Sheng X, Wu Y, Ai X. Casticin inhibits self-renewal of liver cancer stem cells from the MHCC97 cell line. Oncol Lett 2014; 7:2023-2028. [PMID: 24932283 PMCID: PMC4049684 DOI: 10.3892/ol.2014.1972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/18/2014] [Indexed: 12/28/2022] Open
Abstract
Casticin exerts anticarcinogenic activity in several types of cancers, including human hepatocellular carcinoma (HCC). The aim of the present study was to investigate the effects of casticin, which is derived from Fructus Viticis Simplicifoliae, on the self-renewal capacity of liver cancer stem cells (LCSCs) derived from the HCC MHCC97 cell line. The present study demonstrated that casticin significantly inhibited the proliferation of LCSCs from the MHCC97 cell line in a dose-dependent manner (P<0.05), the half maximal inhibitory concentration of the parental cells and LCSCs was 17.9 and 0.5 μmol/l, respectively. Furthermore, casticin reduced the sphere-forming capacity of LCSCs and downregulated β-catenin protein expression in a concentration-dependent manner. Lithium chloride, an agonist known to activate the Wnt/β-catenin signaling pathway, attenuated the casticin-induced downregulation of β-catenin protein expression and inhibited the self-renewal capacity. To the best of our knowledge, the present study is the first to demonstrate that casticin effectively eradicates LCSCs and β-catenin was identified as the potential target. Thus, casticin may offer a novel therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Guicheng He
- Department of Oncology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaocheng Cao
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Meng He
- Department of Oncology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xifeng Sheng
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Youhua Wu
- Department of Oncology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohong Ai
- Department of Oncology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
48
|
Expression of EpCAM increases in the hepatitis B related and the treatment-resistant hepatocellular carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:172913. [PMID: 24696843 PMCID: PMC3947853 DOI: 10.1155/2014/172913] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 12/26/2022]
Abstract
Increasing evidence supports the important role of cancer stem cells (CSCs). Many reports suggest that epithelial cell adhesion molecule (EpCAM) is a useful marker for cancer stem cells in hepatocellular carcinoma (HCC). To elucidate the mechanisms of cancer stem cells, the development of specific molecular targeted drugs has become very important. In the present study, we examined the EpCAM expression pattern and its characteristic expression in resected HCC. We studied the drug resistance of EpCAM expression cells. EpCAM expression was detected significantly more frequently with hepatitis B virus (HBV) than with other etiologies. In HCC resection patients who had received prior treatment (transcatheter arterial embolization or hepatic arterial infusion chemotherapy), EpCAM was strongly expressed. In particular, very strong expression was observed after hepatic arterial infusion chemotherapy. The PLC/PRF/5 human HCC cell line expressed bimodal EpCAM, and EpCAM-positive cells had CSC cell potency. The EpCAM expression in EpCAM-positive cells increased significantly by treatment with cisplatin. EpCAM-positive cells showed better viability than EpCAM-negative cells when treated with ciplatin. Collectively, our results suggest that cancer stem cells are highly expressed in hepatitis B and have potential anticancer drug resistance.
Collapse
|
49
|
Ogawa K, Tanaka S, Matsumura S, Murakata A, Ban D, Ochiai T, Irie T, Kudo A, Nakamura N, Tanabe M, Arii S. EpCAM-Targeted Therapy for Human Hepatocellular Carcinoma. Ann Surg Oncol 2013; 21:1314-22. [DOI: 10.1245/s10434-013-3430-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Indexed: 01/15/2023]
|
50
|
Zen Y, Vara R, Portmann B, Hadzic N. Childhood hepatocellular carcinoma: a clinicopathological study of 12 cases with special reference to EpCAM. Histopathology 2013; 64:671-82. [PMID: 24138022 DOI: 10.1111/his.12312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
AIMS To elucidate the characteristics of hepatocellular carcinoma (HCC) in children. METHODS AND RESULTS A retrospective search of our database identified 12 children with HCC (aged 10 months to 11 years; male/female ratio of 5:7). Their pathological features were compared with those of adult HCCs (n = 20), fibrolamellar HCCs (n = 14), and hepatoblastomas (n = 15). All childhood HCCs developed on a background of cirrhosis resulting from tyrosinaemia type 1 (n = 4), bile salt export transporter deficiency (n = 4), biliary atresia (n = 3), and long-standing total parenteral nutrition (n = 1). HCCs in cases of tyrosinaemia type 1 always had clear cell changes, solid architecture, and only mild nuclear atypia, whereas the morphological features of HCCs in the other conditions were basically similar to those of adult HCCs. On immunostaining, all cases of childhood HCC were positive for epithelial cell adhesion molecule (EpCAM); expression was diffuse (>50% of cancer cells) in 11 cases, and particularly strong in six children, all aged <3 years. In contrast, EpCAM was only focally expressed in three cases of adult HCC (15%). EpCAM was also expressed in most fibrolamellar HCCs and hepatoblastomas, but these two neoplasms differed from childhood HCCs in the expression of CK7, β-catenin, and p53. CONCLUSIONS The diffuse expression of EpCAM characterizes childhood HCC, and may indicate immaturity of neoplastic cells.
Collapse
Affiliation(s)
- Yoh Zen
- Histopathology Section, Institute of Liver Studies, King's College Hospital, London, UK
| | | | | | | |
Collapse
|